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ABSTRACT. In this note, we shall give a sharp growth estimate for a uniformly locally
univalent holomorphic function on the unit disk. As applications, we shall investigate
the growth of coefficients of such a function and mention the connection with Hardy
spaces. We also give norm estimates for typical classes of univalent functions.

1. INTRODUCTION

We will call a holomorphic function $f$ on the unit disk $\mathrm{D}$ uniformly locally univalent if
$f$ is univalent on each hyperbolic disk $D(a, \rho)=\{z\in \mathrm{D};|\frac{z-a}{1-\overline{a}z}|<\tanh\rho\}$ with radius $\rho$

and center $a\in \mathrm{D}$ for a positive constant $\rho$ . In particular, a holomorphic universal covering
map of a plane domain $D$ is uniformly locally univalent if and only if the boundary of $D$

is uniformly perfect (cf. [12] or [17]). Also it is well-known (cf. [20]) that a holomorphic
function $f$ on the unit disk is uniformly locally univalent if and only if the pre-Schwarzian
derivative (or nonlinearity) $T_{f}=f^{\prime/}/f’$ of $f$ is hyperbolically bounded, i.e., the norm

$||T_{f}||= \sup_{z\in \mathrm{D}}(1-|Z|^{2})|T_{f()1}z$

is finite. This quantity can be regarded as the Bloch norm of the function $\log f’$ . Remark
that a holomorphic function $f$ is locally univalent at the point $z$ if and only if $T_{f}=f^{\prime/}/f’$

is a well-defined holomorphic function near $z$ . Roughly speaking, the quantity $T_{j}$ measures
the deviation of $f$ from orientation-preserving similarities (non-constant linear functions).

Because $T_{f}$ is invariant under the post-composition by a non-constant linear function,
we may assume that a holomorphic function $f$ on the unit disk is normalized so that
$f(\mathrm{O})=0$ and $f’(0)=1$ . We denote by $A$ the set of such normalized holomorphic functions
on the unit disk. And we denote by $B$ the set of normalized uniformly locally univalent
functions: $B=\{f\in A;||T_{f}||<\infty\}$ . The space $B$ has a structure of non-separable complex
Banach space under the Hornich operation ([19]).

For a non-negative real number $\lambda$ we set

$B(\lambda)=\{f\in A;||\tau_{f}||\leq 2\lambda\}$ ,

here the number 2 is due to some technical reason. The functions in $B(\lambda)$ can be charac-
terized as the following.
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Proposition 1.1. Let a non-negative constant $\lambda$ be given. A locally univalent function
$f\in A$ belongs to $B(\lambda)$ if and only if for any pair of points $z_{1},$ $z_{2}$ in $\mathrm{D}$ it holds that

(1.1) $|g(Z_{1})-g(Z_{2})|\leq 2\lambda d_{\mathrm{D}}(z_{1,2}z)$,

where $g(z)=\log f’(Z)$ and $d_{\mathrm{D}}(z_{1,2}z)=\tanh^{-1}|^{\frac{z-z}{1-\overline{z}_{1}z_{2}}}|$ stands for the hyperbolic distance
beiween $z_{1}$ and $z_{2}$ in the unit disk D.

Proof. First of all, note that we can take a holomorphic branch $g$ of $\log f^{\prime_{\mathrm{f}\mathrm{o}\mathrm{r}}}$ a locally
univalent holomorphic function $f$ on the unit disk. The “only if ” part is shown by
integrating the inequality $|g’(Z)|=|T_{f}(z)|\leq 2\lambda/(1-|z|^{2})$ along the hyperbolic geodesic
joining $z_{1}$ and $z_{2}$ . The “if ” part directly follows from the observation:

$, \lim_{zarrow z}\frac{|g(_{Z’})-g(z)|}{d_{\mathrm{D}}(z’,Z)}=(1-|z|^{2})|g(_{Z}/)|$ .

$\square$

The following theorem is significant in connection with univalent function theory.

Theorem A (Becker and Pommerenke [3], [4]). The set $S$ of normalized univalent holo-
morphic functions on the unit disk is contained in $B(3)$ and contains $B( \frac{1}{2})$ . The result is
sharp.

We note that the Schwarzian derivative $S_{f}$ of $f$ can be written as $S_{f}=(T_{f})/-(T_{f})^{2}/2$ .
Thus the space $B$ has a close connection with (the Bers embedding of) the Teichm\"uller

spaces. Especially, it is expected to be useful when considering the Bers boundary of
the Teichm\"uller spaces since the quantity $T_{f}$ is much easier to treat than $S_{\hat{J}}$ . In fact, the
space $\mathcal{T}_{1}:=$ { $T_{f;}f\in S$ has a quasiconformal extension to the Riemann sphere} can be
regarded as a model of the universal Teichm\"uller space (cf. [1] and [23]).

Here, as a result in this direction, we mention the following.

Corollary. For a constant $k\in[0,1)$ , let $S_{k}$. be the subset of $S$ consisting of those func-
tions which can be extended to $k$ -quasiconformal self-mappings of the Riemann sphere $\hat{\mathbb{C}}$ .
Then, we have

$B(k/2)\subset S_{k}$ .

This implication is easily obtained by the $\lambda$-lemma (see, for example, [13, p. 121]).
This already (implicitly) appeared in the paper [3] by Becker.

