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On Strongly Regular Graphs with Parameters
(k,0,2) and Their Antipodal Double Covers
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Department of Mathematics, Faculty of Science and Technology,
Kinki University, Higashi-Osaka, Osaka 577-8520, JAPAN

Abstract

Let I’ be a strongly regular graph with parameters (k, A, u) = (¢*+1,0,2) admit-
ting G(= PGL(2,q?)) as one point stabilizer for odd prime power ¢q. We show that if
G stabilizes a vertex oo of I' and acts on I';(c0) transitively, then ¢ = 3 holds and T
is the Gewirtz graph. Moreover it is showen that an antipodal double cover whose
diameter 4 of a strongly regular graph with parameters (k,0,2) is reconstructed
from a symmetric association scheme of class 6 with suitable parameters.

1 Introduction

We are interested in the classification problems of distance regular graphs with b, = 1.
Let I' be a distance regular graph with b, = 1 and valency k£ > 2. If the diameter d
of I' is larger more than 4, then I' is isomorphic to the dodecahedron ([3, pp.182]). In
[1], M.Araya,A Hiraki and A.Jurisic showed that if d = 4 then I' is an antipodal double
cover of a strongly regular graph with parameters (k, A, u) = (n? + 1,0,2) for an integer
n not divisible by four and if d = 3, then T' is an antipodal cover of a complete graph.
Obviously an antipodal cover of a complete graph is a distance regular graph with b, = 1
if it’s diameter is three.

The classification problems of antipodal covers of complete graphs are very difficult.
Because the existence of an antipodal distance regular (n — 2)-fold cover of the complete
graph K, claims the existence of a projective plane of order (n — 1) for an odd positive
integer n, moreover an antipodal distance regular (n — 1)-fold cover of K, is equivalent
to the existence of a Moore graph with diameter two and valency n ([6],[7]).

The strongly regular graphs with parameters (k,A\,x) = (5,0,2) and (k, A\, u) =
(10,0,2) are known, the former one has an antipodal double cover with d = 4, namely the

Wells graph, the latter one(the Gewirtz graph) does not have an antipodal double cover
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with d = 4([3, pp.372]). The existence or nonexistence of strongly regular graphs with
(n?41,0,2) for n > 5 are not known up to date. We have studied these graphs.

2 Strongly regular graphs with (¢*+1,0,2) admitting
~ PGL(2,¢%) for ¢ = p*

The following theorem is proved by using the character table of the association scheme
corresponding to the permutation group (0(3,q),0(3,¢)/0%(2,q)) which W.M.Kwok
gave in [5]. We note that O(3,q) = {1} x SO(3,¢) and SO(3,q) = PGL(2,q).

Theorem 2.1 Let T be a strongly regular graph with parameters (¢ +1,0,2) and G be a
group isomorophic to PGL(2,q*) for an odd prime powerq. If G acts on T' as G stabilizes
a vertex 0o of I' and G is transitive on I'y(00) , then ¢ = 3 and T is the Gewirtz graph.

Sketch of the proof) .
Any two involutions of G are conjugate each other in G. We denote the centralizer of
an involution z in G by H. Character table of association scheme X corresponding to
the permutation group (G, G/H) 1s given from Kwok’s results. Then we obtain sevral
informations concerning eigenvalues and their multiplicities of the graph Iy (o0) admitting
G as a transitive automorphism group from the character table of X.

- Comparing these informations with eigenvalues and their multiplicities of ['2(c0) as
the second neighbourhood of a strongly regular graph with parametars (¢°> + 1,0,2), we
can lead a contradiction if ¢ > 3. |

3 Reconstruction of the graph I' and the antipodal
double cover I'* of T

Let I' be a strongly regular graphs with parameters (k,0,2). In this section we study
about the structure of the second neighbourhood of I' and antipodal double covers of
them with d = 4. E.R.van.Dam and A.Munemasa proved the following theorem 3.1
independently. ([4, pp.13-14],[8])

Theorem 3.1 Let T be a strongly regular graph with A = 0, p = 2 and degree k with
k > 5. Then the second neighbourhood of ' with respect to any verter generates a 3-class
association scheme. Furthermore any scheme with the same parameters can be constructed

in this way from a strongly regular graph with the same parameters as I'.

