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Abstract

Let $\Gamma$ be a strongly regular graph with parameters $(k, \lambda.\mu)=(q^{2}+1,0,2)$ admit-
ting $G(\cong PGL(2, q^{2}))$ as one point stabilizer for odd prime power $q$ . We show that if
$G$ stabilizes a vertex $\infty$ of $\Gamma$ and acts on $\Gamma_{2}(\infty)$ transitively, then $q=.3$ holds and $\Gamma$

is the Gewirtz graph. Moreover it is showen that an antipodal double cover whose
diameter 4 of a strongly regular graph with parameters $(k, 0.2)$ is reconstructed
from a symmetric association scheme of class 6 with suitable parameters.

1 Introduction

We are interested in the classification problems of distance regular graphs with $b_{2}=1$ .
Let $\Gamma$ be a distance regular graph with $b_{2}=1$ and valency $k>2$ . If the diameter $d$

of $\Gamma$ is larger more than 4, then $\Gamma$ is isomorphic to the dodecahedron ([3, pp.182]). In
[1], M.Araya,A.Hiraki and A.Jurisic showed that if $d=4,\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}\Gamma$ is an antipodal double
cover of a strongly regular graph with parameters $(k, \lambda, \mu)=(n^{2}+1,0,2)$ for an integer
$n$ not divisible by four and if $d=3$ , then $\Gamma$ is an antipodal cover of a complete graph.
Obviously an antipodal cover of a complete graph is a distance regular graph with $b_{2}=1$

if it’s diameter is three.
The classification problems of antipodal covers of complete graphs are very difficult.

Because the existence of an antipodal distance regular $(n-2)$ -fold cover of the complete
graph $I\mathrm{t}_{n}’$ claims the existence of a projective plane of $01^{\cdot}\mathrm{d}\mathrm{e}\mathrm{r}(n-1)$ for an odd positive
integer $\mathrm{n}$ , moreover an antipodal distance regular $(n-1)$-fold cover of $I\iota_{n}’$ is equivalent
to the existence of a Moore graph with diameter two and valency $n([6],[7])$ .

The strongly regular graphs with parameters $(k, \lambda, \mu)=(5,0,2)$ and $(k, \lambda, \mu)=$

$(10,0,2)$ are known, the former one has an antipodal double cover with $d=4$ , namely the
Wells graph, the latter one(the Gewirtz graph) does not have an antipodal double cover
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with $d=4$([3, pp.372]). The existence or nonexistence of strongly regular graphs with
$(n^{2}+1,0,2)$ for $n\geq 5$ are not known up to date. We have studied these graphs.

2 Strongly regular graphs with $(q^{2}+1, \mathrm{o}, 2)$ admitting
$PGL(2, q^{2})$ for $q=p^{e}$

The following theorem is proved by using the character table of the association scheme
corresponding to the permutation group $(0(3, q),$ $O(3, q)/O^{+}(2, q))$ which $\mathrm{W}.\mathrm{M}$ .Kwok
gave in [5]. We note that $O(3, q)\cong\{\pm 1\}\cross SO(3, q)$ and $SO(3, q)\cong PGL(2, q)$ .

Theorenl 2.1 Let $\Gamma$ be a strongly regular graph with parameters $(q^{2}+1,0,2)$ and $G$ be a
group isomorophic to $PGL(2, q^{2})$ for an odd prime power $q$ . If $G$ acts on $\Gamma$ as $G$ stabilizes
a vertex $\infty$ of $\Gamma$ and $G$ is transitive on $\Gamma_{2}(\infty)$ , then $q=3$ and $\Gamma$ is the Gewirtz graph.

Sketch of the proof)
Any two involutions of $G$ are conjugate each other in $G$ . We denote the centralizer of
an involution $z$ in $G$ by $H$ . Character table of association scheme $\mathcal{X}$ corresponding to
the permutation group $(G, G/H)$ is given from Kwok’s results. Then we obtain sevral
informations concerning eigenvalues and their multiplicities of the graph $\Gamma_{2}(\infty)$ admitting
$G$ as a transitive $\mathrm{a}\mathrm{u}\mathrm{t}_{\mathrm{o}\mathrm{m}\mathrm{o}}\mathrm{r}\mathrm{p}\mathrm{h}\mathrm{i}\mathrm{s}\ln$ group from the character table of $\mathcal{X}$ .

Comparing these informations with eigenvalues and their multiplicities of $\Gamma_{2}(\infty)$ as
the second neighbourhood of a strongly regular graph with parametars $(q^{2}+1,0,2)$ , we
can lead a contradiction if $q>3$ .

3 Reconstruction of the graph $\Gamma$ and the antipodal
double cover $\mathrm{I}^{\urcorner}*$ of $\Gamma$

Let $\Gamma$ be a strongly regular graphs with parameters $(k, 0,2)$ . In this section we study
about the structure of the second neighbourhood of $\Gamma$ and antipodal double covers of
them with $d=4$ . E.R.van.Dam and A.Munemasa proved the following theorem 3.1
independently. $([4, \mathrm{p}\mathrm{P}^{13}.-14],[8])$

Theorem 3.1 Let $\Gamma$ be a strongly $regula,r$ graph with $\lambda=0,$ $\mu=2$ and degre.e $k$ with
$k>5$ . Then the second neighbourhood of $\Gamma$ with respect to any vertex generates a $\overline{\mathit{3}}$-class
association scheme. Furthermore any scheme with the same parameters can be constructed
in th.is way. from a strongly regular graph with the same parameters as F.

The intersection numbers $p_{h,\dot{\mathrm{t}}}^{j}$ of the association scheme of theorem 3.1 are the following.
Let $B_{h}(0\leq h\leq 3)$ be the intersection matrices which $(B_{h})_{i,j}=p_{h,i}^{j}(0\leq i\leq 3,0\leq j\leq 3)$ .
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$B_{0}=I$ ,

$B_{1}=$ , $B_{2}$ $/ \backslash \frac{(k-2)(00k-5)}{02}$ $\frac{(k-\mathrm{s})(k-8)k-05}{2k-102}$ $\frac{(k^{2}-13k+4k-188}{2k-122}$ $\frac{(k-5)(k-k-506)}{k-52})$

$B_{3}=$ .

Now we consider an antipodal double cover $\Gamma^{*}$ of F. The intersection array of $\Gamma^{*}$ is

the following.