2. GROWTH ESTIMATE FOR THE CLASS $B(\lambda$ )

In the class $B(\lambda)$ for $0\leq\lambda<\infty$ the function

$F_{\lambda}(z)= \int_{0}^{z}(\frac{1+t}{1-t})^{\lambda}dt$

is extremal as we shall see later. We remark that $F_{\lambda}\in A$ can be defined for any complex
number $\lambda$ and satisfies $T_{F_{\lambda}}=2\lambda(1-Z^{2})-1$ , thus $||T_{F_{\lambda}}||=2|\lambda|$ . $F_{\lambda}$ may provide an example
of a function with small pre-Schwarzian norm which does not belong to typical classes of
univalent functions when $\lambda$ is sufficiently small and $\lambda\not\in \mathbb{R}$ .

In practice, it is important to know the univalence of $F_{\lambda}$ .
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Lemma 2.1. For a non-negative number $\lambda$ , the function $F_{\lambda}$ is univalent in the unit disk
if and only if $0\leq\lambda\leq 1$ .

Proof. First, we compute the Schwarzian derivative $S_{F_{\lambda}}$ of $F_{\lambda}$ . Then, we have

$\sup_{z\in \mathrm{D}}(1-|Z|2)^{2}|s_{F}(\lambda Z)|=\sup_{z\in \mathrm{D}}(1-|\mathcal{Z}|^{2})^{2}\frac{2\lambda|2z-\lambda|}{|1-Z^{2}|^{2}}=2\lambda(\lambda+2)$ .

In particular, if $1<\lambda$ , then $2\lambda(\lambda+2)>6$ , thus the Nehari-Kraus theorem implies that
$F_{\lambda}$ is not univalent.

On the other hand, if $0\leq\lambda\leq 1$ , we have ${\rm Re} F_{\lambda}’(z)>0$ in the unit disk, hence the
Noshiro-Warschawski theorem ensures the univalence of $F_{\lambda}$ in this case. $\square$

The following result is elementary and might be known. But we shall include the proof
because of its importance for our aim.

Theorem 2.2 (Distortion Theorenl). Let $\lambda$ be a non-negative real number. For an $f\in$

$B(\lambda)$ it holds that

(2.1) $F_{\lambda}’(-|Z|)=( \frac{1-|z|}{1+|z|})^{\lambda}\leq|f’(z)|\leq(\frac{1+|z|}{1-|z|})^{\lambda}=F_{\lambda}’(|z|)$ , and

(2.2) $|f(z)|\leq F_{\lambda}(|_{Z}|)$

in the unit disk. Furthermore, if $f$ is univalent then

(2.3) $-F_{\lambda}(-|z|)\leq|f(Z)|\leq F_{\lambda}(|Z|)$ .

If the equality occurs in any of the above inequalities at some point $z_{0}\neq 0$ , then $f$ must
be a rotation of $F_{\lambda},$ $i.e.,$ $f(z)=\overline{\mu}F_{\lambda}(\mu z)$ for a unimodular constant $\mu$ .

Proof. Applying Proposition 1.1 in the case of $z_{1}=z$ and $z_{2}=0$ , we see

(2.4) $| \log f’(Z)|\leq\lambda\log\frac{1+|z|}{1-|z|}$ .

Taking the real part of $\log f’$ , we obtain (2.1). And the integration of (2.1) yields (2.2).
The inequality (2.3) can be shown by the same method as in the proof of the Koebe
distortion theorem. The equality cases are obvious. (Note that the inequality (2.3) is
sharp only for $\lambda\leq 1$ by Lemma 2.1.) $\square$

Since $\int_{0}^{1}(\frac{1+l}{1-t})^{\lambda}dt<\infty$ for $\lambda<1$ and $\int_{0}^{r}(\frac{1+\mathrm{f}}{1-t})^{\lambda}dt\leq\frac{2^{\lambda}}{\lambda-1}(1-r)^{1\lambda}-$ for $\lambda>1$ , we have the
following

Corollary 2.3. For $\lambda>1$ any $f\in B(\lambda)\mathit{8}ati_{\mathit{8}}fies$ the growth condition
$f(z)=^{o(1|_{Z|)^{1-\lambda}}}-$

$a\mathit{8}|z|arrow 1$ . Furthermore, if $f$ is univalent, then $f(\mathrm{D})$ contains the disk $\{|z|<-F_{\lambda}(-1)\}$ .
This $conStant-F\lambda(-1)$ is best possible for $0\leq\lambda\leq 1$ .

On the other hand, for $\lambda<1$ , a function $f\in B(\lambda)$ is always bounded with a uniform
bound $F_{\lambda}(1)$ .
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We note again that for $\lambda\leq 1/2$ the function $f\in B(\lambda)$ must be univalent. We also note
that, for $0\leq\lambda\leq 1$ , we $\mathrm{h}\mathrm{a}\mathrm{v}\mathrm{e}-F_{\lambda}(-1)\leq-F_{1}(-1)=2\log 2-1=0.38629\cdots$ , therefore
the result above is better than the Koebe one-quarter theorem.