The intersection numbers pfl,i of the association scheme of theorem 3.1 are the following.
Let Br(0 < h < 3) be the intersection matrices which (By)i; = P (0<9<3,0<75<3).
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BOZI,
0 1 0 0 0 0 1 0
k-2 0 2 1 0 k-5 k—8 k—35
B, = 0 k—5 k—8 k—25 , Ba (Ic—2)2(k—5) (k—s)z(k;s) (k2—123k+48 (k—5)2(k'—6)
0 2 4 2 0 2k —10 = 2k —12 k-5
0 0 0 1
B — 0 2 4 2
71 0 2%-10 26-12 k-5
2k—4 4 4 k-2

Now we consider an antipodal double cover I'* of I'. The intersection array of I'* is
the following.

0 1 1 k-1 &k

(=10 0 k-2 0 0

k k-1 1 1 0
Put @ = {1,2,---,k}. Let co™ be a vertex of I'* and co™ be a unique vertex in I'" such that
d(cot,007) = 4. We may set I*(cot) = {1%,2%,---,k*} and I'"(c0™) = {17,27,--,k7}

and we may consider that d(it,i”) = 4 is satisfied for any element ¢ € . Obviously
[*(cot) = I'5(c0™), I*(00™) = I'3(c0*) and ['3(c0t) = I'3(c0™). We denote the subgraph
I'(cot) by A and the set of vatices of A by X. For each z € X, [T(c0™) NI*(z)| =1
and (0o ) NT*(z)| = 1 because of ¢c; = by = 1. Suppose that [[*(co®)NI™(2)| = {i+}
and |T*(co™) NT*(z)| = {j~}. Then there existes a bijection mapping ¢ from X onto
(Q x Q)\ {(z,1) | i € Q} defined by ¢(z) = (i,7). Then we put i = p(z); and j = p(z)s.
We denote by z' the element of X such that d(z,z') = 4, then ¢(z); = p(z'), and
©(z)2 = p(z'); as we show in the sequal. Moreover we set as follows.

A(z) = {y € X | d(z,y) =1}, B(z) = {y € X | ¢(y)1 = ¢()2 or p(y)2 = p(2)1,y # &'}

Ax) = {y € X | da',y) =1}, B(2) = {y € X | p(y)1 = p(@) o ¢(u)2 = 9(a)a,® # 1}
C(z) = X\(A(z)UB(z)UA'(z)UB'(z)U{z, )
We have the following theorem.

Theorem 3.2 We define relations on X as follows.
RO = {(J},SL') t T € X}le = {(lay) | ye A(:E)}7R2 = {(a:,y) | ye B(ZE)},

Ry = {(5,9) |y € C(@)}, R = {(2,9) | y € B(®)}, Bs = {(,9) | y € A @)},
Re = {(,#') | = € X)

I
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Then X = (X, R;(0 < i < 6)) is a symmetric association scheme whose parameters are
p{l,i(() < h,7,7 < 6) in the following matrices. .

Here By, is a 7 X T-matriz whose lows and columns are indexed by {0,1,2,3,4,5,6} sat-
isfying (Br)ij = Pib,i for each h such that 0 < h < 6. |

0 1 -0 0 0 0
k-2 0 1 1 0 0

o O O O

0 2 1 2 1 0
By=1,B, = 0 k-5 k-5 k-8 k=5 k-5 ,
0 0 1 2 ) 0
0 0 0 1 1 0 k—2
o 0 0 0 0 1 0
0 0 1 0 0 0 0
0 2 1 2 1 0 0
2k —4 2 1 2 k-3 2 0
B, = 0 2k—10 k—5 2k—12 k-5 2k—10 0 :
0 2 k—3 2 1 2 2k — 4
0 0 1 2 1 2 0
0 0 0 0 1 0 0 )
0 0 0 1 0 0 0
0 k=5 k=5 k-8 k=5 k=5 0
0. 2k—-10 k—5 2k—12 k-5 2k-10 0
B; = (k—2)(k—5) (k—5)(k—8) (k—5)(k—6) k?-13k+48 (k-35)(k—-6) -(k=5)(k—8) (k=2)(k-35) | -
0 2k—10 k-5 2k—12 k-5 2k—10 0
0 k=5 k=5 k-8 k=5 k=5 0
0 .0 0 1 0 0 0

(Ba)ij = (Ba)i6—)» (Bs)i; = (Bu)i(6-s)> (Be)ij = (Bo)ie—j) for 0<1<6,0<7<6.