$\iota(\Gamma^{*})=$

Put $\Omega=\{1,2, \cdots, k\}$ . Let $\infty^{+}$ be a vertex of $\Gamma^{*}$ and $\infty-\mathrm{b}\mathrm{e}$ a unique vertex in $\Gamma^{*}$ such that
$d(\infty\infty+,-)=4$ . We may set $\Gamma^{*}(\infty^{+})=\{1^{+}, 2^{+}, \cdots , k^{+}\}$ and $\Gamma^{*}(\infty-)=\{1^{-}, 2^{-}, \cdots, k^{-}\}$

and we may consider that $d(i^{+},$ $i^{-)}=4$ is satisfied for any element $i\in\Omega$ . Obviously
$\Gamma^{*}(\infty^{+})=\Gamma_{3}^{*}(\infty-),$ $\Gamma^{*}(\infty-)=\Gamma^{*}(3\infty^{+})$ and $\Gamma_{2}^{*}(\infty^{+})=\Gamma_{2}^{*}(\infty-)$ . We denote the subgraph
$\Gamma_{2}^{*}(\infty^{+})$ by $\triangle$ and the set of vatices of $\triangle/$ by $X$ . For each $x\in X,$ $|\Gamma^{*}(\infty)+\cap\Gamma*(x)|=1$

and $|\Gamma^{*}(\infty-)\cap\Gamma^{*}(x)|=1$ because of $c_{2}=b_{3}=1$ . Suppose that $|\Gamma^{*}(\infty^{+})\cap\Gamma^{*}(x)|=\{i^{+}\}$

and $|\Gamma^{*}(\infty-)\cap\Gamma^{*}(X)|=\{j^{-}\}$ . Then there existes a bijection mapping $\varphi$ from $X$ onto
$(\Omega\cross\Omega)\backslash \{(i, i)|i\in\Omega\}$ defined by $\varphi(x)=(i, j)$ . Then we put $i=\varphi(x)_{1}$ and $j=\varphi(X)_{2}$ .
We denote by $x’$ the element of $X$ such that $d(x, x’)=4$ , then $\varphi(x)_{1}=\varphi(x’)_{2}$ and
$\varphi(x)_{2}=\varphi(x’)_{1}$ as we show in the sequal. Moreover we set as follows.

$A(x)=\{y\in X|d(x, y)=1\},$ $B(x)=\{y\in X|\varphi(y)_{1}=\varphi(x)_{2}$ or $\overline{\varphi}(y)_{2}=\varphi(x)_{1,y\neq\}}x$
’

$A’(x)=\{y\in X|d(x’, y)=1\},$ $B’(x)=$ { $y\in X|\varphi(y)_{1}=\varphi(x)_{1}$ or $\varphi(y)_{2}=\varphi(X)2,$ $x\neq y$ }

$C(x)=X\backslash (A(X)\cup B(x)\cup A’(x)\cup B’(x)\cup\{x, x’)$

We have the following theorem.

Theorem 3.2 We define relations on $X$ as follows.

$R_{0}=\{(x, x)|x\in X\},$ $R_{1}=\{(x, y)|y\in A(x)\},$ $R_{2}=\{(x, y)|y\in B(X)\}$ ,

$R_{3}=\{(_{X}, y)|y\in C(_{X)\}},$ $R_{4}=\{(x, y)|y\in B’(X)\},$ $R_{5}=\{(x, y)|y\in A’(X)\}$ ,

$R_{6}=\{(_{X,X^{J}})|_{X\in}X\}$
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Then $\mathcal{X}=(X, R_{i}(0\leq i\leq 6))$ is a symmetric association scheme whose parameters are
$p_{h,i}^{j}(0\leq h, j, i\leq 6)$ in the following matrices. .

Here $B_{h}$ is a $7\cross 7$ -matrix $who\mathit{8}elow\mathit{8}$ and columns are indexed by $\dagger^{\mathrm{o},1,2,3,4},5,6$ } sat-
isfying $(B_{h})_{i,j}=p_{h,i}^{j}$ for each $h$ such that $0\leq h\leq 6$ .

$B_{0}=I,$ $B_{1}=($ $k \frac{0}{0,0000}2$ $k-5201000$ $k-5010011$ $k-8022101$ $k-5000111$ $k$

.

$-5000201$ $k \frac{00000}{0}2$ ),
$B_{2}=($ $2k4000^{-}000$ $2k.-0222001^{\cdot}0$ $k-5k-311101$ $2k-12022220$ $k-3k-501111$ $2k-10002220$ $2k000000^{-4}$ ),

$B_{3}=($ $(k-2)(k-0000005)$ $(k-\mathrm{s}.\cdot)2k-12\kappa-1^{\cdot}0k-5k-500(k-8)0$ $(k-5^{\cdot}..)k-5k\mathrm{s}kk^{-}-50-5^{-6}0(k.)$ $k^{2}-1^{-}2k^{-}...12k\kappa_{3}k^{-1^{+4\mathrm{s}}}-811k8.22$ $(k.-5^{\cdot})(k.-6k-5k^{\sim}k^{-}k-0-0555)$ $(k.-52k....1.02k-10kk^{-}-5)-500(k-8)$ $(k-2)000000(k-\mathrm{s})$ ) .

$(B_{4})_{i,j}=(B_{2})_{i,(6}-j),$ $(B_{5})_{i,j}=(B_{1})_{i,(6}-j),$ $(B_{6})_{i,j}=(B_{0})_{i,(6}-j)$ for $0\leq i\leq 6,0\leq j\leq 6$ .

Proof).
It is immediately shown that
$|A(x)|=|A’(x)|=k-2,$ $|B(x)|=|B’(X)|=2(k-2)$ . We have

$\{\varphi(X)_{1}, \varphi(x)_{2}\}\cap\{\varphi(y)_{1}, \varphi(y)_{2}\}=\emptyset$ if $d(x, y)=1$ (3.1)

from $a_{1}(\Gamma^{*})=0$ , and

$\{\varphi(y)_{1}|y\in A(x)\}=\{\varphi(y)_{2}|y\in A(x)\}=\Omega\backslash \{\Psi(X)_{1,\varphi()_{2}}X\}$ (3.2)
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from $c_{2}(\Gamma^{*})=1$ . Hence for any $i\in\Omega\backslash \{\varphi(X)_{1}, \varphi(X)2\}$ , there exists a unique element
$y\in A(x)$ such that $\varphi(y)_{1}=i$ and $z\in A(x)$ such that $\varphi(z)_{2}=i$ because of
$|A(x)|=|\Omega\backslash \{\varphi(X)1, \varphi(x)_{2}\}|$ .
Therefore the following also holds.