Remark. By using the integral representation of the Gauss hypergeometric function (cf.
Rainville [15] p.47, Theorem 16),

$\frac{F_{\lambda}(z)}{z}=\int_{0}^{1}(\frac{1+tz}{1-tz})^{\lambda}dt$

$=. \sum_{k=0}^{\infty}z^{k}I_{0}^{t^{k-}}1t(1-t_{Z)d}\lambda$

$= \sum_{k=0}^{\infty}\frac{\Gamma(\lambda+k)}{(k+1)!\Gamma(\lambda)}z^{k}F(-\lambda, k+1;k+2;-Z)$ ,

where $F(a, b;c;z)$ denotes the Gauss hypergeometric function. Also, the values $F_{\lambda}(1)$ and
$-F_{\lambda}(-1)$ can be expressed in terms of the Gauss hypergeometric function. For example,
by [14] p.491,

$-F_{\lambda}(-1)= \int_{0}^{1}(\frac{1-t}{1+t})^{\lambda}dt=\frac{1}{\lambda+1}F(1, \lambda;\lambda+2;-1)$

$= \frac{1}{2^{\lambda}(\lambda+1)}F(\lambda, \lambda+1;\lambda+2;1/2)$

$=. \sum_{k=0}^{\infty}\frac{\Gamma(\lambda+k)}{k!(\lambda+k+1)\Gamma(\lambda)2\lambda+k}.$ ,

which may also be rewritten in terms of the difference of two Digamma functions ([14],
p.489, Eq.12) :

$-F_{\lambda}(-1)= \lambda[\psi(\frac{\lambda+1}{2})-\psi(\frac{\lambda}{2})]-1$ $( \psi(z):=\frac{\Gamma’(z)}{\Gamma(z)})$ .

Similarly, we have $F_{\lambda}(1)=\lambda[\psi(-\lambda/2)-\psi((1+\lambda)/2)]-1$ . It may be useful to note the
following elementary estimate:

$\frac{1}{(\lambda+1)2^{\lambda}}<-F_{\lambda}(-1)<\frac{1}{\lambda+1}$ .

In the above theorem, the case $\lambda=1$ is critical. In this case, by Theorem 2.2, we can
see that for $f\in B(1)$

$|f(Z)| \leq F_{1}(|Z|)=2\log\frac{1}{1-|z|}-|z|$ .

In particular, a function in $B(1)$ need not be bounded (for instance, $F_{1}$ ). The next
proposition gives a boundedness criterion for functions in $B(1)$ .

Proposition 2.4. If a holomorphic function $f$ on the unit disk satisfies that

(2.5) $\beta(f):=\varlimsup_{|z|arrow 1-0}\{(1-|Z|2)|\tau_{f}(Z)|-2\}\log\frac{1}{1-|z|^{2}}<-2$
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then $f$ is bounded. Here, the constant-2 in the right hand side is sharp.

Proof. By assumption, there exists a $\beta<-2$ such that the left-hand side in (2.5) is less
than $\beta$ . Thus, for some $0<r_{0}<1,$ $(1-|z|^{2})|Tf(Z)|-2 \leq\frac{\beta}{1_{0_{\circ\tau}^{\sigma_{\frac{1}{1-|-\sim|}}}}}$ , i.e.,

(2.6) $|T_{f}(z)| \leq\frac{2}{1-|_{Z|^{2}}}+\frac{\beta}{(1-|Z|2)\log\frac{1}{1-|z|^{2}}}$

for any $z\in \mathbb{C}$ with $r_{0}<|z|<1$ . Here, we may choose $r_{0}$ sufficiently close to 1 so that
$1-r_{0}^{2}<e^{-1}$ and that $\beta_{1}:=(1+r_{0})\beta/\mathit{2}<-\mathit{2}$ .

Integrating the inequality (2.6), we see that, for $|z|>r_{0}$ ,

$| \log f’(Z)|\leq\log\frac{1+|z|}{1-|z|}+\int_{r_{0}}^{|z|}\frac{\beta dt}{(1-t^{2})\log\frac{1}{1-t^{2}}}+c1$

$\leq\log\frac{1+|z|}{1-|z|}+\int_{r_{0}}^{|z|}\frac{\beta_{1}dt}{2(1-t)\log\frac{1}{2(1-t)}}+c1$

$= \log\frac{1-|z|}{1+|z|}+\frac{\beta_{1}}{2}\log\log\frac{1}{2(1-|Z|)}+c_{2}$ ,

where $C_{1}$ and $C_{2}$ are constants depending only on $f$ and $r_{0}$ . In particular, we have

$|f’(z)| \leq e^{C_{2}}\frac{1+|z|}{1-|z|}(\log\frac{1}{2(1-|z|)})/j_{1}/2$

Since $\beta_{1}/2<-1$ the function $\frac{1+t}{1-1}(\log\frac{1}{2(1-t)})^{\beta 1}/2$ is integrable on the interval $[r_{0},1)$ . Thus
$f$ is bounded.

The sharpness follows from the $\mathrm{e}\dot{\mathrm{x}}\mathrm{a}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}$ below. $\square$

Example 2.1. Let a constant $\beta<0$ be given. Choose a constant $c>0$ so that $c\beta+2\geq 0$ .
Now we consider the function $f\in A$ determined by

$f’(Z)= \frac{K}{1-z}(1+c\log\frac{2}{1-z})^{\beta}$ ,

where $K=(1+c\log \mathit{2})-\beta$ . Then this function satisfies that $||T_{f}||=2$ . And moreover, $f$ is
bounded in the uint disk if and only if $\beta<-1$ .

In fact, first observe that

$T_{f}(Z)= \frac{1}{1-z}+\frac{c\beta}{(1-Z)(1+C\log\frac{2}{1-z})}=\frac{1}{1-z}[1+\frac{\beta}{\frac{1}{c}+\log\frac{2}{1-z}}]$ .