Proof).
It is immediately shown that
|A(2)] = |A(@)| = & — 2, |B(z)| = | B'()] = 2(k — 2). We have

{e(@)e(2)2} N {e(y),e(y)e} =0 if d(z,y) =1 (3.1)

from a;(I'*) = 0, and

{eh |y € Ale)} = {o()2 |y € A(2)} = 2\ {p(2)1, p(2)s} (3:2)
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from ¢,(I'™*) = 1. Hence for any i € 0\ {¢(z)1,¢(z):}, there exists a unique element
y € A(z) such that (y); = ¢ and z € A(z) such that ¢(z); =1 because of '

|A(z)] = [Q\ {o(2)1, ¢(2)2}].
Therefore the following also holds.

(AW)\ {z})) N (A(2)\ {a}) =0 (v # z € A(z)) (3:3)

From (3.2) and (3.3), [{z | z € A(y),z # =,y € A(z)}|=(k — 2)(k — 3) and so we have
this set is equal to B(z) U C(z). Thus |C(z)| = (k — 2)(k — 5). Moverover we obtain

|A(z) N B(z)| =2, |A(z)NC(z)|=k—5 (Vz € A(z)) (3.4)
IA(z) N B'(2)| =2, |A(z)NC(a)|=k—5 ( Vze€ A(2)) (3.5)
IA(z) N A(z)| =1, |A(z) N B(z)| =1, |A(z)NC(z)| =k —5
; |A(z) N B'(z)] = 1( Vz € B()) (3.6)
|A(z) N A'(z)] = 1, JA(z)NB'(2)] =1, |A(z) N C(z)| =k — 5,
|A(z) N B(z)| = 1( Vz € B'(z)) (3.7)
|A(z) N A(2)] =1, [A(z) N A'(2)] =1, |A(z) N B(e)| = 2,
|A(z) N B'(z)] =2, |A(z)NC(z)|=k—8 ( Vz€C(z)) (3.8)

Moverover about the neighbourhoods of A it is easy shown that A;(z) = A(z),
Ay(z) = B(z) U C(z), Az(z) = B'(z) U A'(z) and Ay(z) = {2’} for any = € X.
About the neighbourhoods of I' we have I'y(z) = A(z) U {¢(2)],¢(z)7 },

Ty(z) = B(z) U Cz) U B'(2) U{i*,i7 | i # p(a)1,1 # @(x)2} U {oo™, 007},

[3(z) = A'(2) U {¢(2)F,¢(z)7 } and Ty = {2’} for any = € X.

Theref01e it follows that (z,y) € R; if and only if (y,z) € R; for 0 < ¢ < 6. We also
have p,” = plh and th = pgjw- since (z,y) € R; if and only if (2]y) € Rs—;. Then
Ph i= pz 6ln

Now we plove that p3, =pie¢ =1, pi, = p3s = k — 8 and p3, = p3, = 2k — 12 which
means that p3 5 = k* — 13k + 48 because of 7o p3; = |C(z)| = (k — 2)(k - 3).

It is trivial that pjo, = p3e = 1. Let 2,y be elements of X such that (z,y) € R,
namely y € C(z). Then |C(z) N A(y)| = k — 8 from (3.8) and this implies p§, = k£ — 8.
Considering z’ instead of z, similarly above we have pgys = k — 8. Let z be an element of
X such that (z,z) € Rs and (2,y) € Ry. Set o(z) = (3,7), ¢(y) = (k,£) and ¢(z) = (s,1),
then ¢(z') = (5,4) and s = £ or t = k holds because of (z,y) € R;. Suppose that s = £
holds. From (3.2) there is a unique element u € A(z) such that p(u); = £ and v € A'(z)
such that ¢(v); = £. Then we can take any element of Q except {1, 7,k, £, ¢(u)2,0(v)2}
as a number ¢ satisfying ¢(z) = (¢,t) and z € C(z), namely

{1 0(2) = (4,8), (2,y) € Ra, (2,2) € Rs}| =k —6.
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Similarly at the case t = k, we get
{s] ¢(z) = (s,k), (2,9) € Ry, (:c z) € R3}| = k—6. Hence p3, = 2(k 6) holds. By the
same arguments above we have p3 ; = 2(k — 6). Similarly we can decide other parameters
ph ; from (3.1) ~ (3.8). Thus the theorem is proved.

At the following theorem we prove that the inverse of the statement in theorem 3.2 is
also true.