$(A(y)\backslash \{x\})\cap(A(z)\backslash \{x\})=\emptyset(y\neq z\in A(x))$ (3.3)

From (3.2) and (3.3), $|\{z|z\in A(y), z\neq x, y\in \mathrm{A}(x)\}|=(k-2)(k-3)$ and so we have
this set is equal to $B(x)\cup C(x)$ . Thus $|C(X)|=(k-2)(k-5)$ . Moverover we obtain

$|A(z)\cap B(x)|=2$ , $|A(z)\cap C(x)|=k-5(\forall z\in A(x))$ (3.4)

$|A(z)\cap B’(x)|=\underline{9}$ , $|A(z)\cap C(X)|=k-5$ $( \forall z\in A’(x))$ (.3.5)

$|A(z)\cap A(x)|=1,$ $|A(z)\cap B(x)|=1,$ $|A(z)\cap C(x)|=k-5$

$|A(z)\cap B’(x)|=1( \forall z\in B(x))$ (3.6)

$|A(z)\cap A’(x)|=1$ , $|A(z)\cap B’(x)|=1,$ $|A(z)\cap C(x)|=k-5$ ,

$|A(z)\cap B(x)|=1( \forall z\in B’(X))$ (3.7)

$|A(z)\cap A(x)|=1$ , $|A(z)\cap A’(x)|=1,$ $|A(z\rangle\cap B(x)|=2$ ,

$|A(z)\cap B’(x)|=2$ , $|A(z)\cap C(x)|=k-8$ $( \forall z\in C(x))$ (3.8)

Moverover about the neighbourhoods of $\triangle$ it is easy shown that $\triangle_{1}(x)=A(x)$ ,
$\triangle_{2}(x)=B(x)\cup C(x),$ $\triangle_{3}(x)=B’(x)\cup A’(x)$ and $\triangle_{4}(x)=\{x’\}$ for any $x\in X$ .

About the neighbourhoods of $\Gamma$ we have $\Gamma_{1}(x)=A(x)\cup\{\varphi(x)_{1}+ , \varphi(x)_{2}^{-}\}$ ,
$\Gamma_{2}(x)=B(x)\cup C(x)\cup B’(x)\mathrm{U}\{i^{+}, i^{-}|i\neq\varphi(x)_{1}, i\neq\varphi(x)_{2}\}\cup\{\infty\infty+,-\}$ ,
$\Gamma_{3}(x)=A’(x)\cup\{\Psi(x)_{2}+, \varphi(X)_{1}^{-}\}$ and $\Gamma_{4}=\{x’\}$ for any $x\in X$ .
Therefore it follows that $(x, y)\in R_{i}$ if and only if $(y, x)\in R_{i}$ for $0\leq i\leq 6$ . We also
have $p_{h,\mathrm{i}}^{j}=p_{i.h}^{j}$ and $p_{h,i}^{j}=p_{6-h,i}^{6j}-$ since $(x, y)\in R_{j}$ if and only if $(x’, y)\in R_{6-j}$ . Then
$p_{h,i}^{j}=p_{i,6h}^{6-j}-\cdot$

Now we prove that $p_{3,0}^{3}=p_{3,6}^{3}=1,$ $p_{3,1}^{3}=p_{3,5}^{3}=k-8$ and $p_{3,2}^{3}=p_{3,4}^{3}=2k-12$ which
means that $p_{3,3}^{3}=k^{2}-13k+48$ because of $\sum_{i=0}^{63}p_{3},i=|C(X)|=(k-2)(k-5)$ .

It is trivial that $p_{3,0}^{3}=p_{3,6}^{3}=1$ . Let $x,$ $y$ be elements of $X$ such that $(x, y)\in R_{3}$ ,
namely $y\in C(x)$ . Then $|C(x)\cap A(y)|=k-8$ from (3.8) and this implies $p_{3,1}^{3}=k-8$ .

Considering $x’$ instead of $x$ , similarly above we have $p_{3,5}^{3}=k-8$ . Let $z$ be an element of
$X$ such that $(x, z)\in R_{3}$ and $(z, y)\in R_{2}$ . Set $\varphi(x)=(i,j),$ $\varphi(y)=(k, \ell)$ and $\varphi(z)=(s, t)$ ,

then $\varphi(x’)=(j, i)$ and $s=\ell$ or $t=k$ holds because of $(z, y)\in R_{2}$ . Suppose that $s=l$

holds. From (3.2) there is a unique element $u\in A(x)$ such that $\varphi(u)_{1}=l$ and $v\in A’(x)$

such that $\varphi(v)_{1}=\ell$ . Then we can take any element of $\Omega$ except $\{i,j, k, \ell, \varphi(u)2, \varphi(v)_{2}\}$

as a number $t$ satisfying $\varphi(z)=(\ell, t)$ and $z\in C(x)$ , namely
$|\{t|\varphi(z)=(\ell, t), (z, y)\in R_{2}, (x, z)\in R_{3}\}|=k-6$ .
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Similarly at the case $t=k$ , we get
$|\{s|\varphi(z)=(s, k), (z, y)\in R_{2}, (x, z)\in R_{3}\}|=k-6$ . Hence $p_{3,2}^{3}=2(k-6)$ holds. By the
same arguments above we have $p_{3,4}^{3}=2(k-6)$ . Similarly we can decide other parameters
$p_{h,i}^{j}$ from (3.1) $\sim(3.8)$ . Thus the theorem is proved.

At the following theorem we prove that the inverse of the statement in $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}.3.2$ is
also true.

Theorem 3.3 Let $\mathcal{X}=(X, R_{\iota}(0\leq i\leq 6))$ be a symmetric 6-association scheme with
same parameters as $p_{h,i}^{j^{\langle}}$ in Theorem 3.2 for $k>5$ . Then the antipodal double cover $\Gamma^{*}$

with $d(\Gamma^{*})=4$ of a strongly regular graph with parameters $(k, 0,2)$ can be constructed
from X. Moreover the graph (X, $R_{1}$ ) is isomorphic to the second neighbourhood of $\Gamma^{*}$

$\mathrm{r}$

with respect to any vertex.

We now $\mathrm{s}\mathrm{t}\mathrm{a},\mathrm{r}\mathrm{t}$ w..ith. a short sketch. of the $\mathrm{P}_{-}^{\mathrm{r}\mathrm{o}}\mathrm{o}\mathrm{f}.\cdot$ At first we consider the graph $\tilde{\Gamma}=$

(X, $R_{4}$ ). The parameters of this graph is that of the graph deleting the diagonal vertices
of $k\cross k$-grid. We reconstruct the graph $\hat{\Gamma}$ isomorphic to $k\cross k$ -grid from $\tilde{\Gamma}$ by adding a
set of some pairs of maximal cliques as new vertices to the vertices of $\tilde{\Gamma}$ . Next using the
graph $\hat{\Gamma}$ , an extended graph $\Gamma^{*}$ of the graph (X, $R_{1}$ ) is constructed. This $\Gamma^{*}$ is the graph
to be constructed in this theorem.