By the fact that ${\rm Re} \frac{2}{1-z}>1$ , one can conclude that ${\rm Re} w> \frac{1}{c}\geq-\beta/2$ and $|{\rm Im} w|<\pi/2$ ,
where $w= \frac{1}{c}+\log\frac{2}{1-z}$ . Noting that $|1+\beta/w|^{2}=1+\beta(2{\rm Re} w+\beta)/|w|^{2}\leq 1$ , one can see
that $|T_{f}(z)| \leq\frac{1}{|1-z|}\leq\frac{1}{1-|z|}$ . In particular, it holds that $(1-|z|^{2})|Tf(z)|\leq 1+|z|<2$ . On
the other hand, it is easy to see that $\lim_{xarrow 1-}\mathrm{o}(1-x2)|T_{f(X})|=\mathit{2}$ , thus $||T_{f}||=2$ .

Next, we shall show that $\beta(f)=2\beta$ . Since $|1+\beta/w|=[1+\beta(2{\rm Re} w+\beta)/|w|^{2}]^{1/2}\sim$

$1+\beta({\rm Re} w+\beta/2)/|w|^{2}\sim 1+\beta/{\rm Re} w\sim 1-\beta/\log|1-z|$ as $zarrow 1$ and since the function
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$t(1+\beta/\log t)$ of $t$ is monotonically increasing for sufficiently large $t$ , we have

$\beta(f)=\varlimsup_{\mathrm{D}\ni zarrow 1}\{(1-|z|^{2})|T_{f}(z)|-2\}\log\frac{1}{1-|_{Z|^{2}}}$

$= \varlimsup_{\mathrm{D}\ni zarrow 1}\{\frac{(1-|_{Z}|2)}{|1-Z|}(1+\frac{\beta}{\log 1/|1-Z|})-2\}\log\frac{1}{1-|_{Z|^{2}}}$

$= \varlimsup_{z\mathrm{D}\niarrow 1}\{(1+|Z|)(1+\frac{\beta}{\log 1/(1-|Z|)})-2\}\log\frac{1}{1-|_{Z|^{2}}}$

$= \overline{\lim_{xarrow 1}-}0\{-(1-x)\log\frac{1}{1-x^{2}}+(1+x)\beta\frac{\log\frac{1}{1-x^{2}}}{\log\frac{1}{1-x}}\}=0+2\beta$ .

In particular, we can conclude that $f$ is bounded if $\beta<-1$ by Proposition 2.4.
On the other hand, in the case that $\beta\geq-1$ , noting that $\int_{r_{0}}^{1}\frac{1}{1-x}(\log\frac{1}{1-x})\beta=\infty$ , we can

directly see $\varlimsup_{xarrow 1}-0f(x)=+\infty$ , thus $f$ is unbounded.

3. APPLICATIONS

As applications of the results in the previous section, we will derive various properties
of the functions in the class $B(\lambda)$ . We begin with the H\"older continuity of those functions.
Recall the following fundamental fact due to Hardy-Littlewoood.

Theorem $\mathrm{B}$ (cf. [6]). Let $\alpha$ be a constant such that $0<\alpha\leq 1.$ A holomorphic function
$f$ on the unit disk is H\"older continuous of exponent $\alpha$ if and only if $f’(z)=O(1-|z|)^{\alpha-1}$

as $|z|arrow 1$ .

Combining this with $\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\ln \mathit{2}.2$ , we have

Theorem 3.1. Let $0\leq\lambda<1$ . Then any function $f\in B(\lambda)$ is H\"older continuous of
exponent $1-\lambda$ on the unit disk.

Remark. We can directly see that $|f(z_{1})-f(z_{2})| \leq\frac{c}{1-\lambda}|z_{1}-z_{2}|^{1-\lambda}$ for any pair of

points $z_{1},$
$z_{2}\in \mathrm{D}$ , where $C$ is an absolute constant, owing to the estimate $\int_{r}^{s}(\frac{1+\}{1-t})^{\lambda}dt\leq$

$\frac{2^{\lambda}}{1-\lambda}((1-r)1-\lambda-(1-S)^{1-\lambda})\leq\frac{2^{\lambda}}{1-\lambda}(s-r)^{1\lambda}-$ for $0<r<s<1$ .

Second we consider coefficient estimates for the class $B(\lambda)$ . Let $f(z)=z+a_{-},z^{2}+\cdots\in$

$B(\lambda)$ . Then, by definition, $|T_{f}(\mathrm{o})|\leq 2\lambda$ , which implies $|a_{2}|\leq\lambda$ . Of course, this is sharp
because the equality holds for the function $F_{\lambda}$ . But, a function in $B(\lambda)$ essentially different
from $F_{\lambda}$ may attai.n this maximum. For instance, consider the fu.nction $f(z)=(e^{2\lambda z}-$

$1)/\mathit{2}\lambda$ .
If the origin is a critical point of the function $(1-|z|^{2})|Tf(z)|$ then $(T_{f})/(\mathrm{o})=6a_{3}-$

$(2a_{2})^{2}=0$ though this condition need not be sufficient for $|a_{2}|=\lambda$ .
As for the growth of coefficients of a holomorphic function $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$

in the unit disk, it is convenient to consider. the integral mean of exponent $p\in \mathbb{R}$ :

$I_{p}(r, f)= \frac{1}{2\pi}\int_{0}^{2\pi}|f(re)i\theta|\mathrm{P}d\theta$.

In fact, we have the following elementary
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Lemma 3.2. If $I_{1}(r, f)=O(1-r)^{-\alpha}$ as $rarrow 1$ for a constant $\alpha\geq 0$ , then we have
$a_{n}=O(n^{\alpha})$ as $narrow\infty$ .