Theorem 3.3 Let X = (X, R;(0 < i < 6)) be a symmetric 6-association scheme with
same parameters as p{;ﬂ- in Theorem 3.2 for k > 5. Then the antipodal double cover I'*
with d(I'™*) = 4 of a strongly regular graph with parameters (k,0,2) can be constructed
from X. Moreover the graph (X, Ry) is isomorphic to the second neighbourhood of T'™*
with respect to any vertex. ’

We now start with a short sketch of the proof. At first we consider the graph I' =
(X, R4). The parameters of this graph is that of the graph deleting the diagonal vertices
of k x k-grid. We reconstruct the graph I’ isomorphic to k¥ x k-grid from I' by adding a
set of some pairs of maximal cliques as new vertices to the vertices of I'. Next using the
graph T, an extended graph I'* of the graph (X, R;) is constructed. This I'* is the graph
to be constructed in this theorem.

We use the following notation here. Let I’ = (V(I'), E(I')) be a finite connected
graph and d be the metric of I''. For two vertices z,y of I' such that d(z,y) = i, w
denote by ¢;(z,y), bi(z,y) and a;(z,y) the cardinalities of the sets {z € V(I") | d(z, 2)
t—1,d(z,y) = 1}, {z € V(I) | d(z,2) = i+ 1,d(z,y) = 1} and {z € V,(Fj | d(z, z)
t,d(z,y) = 1} respectively. ‘

I .3

We state four lemmas to prove the theorem. We note that kg = kg = 1,k; = ks =
k—2,ky = ky = 2k—4 and k3 = (k—2)(k—5) hold. Therefore we have | X| = k(k—1). For
any element = € X there exists a unique element ' € X such that (z,2') € R¢ because
of p ¢ = 1. We consider a bijective mapping ¥ on X defined by ¥(z) = 2’ for any z € X.
It is clear that ¢? = de We denote by T the graph (X, R,) and by 5 the metric of T.

Lemma 3,1 The graph T is a regular graph with the valency 2k — 4 and d(T') = 3.
Moreover it follows that ,al(f‘) =k — 3, bl(f) =k — 2,a2(f) = 2k — 6, c3(z,y) = 2 for
z,y € X such that p(z,y) =2 and y &€ f‘(¢(1)) and cz(z,y) =1 forx,y € X such that
plz,y) =2 andy € T'(¥(z)). We have also Ts(z) = {¥(z)} for any z € X.

Proof). ;

It is easily verified that I is a regular grap’h of the valency 2k — 4 as pg, = 2k — 4.
We take elements z,y € X such that (z,y) € R; for i in {1,2,3,4,5}. Then ph4 # 0 holds
and this implies that there is an element z € X such that j(z,z) = 1 and j(z,y) = 1.
Moreover j(z,4(z)) = 3 holds. Therefore we have d(I') = 3 and j(z,y) = 3 holds if and
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only if y = ¢(z). Here we note that

(z,y) € Ry if and only if (¥(z),y) € R- (3.9)

becauseofph-—0foranyz(0<z <6z;£2) and p§; = 0 for any 1(0 < ¢ < 6,5 # 4).
Therefore it follows that

plz,y) =1 if and only if p(y(z),¥(y)) =1. | (3.10)

We now get al(f‘) = k—3 and by(T') = k —2 because of pis=Fk—3and Yicics(iza) pla =
k — 2. For any elements z,y € X such that j(z,y) = 2 and y & T((z)), we get cz(z,y) =
2,as(z,y) = 2k — 6 and by(z,y) = 0 because of p}4 = 2, 1<h<s(hd) Pha = 2k — 6 for
i = 1,3 and 5 and from (3.9). Next let z,y be elements of X such that j(z,y) = 2
and y € T(¥(z)). Then (z,y) € Ry from (3.9). We get cz(z,y) = 1,bz(z,y) = 1 and
as(z,y) = 2k — 6 because of pf, = p&4 = 1 and X1 cpesnpa) Pha = 2k — 6. We also have
cs(z,¥(z)) = 2k — 4 for any = € X. This completes the proof of the lemma.

Lemma 3.2 Let z be an element of X. Then f‘(:L) is a disjoint union of two cliques of

the same cadinalities k — 2.

Proof).