We use the following notation here. Let $\Gamma’=(V(\Gamma’), E(\Gamma’\mathrm{I})$ be a finite connected
graph and $d$ be the metric of $\Gamma’$ . For two vertices $x,$ $y$ of $\Gamma’$ such that $d(x, y)=i$ , we
denote by $c_{i}(x, y),$ $bi(x, y)$ and $a_{i}(x, y)$ the cardinalities of the sets $\{z\in V(\Gamma’)|d(x, z)=$

$i-1,$ $d(z, y)=1\},$ $\{z\in V(\Gamma’)|d(x, z)=i+1, d(z, y)=1\}$ and $\{z\in V(\Gamma)|d(x, z)=$

$i,$ $d(z, y)=1\}$ respectively.
We state four lemmas to prove the theorem. We note that $k_{0}=k_{6}=1,$ $k_{1}=k_{5}=$

$k-2,$ $k_{2}=k_{4}=2k-4$ and $k_{3}--(k-2)(k-5)$ hold. Therefore we have $|X|=k(k-1)$ . For
any element $x\in X$ there exists a unique element $x’\in X$ such that $(x, x’)\in R_{6}$ because
of $p_{0,6}^{6}=1$ . We consider a bijective mapping $\psi$ on $X$ defined by $\psi(x)=x’$ for any $x\in X$ .
It is clear that $\psi^{2}=id_{X}$ . We denote by $\overline{\Gamma}$ the graph (X, $R_{4}$ ) and by $\tilde{\rho}$ the metric of $\overline{\Gamma}$ .

Lemma 3.1 The graph $\tilde{\Gamma}$ is a regular graph with the valency $2k-4$ and $d(\tilde{\Gamma})=3$ .
$\mathrm{i}\mathrm{V}Ioreover$ it follows that $a_{1}(\tilde{\Gamma})=$ k–.3, $b_{1}(\tilde{\Gamma})=k-2_{f}a_{2}(\tilde{\Gamma})=2k-6,$ $c_{2}(x, y)=2$ for
$x,$ $y\in X$ such that $\tilde{\rho}(x, y)=2$ and $y\not\in\overline{\Gamma}(\psi(X))$ and $c_{2}(x, y)=1$ for $x,$ $y\in X$ such that
$\tilde{\rho}(x, y)=2$ and $y\in\tilde{\Gamma}(\psi(X))$ . We have also $\tilde{\Gamma}_{3}(x)=\{\psi(X)\}$ for any $x\in X$ .

Proof).
It is easily verified that $\tilde{\Gamma}$ is a regular graph of the valency $2k-4$ as $p_{4,4}^{0}=2k-4$ .

We take elements $x,$ $y\in X$ such that $(x, y)\in R_{i}$ for $i$ in {1, 2, 3, 4, 5}. Then $p_{4,4}^{i}\neq 0$ holds
and this implies that there is an element $z\in X$ such that $\tilde{\rho}(x, z)=1$ and $\tilde{\rho}(z, y)=1$ .
Moreover $\tilde{\rho}(x, \psi(x))=3$ holds. Therefore we have $d(\overline{\Gamma})-=3$ and $\tilde{\rho}(x, y)=3$ holds if and
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only if $y=\psi(x)$ . Here we note that

$(x, y)\in R_{4}$ if and only if $(\psi(x),y)\in R_{2}$ . (3.9)

because of $p_{4,i}^{6}=0$ for any $i(0\leq i\leq 6, i\neq 2)$ and $p_{2,i}^{6}=0$ for any $i(0\leq i\leq 6, i\neq 4)$ .

Therefore it follows that

$\tilde{\rho}(x, y)=1$ if and only if $\tilde{\rho}(\psi(x), \psi(y))=1$ . (3.10)

We now get $a_{1}(\tilde{\Gamma})=k-3$ and $b_{1}(\tilde{\Gamma})=k-2$ because of $p_{4,4}^{4}=k-3$ and $\Sigma_{1\leq i\leq 5(i\neq 4)}p_{i,4}^{4}=$

$k-2$ . For any elements $x,$ $y\in X$ such that $\tilde{\rho}(x, y)=2$ and $y\not\in\tilde{\Gamma}(\psi(X))$ , we get $c_{2}(x, y)=$

$2,$ $a_{2}(x, y)=2k-6$ and $b_{2}(x, y)=0$ because of $p_{4,4}^{i}=2,\Sigma_{1\leq h\leq 5(h\neq 4)p_{h,4}^{i}}=2k-6$ for

$i=1,3$ and 5 and from (3.9). Next let $x,$ $y$ be elements of $X$ such that $\tilde{\rho}(x, y)=2$

and $y\in\tilde{\Gamma}(\psi(X))$ . Then $(x, y)\in R_{2}$ from (3.9). We get $c_{2}(x, y)=1,$ $b_{2}(x, y)=1$ and
$a_{2}(x, y)=2k-6$ because of $p_{4,4}^{2}=p_{6,4}^{2}=1$ and $\Sigma_{1\leq h\leq 5(h\neq 4)}p_{h,4}^{2}=2k-6$ . We also have

$c_{3}(x, \psi(X))=2k-4$ for any $x\in X$ . This completes the proof of the lemma.

Lemma 3.2 Let $x$ be an element of X. Then $\tilde{\Gamma}(x)$ is a disjoint union of two $clique\mathit{8}$ of
the $\mathit{8}ame$ cadinalities $k-2$ .

Proof).
Let $x\in X$ and $y\in\tilde{\Gamma}(x)$ . Since $a_{1}(x, y)=k-3$ and $k(\tilde{\Gamma})=2k-4$ hold, we may set $\tilde{\Gamma}(x)=$

$\mathrm{f}y,$
$y_{1},$ $y_{2},$ $\cdots,$ $y_{k1,2,k}-3,$$zZ\cdots\}z-2\}$ for $\{y_{1}, y_{2}, \cdots, y_{k-}3\}\subset\overline{\Gamma}(y)$ and $\{z_{1}, z_{2}, \cdots.zk-2\}\subset$

$\tilde{\Gamma}_{2}(y)$ . We set $S=\{y, y_{1}, y2, \cdots, yk-3\}$ and $T=\{z_{1}, z_{2}, \cdots , z_{k-2}\}$ . Let $\approx \mathrm{b}\mathrm{e}$ any element

of $T$ . Then $\tilde{\rho}(y, z)=2$ . Since $C_{2}(y, z)=2,\tilde{\rho}(x, y)=\tilde{\rho}(x, z)=1$ and $S\cap\tilde{\Gamma}(^{\gamma}\sim)\subset\tilde{\Gamma}(y)\cap\overline{\Gamma}(z)$

hold, it follows that $|S\cap\tilde{\Gamma}(z)|\leq 1$ . Then we have $|T\cap\tilde{\Gamma}(Z)|\geq k-4$ since $a_{1}(x, z)=k-3$ .
But $T$ contains only $k-3$ elements except $z$ , therefore $|T\cap\overline{\Gamma}_{2}(z)|\leq 1$ holds. Suppose
that $T\cap\overline{\Gamma}_{2}(z)\neq\emptyset$ . Then there exists an element $u\in T$ where $\tilde{\rho}(z, u)=2$ , and every

other elements of $T$ except $z$ and $u$ are adjacent to $z$ . Moreover $|T\cap\tilde{\Gamma}_{2}(u)|\leq 1$ holds as
same as $|T\cap\tilde{\Gamma}_{2}(Z)|\leq 1$ . Hence we get $T\cap\tilde{\Gamma}_{2}(u)=\{z\}$ . Therefore it follows that $x$ and
every elements of $T$ except $z$ and $u$ are contained in $\tilde{\Gamma}(z)\cap\tilde{\Gamma}(u)$ , which implies $k-3\leq 2$ .