Proof Suppose that $I_{1}(r, f)\leq M(1-r)^{-\alpha}$ for $0\leq r<1$ . Then, for $n>1$ and $\gamma=1-1/n$ ,
it follows from Cauchy’s integral formula that

$|a_{n}|=| \frac{1}{2\pi}\int_{0}^{\pi}\underline’ f(re^{i\theta})(re)^{-n_{d\theta 1}}i\theta\leq r^{-n}I_{1}(r, f)\leq Mr^{-n}(1-r)^{-}\alpha$

$=M(1- \frac{1}{n})^{-}nn^{\alpha}<\frac{eMn}{n-1}n^{\alpha}$ .

thus $|a_{n}|<2eMn^{\alpha}$ . $\square$

In particular, for a function $f(z)=z+a_{2}z\underline’+,$ .. in $B(\lambda)$ , by Theorem 2.2, we have
$I_{1}(r, f’)=O(1-r)^{-}\lambda$ , thus an estimate $|a_{n}|=O(n^{\lambda 1}-.)$ as $narrow\infty$ . But we can improve
the exponent of this order. For $\lambda>0$ , we set

$\alpha(\lambda)=\frac{\sqrt{1+4\lambda^{2}}-1}{2}$ .

$\frac{\lambda^{2}}{\lambda+1}<\alpha(\lambda)<\min\{\lambda^{2},$ $\frac{2\lambda^{\underline{J}}}{\mathit{2}\lambda+1}\}\leq\min\{\lambda^{2}, \lambda\}$ .

We also note that
$\alpha(\lambda)=\lambda-\frac{1}{2}+\frac{1}{8\lambda}+^{o}(\frac{1}{\lambda^{3}})$ $(\lambdaarrow\infty)$ .

For this number, we have the next result.

Theorem 3.3. Let $f(z)=z+a_{-},z^{2}+a_{3}z^{3}+\cdots$ be in $B(\lambda)$ . Then, for any $\epsilon>0$ and a
real number $p$ , we have $I_{p}(r, f’)=O(1-r)-\alpha(|p|\lambda)-\epsilon$ , in particular, $a_{n}=O(n^{\alpha()})\lambda-1+\in$ .

This immediately follows from the next result.

Theorem $\mathrm{C}$ ([10, Lemma 5.3]). Let $h$ be a holomorphic function in the unit disk such
that

$(1-|z|)| \frac{h’(z)}{h(z)}|\leq c$ $(r_{0}\leq|z|<1)$

for constants $c>0$ and $r_{0}<1$ . Then, $I_{p}(r, h)=O(1-r)-\beta$ , where $\beta=(\sqrt{1+4p^{2}c^{2}}-1)/\mathit{2}$

and $p\in \mathbb{R}$ .

We note that this is a consequence of the Fuchsian differential inequality:

$I_{p}^{\prime/}(r, h) \leq\frac{p^{2}}{2\pi}\int_{0}^{2\pi}|h(z)|^{p}|\frac{h’(z)}{h(z)}|^{2}d\theta\leq\frac{p^{2}\sigma}{(1-r)^{2}},I_{p}(r, h)$.

Moreover if $f$ is univalent, we may have a better growth estimate for the coefficients.
First we remind the reader of the following result due to Littlewood, Paley, Clunie, Pom-
merenke and Baernstein II (see [2], [13, Theorem 8.8] and [8, Theorem 3.7]).
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Theorem D.Suppose that $f(z)=z+a_{2}z^{2}+\cdots\in S$ satisfies $f(z)=O(1-|z|)^{-\alpha}$ . If
0.491 $<\alpha\leq 2$ , then $\int_{0}^{2\pi}|f’(re^{i}\theta)|d\theta=O(1-r)-\alpha$ and $a_{n}=O(n^{\alpha-1})$ . If $\alpha=0$ , in other
words, if $f$ is bounded; then $\int_{0}^{2\pi}|f’(re)i\theta|d\theta=O(1-r)-0491$ and $a_{n}=O(n^{0.4}91-1)$ .

In view of Corollary 2.3 we have the following result as a corollary.

Theorem 3.4. Let $f(z)=z+a_{-},z^{2}+\cdots\in S$ . If $f\in B(\lambda)$ with 1.491 $<\lambda\leq 3$ , then it
holds that $a_{n}=O(n^{\lambda 2}-)a\mathit{8}narrow\infty$ . This order estimate is best possible.

In order to see the sharpness, we may consider the function $f(z)=(1-z)^{1-\lambda}=$
$1+a_{1}z+a_{2}z^{2}+\cdots$ for $1<\lambda$ . We note that $f$ is univalent in the unit disk if $1<\lambda\leq 3$ .
For this function, we can see that $||T_{f}||=\mathit{2}\lambda$ and $a_{n}=\Gamma(\lambda+n-1)/n!\Gamma(\lambda-1)\sim n^{\lambda-2}$

as $narrow\infty$ by Stirling’s formula.
On the other hand, in the case that $f$ is univalent with $||T_{f}||<3$ , the situation seems

rather $\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{n}\mathrm{p}\mathrm{l}\mathrm{i}_{\mathrm{C}}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}$ . Given a holomorphic function $f(z)=z+a_{2}z^{2}+\cdots$ in the unit disk,
let $\gamma(f)$ denote the infimum of exponents $\gamma$ such that $a_{n}=O(n^{\gamma 1}-)$ as $narrow\infty$ , i.e.,

$\gamma(f)=\varlimsup_{narrow\infty}\frac{\log n|a_{n}|}{\log n}$ .