Let z € X and y € I'(z). Since a,(z,y) = k—3 and k(T') = 2k —4 hold, we may set [(z) =
{v, 91,02, Yk=3,21, 22,7+ 2k} for {yn,2,- - ye-a} C T(y) and {z1,22, ", 2k—2} C
Ta(y). Weset S = {y,y1,92, ", ¥r-3} and T = {z1,22, -+, z_2}. Let z be any element
of T. Then j(y,z) = 2. Since c3(y, z) = 2, p(z,y) = p(z,z) = L and SnT(z) C T'(y)NT(2)
hold, it follows that [SNT(z)| < 1. Then we have ITNT(z)] > k—4 since a;(z,z) = k—3.
But 7' contains only k — 3 elements except z, therefore |T' N T5(z)| < 1 holds. Suppose
that 7' N Fz( ) # 0. Then there exists an element u € T where p(z,u) = 2, and every
other elements of T' except z and u are adjacent to z. Moreover |T'N fz(u)l < 1 holds as
same as [T N f‘2(z)| < 1. Hence we get T ﬂf2(u) = {z}. Therefore it follows that = and
every elements of T except z and u are contained in T'(z) N I'(u), which implies k — 3 < 2.
Thus k < 5, which contradicts k > 5. Hence we get T N T5(z) = 0 and any element of T
except z is adjacent to z. However since z is any element of T', T' is a clique. Applying
the same arguments to a fixed element of T' instead of y, we also have S is a clique. Thus
the lemma is proved.

We denote by C)(z) and Cy(z) the set SU{z} and TU{z} for 5,7 in lemma 3.2. We
note |Cy(z)| = |Ca(z)| = k — 1. Obviously C;(z) is a maximal clique of [ fori=1,2 and
any ma_ximal clique of T is equal to C;(z) for an element z € X and i € {1,2}. We denote
by MC(T') the set of max1mal cliques of T and put D = {C U¥(C) | C € MC(T T)}. We
note that C'N(C) = § for any C € MC(T). For index 1 € {1,2} we have y € C;i() if
and only if C;(z z) = C’ ( ) for some j € {1,2}, as we saw in the proof of lemma 3.2. Hence
we have |[MC(T)| = 22 = 2k and |D| = k. For i € {1,2} we have ¢(Ci(z)) = C;(¥())
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for some j € {1,2} from (3.10). Hence we may put %(C;(z)) = Ci(¢(z)) without loss of
generality. We have the following lemma about D.

Lemma 3.3 (1) Let x be any element of X. Then there exists exactly two elements of D
containing T. :

(2) Let z,y be any elements of X such that p(z,y) = 1. Then there exists ezactly one
element of D containing  and y.

(3) Let z,y be any elements of X such that p(z,y) = 2 and y € T(¥(z)). Then there
exists ezactly one element of D containing z and y.

(4) Let D, and D, be distinct elements of D. Then |Dy N Dy| = 2.

(5) Let D be an element of D and z be an element of X such thatz ¢ D. Then |T'(z)ND| =
2. '

Proof).

(1): For z € X, Ci(z) U (Cyi(z)) and Cy(z) U ¢(Ca(z)) are distinct elements of D
containing z. Let D be an element of D such that € D. Then there is an element
a € X such that D = C;(a) U ¢(C;(a)) for some ¢ € {1,2}. We may suppose = € C;(a)
because of ¥(C;(a)) = Ci(¢(a)). Then we have C;(a) = C;(z) for some j € {1,2} and
D = C;(z) U(C;(z)). Thus (1) is proved.

(2): Let z,y be any elements of X such that g(z,y) = 1. Then there is a unique
maximal clique C' of T' containing ¢ and y from lemma (3.2). Then C U+(C) is a unique
element of D containing = and y. Thus (2) is proved.

(3): Let z,y be any elements of X such that j(z,y) = 2 and y € I'(¢(z)). Then
p(¢¥(z),y) = 1. Therefore from (2) there exists exactly one element D of D containing
¥(z) and y. Then obviously 2 € D holds. Thus (3) is proved.

(4): Let Dy and D, be distinct elements of D. Then there are elements « and b of X
such that D; = C;(a) U(C;i(a)) and Dy = C;(b) Up(C;(b)) for some 7,5 € {1,2}. We set
{¢,7'} = {j,7} = {1,2}. We will prove that D; N Dy # 0. ’

Suppose that a € T'(b). If a € C;(b) or b € Cy(a), then Dy N Dy # 0. Hence we may
assume a € Cj/(b) and b € Cy(a).