Thus $k\leq 5$ , which contradicts $k>5$ . Hence we get $T\cap\overline{\Gamma}_{2}(z)=\emptyset$ and any element of $T$

except $z$ is adjacent to $z$ . However since $z$ is any element of $T,$ $T$ is a clique. Applying
the same arguments to a fixed element of $T$ instead of $y$ , we also have $S$ is a clique. Thus
the lemma is proved.

We denote by $C_{1}(x)$ and $C_{2}(x)$ the set $S\cup\{x\}$ and $T\cup\{x\}$ for $S,$ $T$ in lemma 3.2. We

note $|C_{1}(x)|=|C_{2}(X)|=k-1$ . Obviously $C_{i}(x)$ is a maximal clique of $\tilde{\Gamma}$ for $i=1,2$ and
any maximal clique of $\tilde{\Gamma}$ is equal to $C_{i}(x)$ for an element $x\in X$ and $i\in\{1,2\}$ . We denote

by $MC(\tilde{\Gamma})$ the set of maximal cliques of $\overline{\Gamma}$ and put $D=\{C\cup\psi(C)|C\in MC(\tilde{\Gamma})\}$ . We
note that $C\cap\psi(C)=\emptyset$ for any $C\in MC(\overline{\Gamma})$ . For index $i\in\{1,2\}$ we have $y\in C_{i}(x)$ if

and only if $C_{i}(x)=C_{j}(y)$ for some $j\in\{1,2\}$ , as we saw in the proof of lemma 3.2. Hence
we have $|MC( \tilde{\Gamma})|=\frac{2\{X|}{k-1}=2k$ and $|D|=k$ . For $i\in\{1,2\}$ we have $\psi(C_{i}(X))=C_{j}(\psi(X))$
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for some $j\in\{1,2\}$ from (3.10). Hence we may put $\psi(C_{i}(x))=C_{i}(\psi(x))$ without loss of
generality. We have the following lemma about $D$ .

Lemma 3.3 (1) Let $x$ be any element of X. Then there exists exactly two elements of $D$

containing $x$ .
(2) Let $x,$ $y$ be any elements of $X\mathit{8}uch$ that $\tilde{\rho}(x, y)=1$ . Then there exists exactly one
element of $D$ containing $x$ and $y$ .
(3) Let $x,$ $y$ be any elements of $X$ such that $\tilde{\rho}(x, y)=2$ and $y\in\tilde{\Gamma}(\psi(X))$ . Then there
$exi\mathit{8}tS$ exactly one element of $D$ containing $x$ and $y$ .
(4) Let $D_{1}$ and $D_{2}$ be distinct elements of D. Then $|D_{1}\cap D_{2}|=2$ .
(5) Let $D$ be an element of $D$ and $x$ be an element $ofX$ such that $x\not\in D$ . Then $|\tilde{\Gamma}(x)\cap D|=$

$2$ .

Proof).
(1): For $x\in X,$ $C_{1}(X)\cup\psi(C_{1}(x))$ and $C_{2}(x)\cup\psi(C_{2}(x))$ are distinct elements of $D$

containing $x$ . Let $D$ be an element of $D$ such that $x\in D$ . Then there is an element
$a\in X$ such that $D=C_{i}(a)\cup\psi(C_{i}(a))$ for some $i\in\{1,2\}$ . We may suppose $x\in C_{i}(a)$

because of $\psi(C_{i}(a))=C_{i}(\psi(a))$ . Then we have $C_{i}(a)=C_{j}(x)$ for some $j\in\{1,2\}$ and
$D=C_{j}(x)\cup\psi(c_{j}(x))$ . Thus (1) is proved.

(2): Let $x,$ $y$ be any elements of $X$ such that $\tilde{\rho}(x, y)=1$ . Then there is a unique
maximal clique $C$ of $\tilde{\Gamma}$ containing $x$ and $y$ from lemma (3.2). Then $C\cup\psi(C)$ is a unique
element of $D$ containing $x$ and $y$ . Thus (2) is proved.

(3): Let $x,$ $y$ be any elements of $X$ such that $\tilde{\rho}(x, y)=2$ and $y\in\tilde{\Gamma}(\psi(X))$ . Then
$\tilde{\rho}(\psi(X), y)=1$ . Therefore from (2) there exists exactly one elenlent $D$ of $D$ containing
$\psi(x)$ and $y$ . Then obviously $x\in D$ holds. Thus (3) is proved.

(4): Let $D_{1}$ and $D_{2}$ be distinct elements of $D$ . Then there are elements $a$ and $b$ of $X$

such that $D_{1}=C_{i}(a)\cup\psi(C_{i}(a))$ and $D_{2}=C_{j}(b)\cup\psi(C_{j}(b))$ for some $i,j\in\{1,2\}$ . We set
$\{i, i’\}=\{j,j’\}=\{1,2\}$ . We will prove that $D_{1}\cap D_{2}\neq\emptyset$ .

Suppose that $a\in\overline{\Gamma}(b)$ . If $a\in C_{j}(b)$ or $b\in C_{i}(a)$ , then $D_{1}\cap D_{2}\neq\emptyset$ . Hence we may
assume $a\in C_{j’}(b)$ and $b\in C_{i’}(a)$ .

Moreover since $\tilde{\rho}(a, \psi(b))=2$ and $\tilde{\rho}(\psi(a), \psi(b))--1$ , there is a unique element $u\in$