And, for a subset $X$ of $A$ , we denote by $\gamma(X)$ the supremum of $\{\gamma(f);f\in X\}$ . As for
$\gamma(S_{b})$ , where $S_{b}$ denotes the class of normalized bounded univalent functions in the unit
disk, it has been shown ([5] and [9]) that $0.24<\gamma(S_{b})<$ 0.4886, and conjectured by
Carleson and Jones that $\gamma(S_{b})=0.25$ . We also remark that the growth of coefficients
seems to involve an irregurality of the boundary of image under $f$ when $f$ is bounded
univalent (see [13, Chapter 10]) and, recently, Makarov and $\mathrm{P}\mathrm{o}\mathrm{n}\mathrm{l}\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{n}\mathrm{k}\mathrm{e}$ observed a
relnarkable phenomenon of phase transition of the functional $\gamma(f)$ with respect to the
Minkowski dilnension of the boundary curve [9].

Now we turn to our case. Theorem 3.3 and the above example $(1-z)^{\mathrm{i}-\lambda}$ (or, $-\log(1-z)$

when $\lambda=1$ ) yield

(3.1) $\lambda-1\leq\gamma(B(\lambda))\leq\alpha(\lambda)=\frac{\sqrt{1+4\lambda^{2}}-1}{2}$ .

By standard calculations, we can see that the extremal function $F_{\lambda}$ also satisfies $\gamma(F_{\lambda})=$

$\lambda-1$ .
For $0<\lambda\leq 1/2$ , we note that $\alpha(\lambda)\leq\lambda^{2}-2\lambda^{4}/3\leq 5/\mathit{2}4=0.2083$ . .. , because

$\sqrt{1+x}<1+x/2-x^{2}/(6+4\sqrt{2})<1+x/2-x^{2}/12$ for $0<x\leq 1$ . Remark again that
$B(1/2)\subset S_{b}$ .

Remark. Actually, by Theorem $\mathrm{C}$ , for any $f\in A$ , we have the estimate

$\gamma(f)\leq\frac{1}{2}(\sqrt{1+4(\overline{|\lim_{|zarrow 1}}(1-|Z|)|\tau_{f}(z)|)2}-1)$

Next we consider the relationship between the class $B(\lambda)$ and Hardy spaces. The
following are fundalnental results in the univalent function theory.
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Theorem $\mathrm{E}$ (cf. [13]). Let $\beta$ be a constant with $0\leq\beta\leq \mathit{2}$ . If a univalent function $f\in S$

$sati\mathit{8}fies$ that $f(z)=O(1-|z|)^{-\beta}$ as $|z|arrow 1$ , then the following holds.
For $0<p<1/\beta$ , we have $f\in H^{p}$ . For $1/\beta<p$ , we have $M_{p}(r, f)=O(1$ -

$r)^{1/p-\beta}$ $(rarrow 1)$ .

Where $M_{p}(r, f)$ denotes $L^{p}$-integral mean of $f$, i.e., $M_{p}(r, f)=I_{p}(r, f)^{1/p}$ .

Theorem $\mathrm{F}$ (Pommerenke [11]). Let $f$ be a univalent holomorphic function on the unit
disk. Then, $f\in BMOA$ if and only if $f$ is Bloch, $i.e.,$ $\sup_{z\in \mathrm{D}}(1-|z|^{2})|f’(Z)|<\infty$ .

Combining these theorems with Theorem 2.2, we have the following results.

Theorem 3.5. Let $f\in S$ and $\mathit{8}et||T_{f}||=2\lambda$ .
If $\lambda<1$ then $f\in H^{\infty}$ .
If $\lambda>1$ then $f\in H^{p}$ for any $0<p<1/(\lambda-1)$ .
If $\lambda=1$ then $f\in BMOA$ .
Note that $H^{\infty} \subset BMOA\subset\bigcap_{0<p<\infty}H^{p}$ .

Remark. Most of the above results can be extended to the case of $p$-valent, more gener-
ally, mean $p$-valent functions with $p<\infty$ (see Hayman [8]).

We shall mention a connection with integral means for univalent functions. For a
univalent function $f\in S$ and a real number $p$ , we set (cf. [13, Chapter 8])

$\beta_{j}(p)=\varlimsup_{rarrow 1-0}\frac{\log\int_{0}^{2\pi}|f’(re^{i\theta})|^{p}d\theta}{\log\frac{1}{1-r}}=-\mathrm{l}\mathrm{i}\mathrm{m}rarrow 1-0\frac{\log I_{p}(r,f’)}{\log\frac{1}{1-\tau}}$ .

The Brennan conjecture asserts that $\beta_{f}(-2)\underline{<}1$ for every univalent holomorphic function
$f$.

For $f\in B(\lambda)$ , as a corollary of Theorem 3.3, we have the next

Theorem 3.6. For $f\in B(\lambda)amdp\in \mathbb{R}$ the inequality

$\beta_{f}(p)\leq\alpha(|p|\lambda)=\frac{\sqrt{1+4p^{2}\lambda^{2}}-1}{2}$

holds. In particular, the Brennan conjecture is true for any univalent function $f$ with
$||T_{f}||\leq\sqrt{2}$ .