Moreover since p(a,1(b)) = 2 and p(v(a), (b)) = 1, there is a unique element u €
X, which is adjacent to @ and ¥(b) from lemma (3.1). If v € Ci(a) N C;(1(b)), then
D; N Dy # 0. Hence we may assume u € Cy(a) or u € Cp(¥p(b)). If w € Cy(a),
then u is adjacent to b because of b € Cy(a), which means p(b,%(b)) = 2. This is a
contradiction. If u € C;(9(b)), then ¥(u) € Cj(b), then (u) is adjacent to a because
of a € Cy(b), which means p(u,¥(u)) = 2. This is also a contradiction. Thus we
may assume that a is not adjacent to b. Similarly we may assume a is not adjacent
to ¥(b). Hence p(a,b) = 2 and p(a,y(b)) = 2, and there are exactly two elements
u,v € X which are adjacent to both a and b and there are exactly two elements u’,v" € X
which are adjacent to both a and ¥(b) from lemma 3.1. If u is adjacent to v then a is
adjacent to b from (2). This contradicts our assumption. Therefore it does not occur
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that both u and v are contained in one of {C;(a),Ci(a),C;(b),Cj(b)}. For u',v’, the
same arguments hold. If u € Ci(a) N C;(b) or v € Ci(a) N C;(b), then Dy N Dy # 0.
Hence we may assume that u € C;(a),v € Cy(a),u € Cj(b) and v € C;(b). Similarly
we may assume that u’ € Ci(a),v’ € Cu(a),v’ € Cy(¢(b)) and v' € C;(x(b)). Then u
and v’ are adjacent because of u,u’ € C;(a) and ¥(u) and u’ are adjacent because of
P(u),u’ € C;:((b)). Therefore we have p(u,(u)) = 2, which is a contradiction. Thus it
follows that Dy N Dy # 0. |

Now suppose that C;(a) N C;(b) contains at least two elements u,z. Then from (2)
there exists a unique C € CM(T) containing u, z, and we have C = C;(a) = C;(b), which
implies Dy = D,. Therefore |C;(a) N C;(b)| < 1.

Similarly [C,(a) N C;($(8)] < L, C,((a)) N C,(8)] < 1 and | ((
Since 41D, = (Ca)CBUC GG HEINCOICHANCH)
Y(Cila) N C5(8) = Ci(b(a)) N C5((8) and $(Cila) 1 C4(H(8) = Clt(a)) N Cy(),
we have |Dy N Dy| = 2, if it is proved that Ci(a) N C;(b) # 0 is not compatible with
Ci(a) N C;((p)) # 0.

Suppose that there are elements u,v such that u € C;(a) N C;(b) and v € Ci(a) N
C;(¥(b)). Then u and v are adjacent because of u,v € C;(a). Moreover ¢(u) and v are
adjacent because of ¥ (u),v € C;(v¥(b)). Therefore p(u,¥(u)) = 2, a contradiction. Thus
(4) is proved. :

(5): Let D be an element of D and y be an element of X such that y € D. For fix any
7 €{1,2},D # C;(y) U¥(C;(y)) because of y ¢ D. Therefore |D N (C;(y) Up(Ci(y))| =2
from (4). Hence |D N Cj(y)] = 1 under consideration ¥ (D) = D, which means that
|D N f‘(y)] = 2. Thus (5) is proved, and the lemma was verified.

We now construct a graph isomorphic to the Hamming graph H(2, k) from T adding

Ci((a)) N Ci((B)] < 1.
)
)

some vertices to X. We define the graph I.

The set of vertices of I is X UD. The adjacency is defined by z,y € X are adjacent
if ﬁ(’l’v y) =1,
z € X and D € D are adjacent if z € D.

The metric of the graph [ is denoted by p.
Lemma 3.4 The graph T is isomorphic to the Hamming graph H(2, k)

Proof).