$X$ , which is adjacent to $a$ and $\psi(b)$ from lemma (3.1). If $u\in C_{i}(a)\cap C_{j}(\psi(b))$ , then
$D_{1}\cap D_{2}\neq\emptyset$ . Hence we may assume $u\in C_{i};(a)$ or $u\in C_{j};(\psi(b))$ . If $u\in c_{i’}(a)$ ,
then $u$ is adjacent to $b$ because of $b\in C_{i’}(a)$ , which means $\tilde{\rho}(b, \psi(b))=2$ . This is a
contradiction. If $u\in c_{j’(}\psi(b))$ , then $\psi(u)\in C_{j}’(b)$ , then $\psi(u)$ is adjacent to $a$ because
of $a\in C_{j}’(b)$ , which means $\tilde{\rho}(u, \psi(u))=2$ . This is also a contradiction. Thus we
may assume that $a$ is not adjacent to $b$ . Similarly we may assume $a$ is not adjacent
to $\psi(b)$ . Hence $\tilde{\rho}(a, b)=2$ and $\tilde{\rho}(a, \psi(b))=2$ , and there are exactly two elements
$u,$ $v\in X$ which are adjacent to both $a$ and $b$ and there are exactly two elements $u’,$ $v’\in X$

which are adjacent to both $a$ and $\psi(b)$ from lemma 3.1. If $u$ is adjacent to $v$ then $a$ is
adjacent to \’o from (2). This contradicts our assumption. Therefore it does not occur
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that both $u$ and $v$ are contained in one of $\{C_{i}(a), ci’(a), c_{j(}b), Cj’(b)\}$ . For $u’,$ $v’$ , the
same arguments hold. If $u\in C_{i}(a)\cap C_{j}(b)$ or $v\in C_{i}(a)\cap C_{j}(b)$ , then $D_{1}\cap D_{2}\neq\emptyset$ .
Hence we may assume that $u\in C_{i}(a),$ $v\in C_{i’}(a),$ $u\in C_{j’}(b)$ and $v\in C_{j}(b)$ . Similarly
we may assume that $u’\in C_{i}(a),$ $v’\in C_{i}’(a),$ $u’\in C_{j’}(\psi(b))$ and $v’\in C_{j}(\psi(b))$ . Then $u$

and $u’$ are adjacent because of $u,$ $u’\in C_{i}(a)$ and $\psi(u)$ and $u’$ are adjacent because of
$\psi(u),$ $u’\in C_{j^{J}}(\psi(b))$ . Therefore we have $\tilde{\rho}(u, \psi(u))=2$ , which is a contradiction. Thus it
follows that $D_{1}\cap D_{2}\neq\emptyset$ .

Now suppose that $C_{i}(a)\cap C_{j}(b)$ contains at least two elements $u,$ $z$ . Then from (2)
there exists a unique $C\in CM(\tilde{\Gamma})$ containing $u,$ $z$ , and we have $C=C_{i}(a)=C_{j}(b)$ , which
implies $D_{1}=D_{2}$ . Therefore $|C_{i}(a)\cap c_{j(b)|}\leq 1$ .

Similarly $|c_{i}(a)\cap C_{j}(\psi(b)|\leq 1, |C_{i}(\psi(a))\cap C_{j}(b)|\leq 1$ and $|C_{i}(\psi(a))\cap C_{j}(\psi(b)|\leq 1$ .
Since $D_{1^{\cap}}D_{2}=(C_{i}(a)\mathrm{n}c_{j(}b))\cup(C_{i()\cap c_{j}(\psi()}ab)\cup(c_{i}(\psi(a))\cap c_{j}(b))\cup(ci(\psi(a))\mathrm{n}c_{j(\psi(\mathrm{I})}b$ ,
$\psi(c_{i}(a)\cap C_{j}(b))=C_{i}(\psi(a))\cap C_{j}(\psi(b))$ and $\psi(c_{i}(a)\cap C_{j}(\psi(b))=C_{i}(\psi(a))\cap C_{j}(b)$ ,
we have $|D_{1}\cap D_{2}|=2$ , if it is proved that $C_{i}(a)\cap C_{j}(b)\neq\emptyset$ is not compatible with
$C_{i}(a)\cap c_{j(\psi(}b))\neq\emptyset$ .

Suppose that there are elements $u,$ $v$ such that $u\in C_{i}(a)\cap C_{j}(b)$ and $v\in C_{i}(a)\cap$

$C_{j}(\psi(b))$ . Then $u$ and $v$ are adjacent because of $u,$ $v\in C_{i}(a)$ . Moreover $\psi(u)$ and $v$ are
adjacent because of $\psi(u))v\in C_{j}(\psi(b))$ . Therefore $\tilde{\rho}(u, \psi(u))=2$ , a contradiction. Thus
(4) is proved.

(5): Let $D$ be an element of $D$ and $y$ be an element of $X$ such that $y\not\in D$ . For fix any
$j\in\{1,2\},D\neq C_{j}(y)\cup\psi(C_{j}(y))$ because of $y\not\in D$ . Therefore $|D\cap(C_{j}(y)\cup\psi(C_{j}(y))|=2$

from (4). Hence $|D\cap C_{j(y)1}=1$ under consideration $\psi(D)=D$ , which means that
$|D\cap\tilde{\Gamma}(y)|=2$ . Thus (5) is proved, and the lemma was verified.

We now construct a graph isomorphic to the Hamming graph $H(2, k)$ from $\tilde{\Gamma}$ adding
some vertices to $X$ . We define the graph $\hat{\Gamma}$ .

The set of vertices of $\hat{\Gamma}$ is $X\cup D$ . The adjacency is defined by $x,$ $y\in X$ are adjacent
if $\tilde{\rho}(x, y)=1$ ,
$x\in X$ and $D\in D$ are adjacent if $x\in D$ .

The metric of the graph $\hat{\Gamma}$ is denoted by $\hat{\rho}$ .

Lemma 3.4 The graph $\hat{\Gamma}$ is isomorphic to the Hamming graph $H(2, k)$

Proof).
Let $x$ be any element of $X$ , then there exists exactly two elements of $D$ containing $x$

and $\psi(x)$ . Therefore $\hat{\rho}(x, \psi(x))=2$ by the definition above. Hence we have the diameter
of $\hat{\Gamma}$ is two. For any $x\in X$ , there exists exactly two elements of $D$ containing $x$ from (1)
of lemma 3.3. Moreover, since $k(\tilde{\Gamma})=2k-4$ , the valency of $x$ in the graph $\hat{\Gamma}$ is $2k-2$ .
For any $D\in D$ , since $D$ contains exactly $2(k-1)$ elements of $X$ , the valency of $D$ in $\hat{\Gamma}$ is
$2k-2$ . Thus the valency of $\hat{\Gamma}$ is $2k-2$ . Let $x,$ $y$ be elements of $X$ such that $\hat{\rho}(x, y)=1$ .
Then there exists exactly one element of $D$ containing $x$ and $y$ from (2) of lemma 3.3.
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On the other hand exactly $k-3$ elements of $X$ are adjacent to $x$ and $y$ because of
$a_{1}(\tilde{\Gamma})=k-3$ . Hence it follows $a_{1}(x, y)=k-2$ in $\hat{\Gamma}$ . Let $x\in X$ and $D\in D$ be adjacent
in $\hat{\Gamma}$ . Then $x\in D$ and $|D\cap\tilde{\Gamma}(x)|=k-1$ . Hence it follows $a_{1}(x, D)=k-2$ in $\hat{\Gamma}$ . Thus
$a_{1}(\hat{\Gamma})=k-2$ holds. Let $x,$ $y$ be elements of $X$ such that $\hat{\rho}(x, y)=2$ . If $y=\psi(x)$ , then
obviously $c_{2}(x, y)=2$ in $\hat{\Gamma}$ . If $y\in\overline{\Gamma}(\psi(X))$ , then there exists exactly one element of $D$

containing $x$ and $y$ from (3) of lemma 3.3.
Moreover there exists exactly one element of $X$ which is adjacent to $x$ and $y$ because

of $c_{2}(x, y)=1$ in $\overline{\Gamma}$ from lemma 3.1. Therefore $c_{2}(x, y)=2$ in $\hat{\Gamma}$ . If $y\not\in\tilde{\Gamma}(\psi(X))$ , then
there is no element of $D$ containing $x$ and $y$ since $y$ is not adjacent to $x$ or $\psi(x)$ .