4. NORM ESTIMATE FOR VARIOUS CLASSES OF UNIVALENT FUNCTIONS

In this section, we provide several norm estimates for well-known classes of univalent
functions. These enable us to obtain growth and coefficient estimates for those classes,
which agree with known results in many cases.

The following is due to S. Yamashita. (The case of strongly starlike functions was first
shown by [18].)

Theorem $\mathrm{G}$ (Yamashita [22]). Let $0\leq\alpha<1$ and $f\in S$ .
If $f$ is starlike of order $\alpha,$ $i.e.,$ ${\rm Re}(zf’(z)/f(z))>\alpha$ , then $||T_{f}||\leq 6-4\alpha$ .
If $f$ is convex of order $\alpha,$ $i.e,.{\rm Re}(1+zf^{\prime/}(z)/f’(z))>\alpha$ , then $||T_{f}||\leq 4(1-\alpha)$ .
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If $f$ is strongly starlike of order $\alpha,$ $i.e.,$ $\arg(zf’(z)/f(z))<\pi\alpha/\mathit{2}$ , then $||T_{f}||\leq M(\alpha)+$

$\mathit{2}\alpha$ , where $M(\alpha)$ is a specified constant depending only on $\alpha$ satisfyi.n$g2\alpha<Nf(\alpha)<$

$2\alpha(1+\alpha)$ .
All of the bounds are sharp.

Remark. For the equality cases and more detailed and greatly general results, consult
the paper [22] by S. Yamashita. For information about the constant $M(\alpha)$ see [18] or [22].

Now we state general and useful principles for estimation of the norm of $T_{f}$ . A holomor-
phic function $f$ on the unit disk is said to be subordinate to another $g$ if $f$ can be written
as $f=g\mathrm{o}\omega$ , where $\omega$ is a holomorphic self-mapping of the unit disk with $\omega(0)=0$ .
Remark that the Schwarz lemma implies that $|\omega(z)|\leq|z|$ and also Pick’s version of the
Schwarz lemma does that

(4.1) $\frac{|\omega’(z)|}{1-|\omega(Z)|2}\leq\frac{1}{1-|_{Z|^{2}}}$

for any point $z\in \mathrm{D}$ .
We also note that if $g\in S$ , then $f$ is subordinate to $g$ if and only if $f(\mathrm{O})=0$ and

$f(\mathrm{D})\subset g(\mathrm{D})$ .
The following always generates a sharp result for fixed $g$ . The idea is due to Littlewood.

Theorem 4.1 (Subordination Principle I). Let $g\in B$ be given. For $f\in A$ , if $f’$ is
subordinate to $g’$ then we have $||T_{f}||\leq||T_{g}||$ . In particular, $f$ is uniformly locally univalent
on the unit $di\mathit{8}k$ .

Proof. By assumption, there exists a holomorphic function $\omega$ : $\mathrm{D}arrow \mathrm{D}$ with $\omega(0)=0$

such that $f’=g’\mathrm{o}\omega$ . Therefore, $T_{f}=\tau_{g^{\mathrm{O}\omega\cdot\omega’}}$ . Thus (4.1) implies the following:

$(1-|z|^{2})|T_{f}(z)|=(1-|Z|^{2})|T_{\mathit{9}}(\omega)||\omega’|\leq(1-|\omega|^{2})|\tau_{\mathit{9}}(\omega)|\leq||T_{g}||$ ,

which leads to the conclusion. $\square$

As a typical application of the Subordination Principle, we exhibit the following.

Theorem 4.2. If $f\in A$ satisfies that ${\rm Re} f’>0$ on the unit disk, then $||T_{f}||\leq 2$ . The
bound is sharp.

Remark. The Noshiro-Warschawski theorem says that such an $f$ must be univalent.

Proof. The condition ${\rm Re} f’>0$ is equivalent to the statement that $f^{l}$ is subordinate to
the function $F_{1}’(z)= \frac{1+z}{1-z}$ . Thus we have $||T_{f}||\leq||T_{F_{1}}||=\mathit{2}$ . $\square$

We note that $f’$ is a Gelfer function if ${\rm Re} f’>0$ , where a holomorphic function $g$ on
the unit disk with $g(\mathrm{O})=1$ is called Gelfer when $g(z)+g(w)\neq 0$ for all $z,$ $w\in \mathrm{D}$.

Therefore the next result can be viewed as a natural generalization of the above theorem.

Theorem 4.3. Suppose that $f’$ is a Gelfer function for an $f\in A$ . Then we $have||T_{f}||\leq 2$ .
This bound is $\mathit{8}harp$ .
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Proof. For a Gelfer function $g(z)=f’(z)$ it is known to hold that

$| \frac{g’(z)}{g(z)}|\leq\frac{2}{1-|_{Z|^{2}}}$

(see [21]). Hence, the result immediately follows. $\square$

The next is a variant of the subordination principle.

Theorem 4.4 (Subordination Principle II). Let $g\in \mathcal{B}$ be given. For $f\in A,$ $ifzf’(z)/f(z)$

is $\mathit{8}ubordinate$ to $g’$ then we have

(4.2) $||T_{f}|| \leq\sup_{z\in \mathrm{D}}(1-|Z|^{2})(|\frac{g’(z)-1}{z}|+|T_{g}(z)|)$

(4.3) $\leq\sup_{z\in \mathrm{D}}(1-|Z|^{2})|\frac{g’(z)-1}{z}|+||T_{g}||$ .