Let = be any element of X, then there exists exactly two elements of D containing
and 9 (z). Therefore p(z,9(z)) = 2 by the definition above. Hence we have the diameter
of T is two. For any = € X, there exists exactly two elements of D containing = from (1)
of lemma 3.3. Moreover, since k(f‘) = 2k — 4, the valency of z in the graph I is 2k — 2.
For any D € D, since D contains exactly 2(k — 1) elements of X, the valency of D in T is
2k — 2. Thus the valency of T is 2k — 2. Let z,y be elements of X such that p(z,y) = 1.
Then there exists exactly one element of D containing = and y from (2) of lemma 3.3.
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On the other hand exactly k — 3 elements of X are adjacent to z and y because of
al(f‘) = k — 3. Hence it follows a;(z,y) =k — 2 in I'. Let z € X and D € D be adjacent
in T'. Then z € D and |D N T['(2)| = k — 1. Hence it follows ay(z,D) =k — 2 in I'. Thus
al(f) = k — 2 holds. Let z,y be elements of X such that j(z,y) = 2. If y = ¢(z), then
obviously ¢y(z,y) =2in . Ify € T'(1(z)), then there exists exactly one element of D
containing z and y from (3) of lemma 3.3. |

Moreover there exists exactly one element of X which is adjacent to = and y because
of cy(z,y) = 1 in I from lemma 3.1. Therefore co(z,y) = 21in T. Ify g f(¢(w)), then
there is no element of D containing = and y since y is not adjacent to z or ¥(z).

However there exists exactly two element of X which are adjacent to z and y because
of c3(z,y) = 2 in . Therefore c(z,y) =2 in T. Let Dy, D, be distinct elements of D.
Then |D; N D,| = 2 from (4) of lemma 3.3. Therefore ¢;(Dy,D;) = 2 in I'. Let D be
an element of D and z be an element of X such that z ¢ D. Then |[I'(z) N D| = 2 from
(5) of lemma 3.3. Therefore c;(D,2) = 2 in I'. Thus cz(f‘) = 2 holds. Hence the graph
I' has the same parameters as those of the Hamming graph H(2, k). Thus the graph T
is isomorphic to the Hamming graph H(2,k)(cf. [9]). This completes the proof of the
lemma.

From lemma 3.4 there exists a bijection ¢: X UD +—— Q x Q such that ¢(D) = {(i,1) |
i € 0} and for any distinct elements z,y € X, (z,y) € Ry if and only if ¢(z); = ¢(y); or
¢(z)2 = ¢(y), where Q@ = {1,2,---,k}. We can now construct the antipodal double cover
['™ of a strongly regular graph with parameters (%,0,2).

The set of vertices of [ is V(I'™) = X U QT U Q™ U {oo*} where QF = {1F,2%,... k*}
and Q™ = {17,27,---, k™ }.

The adjacency of I'* is defined by
[*(cot) = QF, T*(c0™) = Q7 for 2,y € X, z and y are adjacent if (z,y) € Ry;

z € X and it € QF are adjacent if ¢(z); = 1,
z € X and j~ € 07 are adjacent if p(z); = 7.
The metric of the graph I'* is denoted by p. Then we get the following.

p(z,y) =2 if (z,y) € Ry (3.11)

We can verify that I'™ is a distance regular graph whose intersection array is (k, &k —
1,1,5;1,1,k — 1,k) in the sequel. For any z € {doo} UQT U™, it is clear that the
valency of z is k. For any 2 € X, there are exactly k — 2 elements of X which are adjacent
to « because of p‘il = k — 2. Moreover z is adjacent to only one element ¢(z)f in QF and
@(x); in O respectively. Therefore the valency of z is k. Thus the valency of T'* is k.

We note the bijection ¢ is a graph isomorphism from T onto the Hamming graph
H(2,k) on Q x Q such that (D) = {(7,7) | « € 2}. Moreover in the subgrph of H(2,k)
being deleted the vertices {(i,7) | 1 € Q}, there exists exactly one vertex at distance 3
from a vertex (¢, ;) in the subgraph, namely (7,7). This implies the following.

o(z) = (1,7) if and only if @(¢(z)) =(j,2) for z € X (3.12)
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Now we have the following lemma.

Lemma 3.5 Let z,y be elements of X such that ¢(z) = (4,7) and o(y) = (£,h). Then
the following (1) and (2) hold.
(1) If p(z,y) = 1, then {i,5} N {{,h} = 0.
(2) If t € Q and t & {i,5}, then there exists ezactly one element u of X such that
p(z,u) = 1 and p(u); =t and ezactly one element v of X such that p(z,v) = 1 and
p(v) = t. |
Proof).