However there exists exactly two element of $X$ which are adjacent to $x$ and $y$ because
of $c_{2}(x, y)=2$ in $\tilde{\Gamma}$ . Therefore $c_{2}(x, y)=2$ in $\hat{\Gamma}$ . Let $D_{1},$ $D_{2}$ be distinct elements of $D$ .
Then $|D_{1}\cap D_{2}|=2$ from (4) of lemma 3.3. Therefore $c_{2}(D_{1,2}D)=2$ in $\hat{\Gamma}$ . Let $D$ be
an element of $D$ and $x$ be an element of $X$ such that $x\not\in D$ . Then $|\tilde{\Gamma}(x)\cap D|=2$ from
(5) of lemma 3.3. Therefore $c_{2}(D, x)=2$ in $\hat{\Gamma}$ . Thus $c_{2}(\hat{\Gamma})=2$ holds. Hence the graph

$\hat{\Gamma}$ has the same parameters as those of the Hamming graph $H(2, k)$ . Thus the graph $\hat{\Gamma}$

is isomorphic to the Hamming graph $H(2, k)(\mathrm{c}\mathrm{f}$ . [9] $)$ . This completes the proof of the
lemma.

From lemma 3.4 there exists a bijection $\varphi:X\cup D-\Omega\cross\Omega$ such that $\varphi(D)=\{(i, i)|$

$?\in\Omega\}$ and for any distinct elements $x,$ $y\in X,$ $(x, y)\in R_{4}$ if and only if $\varphi(x)_{1}=\varphi(y)_{1}$ or
$\varphi(x)_{2}=\varphi(y)_{2}$ where $\Omega=\{1,2, \cdots, k\}$ . We can now construct the antipodal double cover
$\Gamma^{*}$ of a strongly regular graph with paralneters $(k, 0,2)$ .
The set of vertices of $\Gamma^{*}$ is $V(\Gamma^{*})=X\cup\Omega^{+}\cup\Omega^{-}\cup\{\infty^{\pm}\}$ where $\Omega^{+}=\{1^{+}, 2^{+}, \cdots , k^{+}\}$

and $\Omega^{-}=\{1^{-}, 2^{-}, \cdots , k^{-}\}$ .
The adjacency of $\Gamma^{*}$ is defined by

$\Gamma^{*}(\infty^{+})=\Omega^{+},$ $\Gamma^{*}(\infty-)=\Omega^{-};$ for $x,$ $y\in X,$ $x$ and $y$ are adjacent if $(x, y)\in R_{1}$ ;
$x\in X$ and $i^{+}\in\Omega^{+}$ are adjacent if $\varphi(x)_{1}=i$ ,
$x\in X$ and $j^{-}\in\Omega^{-}$ are adjacent if $\varphi(x)_{2}=j$ .
The metric of the graph $\Gamma^{*}$ is denoted by $\rho$ . Then we get the following.

$\rho(x, y)=2$ if $(x, y)\in R_{4}$ (3.11)

We can verify that $\Gamma^{*}$ is a distance regular graph whose intersection array is $(k,$ $k-$

$1,1,1;1,1,$ $k-1,$ $k)$ in the sequel. For any $x\in\{\pm\infty\}\cup\Omega^{+}\cup\Omega^{-}$ , it is clear that the
valency of $x$ is $k$ . For any $x\in X$ , there are exactly $k-2$ elements of $X$ which are adj acent
to $x$ because of $p_{1,1}^{0}=k-2$ . Moreover $x$ is adjacent to only one element $\varphi(X)_{1}^{+}$ in $\Omega^{+}$ and
$\varphi(X)_{2}^{-}$ in $\Omega^{-}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}_{\mathrm{V}}\mathrm{e}\mathrm{l}\mathrm{y}$ . Therefore the valency of $x$ is $k$ . Thus the valency of $\Gamma^{*}$ is $k$ .

We note the bijection $\varphi$ is a graph $\mathrm{i}_{\mathrm{S}\mathrm{o}\mathrm{m}\mathrm{o}}\dot{\mathrm{r}}\mathrm{p}\mathrm{h}\mathrm{i}_{\mathrm{S}\mathrm{m}}$ from $\hat{\Gamma}$ onto the Hamming graph
$H(2, k)$ on $\Omega\cross\Omega$ such that $\varphi(D)=\{(i, i)|i\in\Omega\}$ . Moreover in the subgrph of $H(2, k)$

being deleted the vertices $\{(i, i)|i\in\Omega\}$ , there exists exactly one vertex at distance 3
from a vertex $(i,j)$ in the subgraph, namely $(j, i)$ . This implies the following.

$\varphi(x)=(i,j)$ if and only if $\varphi(\psi(X))=(j, i)$ for $x\in X$ (3.12)
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Now we have the following lemma.

Lemma 3.5 Let $x,$ $y$ be elements of $X$ such that $\varphi(x)=(i,j)$ and $\varphi(y)=(\ell, h)$ . Then

the following (1) and (2) hold.
(1) If $p(x, y)=1_{\lambda}$ then $\{i,j\}\cap\{\ell, h\}=\emptyset$ .
(2) If $t\in\Omega$ and $t\not\in\{i,j\}f$ then there exists exactly one element $u$ of $X$ such that

$\rho(x, u)=1$ and $\varphi(u)_{1}=t$ and exactly one element $v$ of $X$ such that $\rho(x, v)=1$ and
$\varphi(v)_{2}=t$ .

Proof).
(1): Suppose that $\rho(x, y)=1$ . Then $(x, y)\in R_{1}$ . If $i=\ell$ or $j=h$ , then $(x, y)\in R_{4}$ ,

a contradiction. If $i=h$ or $j=\ell$ , then $(x, \psi(y))\in R_{4}$ from (3.12), therefore $(x, y)\in R_{2}$

from (3.9), a contradiction. Therefore $\{i,j\}\cap\{l, h\}--\emptyset$ . Thus (1) holds.