Proof. By assumption, there exists a holomorphic function $\omega$ : $\mathrm{D}arrow \mathrm{D}$ with $\omega(0)=0$

such that $zf’(z)/f(z)=g’(\omega(z))$ . By taking logarithmic derivative, we have the following
forlnula.

$T_{f}= \frac{f’}{f}-\frac{1}{z}+\frac{g^{\prime/}(\omega)}{g’(\omega)}\omega/$

$= \frac{\omega}{z}\frac{g’(\omega)-1}{\omega}+^{\tau}g(\omega)\omega/$ .

From this, we can easily have the desired estimate. $\square$

The following is a silnple application of this principle.

Theorem 4.5. If $f\in A$ satisfies that $|zf’(Z)/f(z)-1|<1$ , then we have an $e\mathit{8}timate$

$||T_{f}||\leq \mathit{2}.25$ . The equality holds if and only if $f$ is a rotation of the function $ze^{z}$ .

Remark. In this case, $f$ satisfies ${\rm Re} zf’(z)/f(z)>0$ thus $f$ is starlike, in particular,
univalent in the unit disk.

Proof. We have only to apply the esitimate (4.2) with $g(z)=z+z^{2}/2$ . Then, we have
$||T_{f}|| \leq\sup(\mathit{2}+|z|-|z|^{2})=9/4$ , where the supremum is attained only by $|z|=1/2$ . Thus,
if $||T_{f}||=9/4$ , then $|\omega|$ must be the constant 1, whence $f$ is a rotation of $ze^{z}$ . Conversely,
it is clear that the function $f(z)=ze^{\mu z}$ with $|\mu|=1$ satisfies $||T_{f}||=9/4$ . $\square$

Finally, we consider uniformly convex functions:

UCV $= \{f\in S;{\rm Re}(1+(z-\zeta)\frac{f^{\prime/}(z)}{f’(z)})\geq 0,\forall z,\forall\zeta\in \mathrm{D}\}$ .

For the geometric meaning of this class, see [7]. $\mathrm{R}\emptyset \mathrm{n}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{g}$ gave a simple characterization
for this class.

Theorem $\mathrm{H}(\mathrm{R}\emptyset \mathrm{n}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{g}[16])$ . A function $f\in$ $A$ is uniformly convex if and only if
$zT_{f}(z)\in W$ for any $z\in \mathrm{D}$ , where $W$ is the domain $\{w=u+iv;v^{2}<2u+1\}$ .
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We note that a conformal map $g:\mathrm{D}arrow W$ with $g(\mathrm{O})=0$ is given by

$g(z)= \frac{\mathit{2}}{\pi^{2}}(\log\frac{1+\sqrt{z}}{1-\sqrt{z}})^{2}=\frac{8z}{\pi^{2}}(1+\frac{z}{3}+\frac{z^{2}}{5}+\frac{z^{3}}{7}+\cdots)^{2}$

Therefore, $f\in A$ is uniformly convex if and only if $zT_{f}(z)$ is subordinate to the function
$g$ , i.e., there exists a holomorphic function $\omega$ : $\mathrm{D}arrow \mathrm{D}$ with $\omega(0)=0$ such that $zT_{f}(z)=$

$g(\omega(z))$ . Since $g$ has positive Taylor coefficients, we see that $|zT_{f}(z)|\leq g(|\omega(z)|)\leq g(|z|)$ .
Hence, we have

$||T_{f}(z)|| \leq\sup_{0<x<1}(1-X)2\frac{g(x)}{x}=\sup_{0<t<\infty}h(t)$ ,

where
$h(t)= \frac{8t^{2}}{\pi^{2}}\frac{\cosh t}{\sinh\underline’ t}$

and $\frac{1+\sqrt{x}}{1-\sqrt{x}}=e^{t}$ . By the logarithmic differentiation, we have

$\frac{h’(t)}{h(t)}=\frac{\mathit{2}\sinh 2t-t(\cosh 2t+3)}{t\sinh 2t}=\frac{N(t)}{t\sinh 2t}$ .

Since $N^{\prime/}(t)= \frac{4\mathrm{t}\mathrm{t}\mathrm{a}11\mathrm{h}\underline{9}t-t)}{\cosh 2t}$ has the unique zero $t_{0}$ in $(0, \infty)$ , the function $N’(t)=3(\cosh 2t-$

$1)-2t\sinh \mathit{2}t$ attains its maximum at $t_{0}$ . Since $N’(0)=0$ and $N’(t)arrow-\infty$ as $tarrow\infty$ ,
the function $N’(t)$ has the unique zero $t_{1}>t_{0}$ in $(0, \infty)$ . By exactly same reason, the
function $N(t)$ has the unique zero $t_{2}>t_{1}$ in $(0, \infty)$ . Thus, $h(t)$ assumes its maximum
at the point $t=t_{-},$ . By a numerical calculation, we have $t_{2}=1.606115\mathit{2}988\cdots$ , and
$h(t_{2})=0.94774221287\cdot\cdot*$ . Therefore, we summalize as follows.

Theorem 4.6. If $f\in A$ is uniformly convex, then we have
$||T_{f}||\leq h(t_{2})=0.94774\cdots$ ,

where the equality occurs only when $f$ is a rotation of the function $F\in A$ determined by
$T_{F}(Z)=g(z)/z$ .

Remark. By the corollary of Theorem $\mathrm{A}$ , we see that a uniformly convex function can be
extended to a quasiconformal self-homeomorphism of the Riemann sphere with maximal
dilatation at most $K_{0}=37.2718\cdots$ .
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