(1): Suppose that p(z,y) = 1. Then (:v y) € R1 Ifi=~/{orj=h,then (z,y) € Ry,
a contradiction. If i = h or j = £, then (z,%(y)) € Rq from (3.12), therefore (z,y) € R,
from (3.9), a contradiction. Therefore {i,;} N {¢,A} = 0. Thus (1) holds.

(2):For any distinct elements u,v € X such that p(z,u) =1 and p(z,v) =1, we have
@(u)1 # @(v); and @(u); # @(v)2 because of pi; = 0.

Moreover since |[{u € X | p(z,u) = 1}| = k—2, we have Q = {¢(u) lue X, p(z,u) =
13U {i,5} and Q = {¢(u); | u € X, p(z,u) = 1} U {¢,4} from (1). Thus (2) holds.

Proof of Theorem 3.3:

Suppose that z,y € X. Since pi, # 0 for i € {2,3} and p}, = 0, the following holds.

p(z,y) =2 if (z,y) € R UR; (3.13)

plz,y) > 2 if (z,y) € Rs (3.14)

For any z € X, we set as follows.
Alz) ={y € X | (z,y) € Ru},
Bz)={y € X |y # ¥(2),p(y)r = (2)2 or ¢(y)2 = ¢(2)1},
B'(z)={y € X |y # z,90(y)1 = p(2)1 or ¢(y): = ()2},
A(e)={y € X | (z,y) € Rs} and C(z) = X \ (A(z) U B(z) U B'(z) U A'(2) U {¢(2)}).

We note that y € B'(z) if and only if (z,y) € Ry and y € B(z) if and only if (z,y) € Ry
from (3.9) and (3.12). Hence it follows that y € C(z) if and only if (z,y) € Ra.

Suppose that z € X and ¢(z) = (4,7). Then we have I'*(z) = A(z) U {i*,77} and
[3(z) = B(z)UC(z) UB'(z)U(QF\ &t Hu(@ \ {7y~ Hu {oo*} from (3.11),(3.13)
and (2) of Lemma 3.5. _

Moreover obviously A(y) NTj(z) # 0 for any y € A'(z). Hence we have I'j(z) =
A'(z) U {i~,j*} from (3.14) and T'j(z) = {¢(z)}. On the other hand for any 1 € ,
we have [*(i%) = {z € X | p(z); = 1} U {oo™}, T3(:*) = {z € X | p(z)1 #1¢ and
o()s # i} U (0F\ (i*)) U (@7 \ i7}), T3(%) = {o € X | olz)s = i} U {oo"} and
I:(i%) = {i"}. Therefore especially it follows that the diameter of I'" is 4.

Now since p} ¢ = 0 for i € {0,1,2,3,4,6} and pie = 0 for i € {0,2,3,4,5,6} , we
obtain the following.

(z,y) € Ry if and only if (z,¥(y)) € Rs (3.15)
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This statement with (3.9) and (3.12) imply that [*(z) = ['3(¥(z)), T3(z) = I'3(¥(z))
and I'3(z) = I™(¢(z)) for any ¢ € X. Therefore we have ¢;(I'*) = b3(I'*), ca([™) = by(T™),
cs(I™) = by (™) and ¢y (I™) = by(T™).

Lastly we will prove that a;(I'*) = 0 and ¢3(I'™*) = 1, which lead to a complete proof of
Theorem 3.3. Since p;, = 0, there are no triangle whose vertices are all in X. Moreover
for any elements z,y € X such that p(z,y) = 1 it follows that ¥(z); # ¥(y): and
Y(z)y # ¥(y)2 from (1) of Lemma 3.5. Thus there are no triangle in I'*. Hence we have
a1(I*) = 0 and b;(I™*) =k — 1.

Let z,y be elements in X and suppose that p(z,y) = 2. Theny € B(z)UC(z)UB'(z).
If y € B(z) U C(z), then ¢c;(z,y) = 1 because of p}; =1 and pf; = 1. If y € B'(z), then
ca(z,y) = 1 because pi; = 0 and either ¢(z); = o(y)1 or p(z)s = ¢(y), occurs.

Next suppose that p(z,iT) = 2 for z € X and ¢ € Q. Then from (2) of Lemma 3.5,
we have cy(z,i17) = 1. Obviously c;(cot,z) = 1 for any 2 € X, ,co(i*,5%) = 1 for any
distinct 2,7 €  and c(:t,77) = 1 for any distinct 7,5 € 2. Thus it is proved that
c2(I'*) = 1. This completes the proof of the theorem.
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