(2) $:\mathrm{F}\mathrm{o}\mathrm{r}$ any distinct elements $u,$ $v\in X$ such that $\rho(x, u)=1$ and $\rho(x, v)=1$ , we have
$\varphi(u)_{1}\neq\varphi(v)_{1}$ and $\varphi(u)_{2}\neq\varphi(v)_{2}$ because of $p_{1,1}^{4}=0$ .

Moreover since $|\{u\in X|\rho(x, u)=1\}|=k-2$ , we have $\Omega=\{\varphi(u)_{1}|u\in X,$ $\rho(x, u)=$

$1\}\cup\{i,j\}$ and $\Omega=\{\varphi(u)_{2}|u\in X, \rho(x, u)=1\}\cup\{i,j\}$ from (1). Thus (2) holds.

Proof of Theorem 3.3:
Suppose that $x,$ $y\in X$ . Since $p_{1,1}^{i}\neq 0$ for $i\in\{2,3\}$ and $p_{1,1}^{5}=0$ , the following holds.

$\rho(x, y)=2$ if $(x, y)\in R_{2}\cup R_{3}$ (3.13)

$\rho(x, y)>2$ if $(x, y)\in R_{5}$ (3.14)

For any $x\in X$ , we set as follows.
$A(x)=\{y\in x|(x, y)\in R_{1}\}$ ,
$B(x)=$ { $y\in X|y\neq\psi(X),$ $\varphi(y)1=\varphi(x)_{2}$ or $\varphi(y)_{2}=\varphi(x)_{1}$ },
$B’(x)=$ { $y\in X|y\neq x,$ $\varphi(y)_{1}=\varphi(x)_{1}$ or $\varphi(y)_{2}=\varphi(X)_{2}$ },
$A’(x)=\{y\in X|(x, y)\in R_{5}\}$ and $C(x)=x\backslash (A(x)\cup B(x)\cup B’(x)\cup A^{;}(X)\cup\{\psi(x)\})$

We note that $y\in B’(x)$ if and only if $(x, y)\in R_{4}$ and $y\in B(x)$ if and only if $(x, y)\in R_{2}$

from (3.9) and (3.12). Hence it follows that $y\in C(x)$ if and only if $(x, y)\in R_{3}$ .

Suppose that $x\in X$ and $\varphi(x)=(i,j)$ . Then we have $\Gamma^{*}(x)=A(x)\cup\{i^{+},j^{-}\}$ and
$\Gamma_{2}^{*}(.x)=B(X)\cup c(X)\cup B’(X)\cup(\Omega^{+}\backslash \{i^{+},j^{+}\})\cup(\Omega^{-}\backslash \{i^{-},j^{-}\})\cup\{\infty^{\pm}\}$ from $(3.11),(3.13)$

and (2) of Lemma 3.5.
Moreover obviously $A(y)\cap\Gamma_{2}^{*}(x)\neq\emptyset$ for any $y\in A’(x)$ . Hence we have $\Gamma_{3}^{*}(x)=$

$A’(x)\cup\{i^{-},j^{+}\}$ from (3.14) and $\Gamma_{4}^{*}(x)=\{\psi(x)\}$ . On the other hand for any $i\in\Omega$ ,

we have $\Gamma^{*}(i^{+})=\{x\in X|\varphi(x)_{1}=i\}\cup \mathrm{t}\infty^{+}\},$ $\Gamma_{2}^{*}(i^{+})=\{x\in X|\varphi(x)_{1}\neq i$ and
$\varphi(x)_{2}\neq\dot{\iota}\}\cup(\Omega^{+}\backslash \{i^{+}\})\cup(\Omega^{-}\backslash \{i^{-}\}),$ $\Gamma_{3}^{*}(i^{+})=\{x\in X|\varphi(x)_{2}=i\}\cup\{\infty-\}$ and
$\Gamma_{4}^{*}(i^{+})=\{i^{-}\}$ . Therefore especially it follows that the diameter of $\Gamma^{*}$ is 4.

Now since $p_{1,6}^{i}=0$ for $i\in\{0,1,2,3,4,6\}$ and $p_{5,6}^{i}=0$ for $i\in\{0,2,3,4,5,6\}$ , we

obtain the following.

$(x, y)\in R_{1}$ if and only if $(x, \psi(y))\in R_{5}$ (3.15)
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This statement with (3.9) and (3.12) imply that $\Gamma^{*}(x)=\Gamma_{3}^{*}(\psi(x)),$ $\Gamma_{2}^{*}(x)=\Gamma_{2}^{*}(\psi(X))$

and $\Gamma_{3}^{*}(x)=\Gamma^{*}(\psi(X))$ for any $x\in X$ . Therefore we have $c_{1}(\Gamma^{*})=b_{3}(\Gamma^{*}),$ $c_{2}(\Gamma^{*})=b_{2}(\Gamma^{*})$ ,
$c_{3}(\Gamma^{*})=b_{1}(\Gamma^{*})$ and $c_{4}(\Gamma^{*})=b_{0}(\Gamma^{*})$ .

Lastly we will prove that $a_{1}(\Gamma^{*})=0$ and $c_{2}(\Gamma^{*})=1$ , which lead to a complete proof of
Theorem 3.3. Since $p_{1,1}^{1}=0$ , there are no triangle whose vertices are all in $X$ . Moreover
for any elements $x,$ $y\in X$ such that $\rho(x, y)=1$ it follows that $\psi(x)_{1}\neq\psi(y)_{1}$ and
$\psi(X)_{2}\neq\psi(y)_{2}$ from (1) of Lemma 3.5. Thus there are no triangle in $\Gamma^{*}$ . Hence we have
$a_{1}(\Gamma^{*})=0$ and $b_{1}(\Gamma^{*})=k-1$ .

Let $x,$ $y$ be elements in $X$ and suppose that $\rho(x, y)=2$ . Then $y\in B(x)\cup C(x)\cup B’(x)$ .
If $y\in B(x)\cup C(x)$ , then $c_{2}(x, y)=1$ because of $p_{1,1}^{2}=1$ and $p_{1,1}^{3}=1$ . If $y\in B’(x)\backslash$, then
$c_{2}(x, y)=1$ because $p_{1,1}^{4}=0$ and either $\varphi(x)_{1}=\varphi(y)_{1}$ or $\varphi(x)_{2}=\varphi(y)_{2}$ occurs.

Next suppose that $\rho(x, i^{+})=2$ for $x\in X$ and $i\in\Omega$ . Then from (2) of Lemma 3.5,
we have $c_{2}(x, i^{+})=1$ . Obviously $c_{2}(\infty^{+}, X)=1$ for any $x\in X,$ $,c_{2}(i^{+},j^{+})=1$ for any
distinct $i,j\in\Omega$ and $c_{2}(i^{+},j^{-})=1$ for any distinct $i,j\in\Omega$ . Thus it is proved that
$c_{2}(\Gamma^{*})=1$ . This completes the proof of the theorem.
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