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1 Motivation
In order to study the representation theory of association schemes, the study of
$Q$-polynomial association schemes gives a start point. But there is no systematic
study of $Q$-polynomial association schemes yet. We start with the classification
of $Q$-polynomial group association schemes as we can apply character theory
of finite groups fully. Since $Q$-polynomial association schemes are symmetric,
it is important to consider the symmetrization of group association schemes.
Now the condition that the scheme becomes $Q$-polynomial can be interpreted
by the terminologies of the condition on the decomposition of the character
product. We obtained a new result on the decomposition of the square of a
character, which leads us to a desired classification of the symmetrization of
group association schemes, which have $Q$-polynomial properties.

A special case is treated in a previous paper [12] of the second author. The
preprint with the same title [15] is available upon request.
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2 Character Product
Let $G$ be a finite group and let $\mathrm{I}\mathrm{r}\mathrm{r}(G)$ be the set of absolutely irreducible ordinary
(complex) characters of $G$ . For $\phi\in \mathrm{I}\mathrm{r}\mathrm{r}(G)$ , let

$\hat{\phi}=\{$

$\phi$ if $\phi$ is real valued,
$\phi+\overline{\phi}$ $\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{S}\mathrm{e}\text{ノ}$.

where $\overline{\phi}$ is the character of the contragredient of the representation affording $\phi$ .
Hence $\overline{\phi}(g)=\overline{\phi(g)}=\phi(g^{-1})$ for $g\in G$ . Let

RIrr $(G)=\{\hat{\phi}|\phi\in \mathrm{I}\mathrm{r}\mathrm{r}(c)\}$ .

In the following, for charact$e\mathrm{r}\mathrm{s}\emptyset,\psi$ of $G$ , let

$<\phi,$
$\psi>=\frac{1}{|G|}\sum_{g\in G}\emptyset(g)\overline{\psi)(g)}$.

Theorem 2.1 Let $G$ be a finite group. Suppo.$9e$ for some $\chi,$
$\psi\in \mathrm{I}\mathrm{r}\mathrm{r}(G),\hat{\chi}^{2}$ is

a linear combination of 1, $\hat{\chi}$ and $\hat{\psi}$ , where 1 denotes the principal character of
G. Then the degree of $\chi$ is at most 3.

By a well-known classification of finite subgroups of $GL(2, c)$ , and $GL(3, c)$

in $[3, 8]$ , we can determine the groups satisfying the conditions in Theorem 2.1.

Corollary 2.2 Let $G$ be a finite group of order at least 3. Suppose for some
$\chi,$

$\psi\in \mathrm{I}\mathrm{r}\mathrm{r}(G),\hat{\chi}^{2}$ is a linear combination of 1, $\hat{\chi}$ and $\hat{\psi}$ , where 1 denotes the
principal character of G. If $\chi$ is faithful, then one of the following holds.

(1) $G\simeq A_{5}$ , the alternating group of degree 5 and $\chi(1)=\hat{\chi}(1)=3$ .
(2) $G\simeq A_{4}$ , the alternating group of degree 4 and $\chi(1)=\hat{\chi}(1)=3$ .
(3) $G\simeq S_{3}$ , the symmetric group of degree 3 and $\chi(1)=\hat{\chi}(1)=2$ .
(4) $G=<x,$ $y,$ $z|x^{2}=y^{3}=z^{3}=xyz>\simeq SL(2,3)$ and $\chi(1)=\hat{\chi}(1)=2$ .
(5) $G=<x,$ $y,$ $z|x^{2}=y^{3}=z^{4}=xyz>\simeq SL(2,3)\cdot 2$ and $\chi(1)=\hat{\chi}(1)=2$ .
(6) $G=<x,$ $y,$ $z|x^{2}=y^{3}=z^{5}=xyz>\simeq SL(2,5)$ and $\chi(1)=\hat{\chi}(1)=2$ .
(7) $G=F_{21}$ , the Frobenius group of order 21 and 2 $\cdot\chi(1)=\hat{\chi}(1)=6$ .
(8) $G=Z_{n}$ , a cyclic group of order $n$ and 2 $\cdot\chi(1)=\hat{\chi}(1)=2$ .

Some related results concerning the decomposition of a power of a character
are found in [4, 11, 12].

3 Sketch of Proof
In this section we sketch the proof of the special case of the main theorem, $\mathrm{i}.\mathrm{e}.$ ,
when both $\chi$ and $\psi$ are irreducible.

Assum$e\chi=\hat{\chi},$ $\psi=\hat{\psi}\in \mathrm{I}\mathrm{r}\mathrm{r}(G)$ , with $n=\chi(1)>3$ . We may assume $\chi$ is
faithful.

$\chi^{2}=1+a\cdot\chi+C\cdot\psi$ . (1)
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$\bullet c=1$ .
Proof. Since $\chi(1)>1\text{ノ}$. th$e\mathrm{r}\mathrm{e}$ is an elem$e\mathrm{n}\mathrm{t}g\in G$ such that $\chi(g)=0$ .
Then we have that $1+c\cdot\psi(g)=0$ . This implies $c=1$ as $\psi(g)$ is an
algebraic integer. $\blacksquare$

$\bullet$ $\prime n,$ $=\chi(1)$ is odd and $\mathrm{A}\mathrm{l}\mathrm{t}^{2}\chi=((n-1)/2)\chi$ . In particular,

$\chi(x^{2})=\chi(X)^{2}-(n-1)\chi(X)$ . (2)

Proof. Since

$\chi^{2}=\mathrm{S}\mathrm{y}\mathrm{m}^{2}\chi+\mathrm{A}\mathrm{l}\mathrm{t}^{2}\chi=1+a\cdot\chi+\psi$ ,

we have the assertion by inspection. $\blacksquare$

$\bullet$ For every involution $t$ of $G,$ $\chi(t)=-1$ .
Proof. Since $\chi(t^{2})=\chi(1)=n$, by (2) we have that

$n=\chi(t)2-(n-1)\chi(t)$ .

Since $\chi$ is faithful, $\chi(t)\neq n$ and we have $\chi(t)=-1$ . $\blacksquare$

$\bullet$ There is no element $s$ of order 4.

Proof. Let $s$ be an element of order 4. Since $t=s^{2}$ is an involution,

$\chi^{(2)}(s)=x(s^{2})=\chi(t)=-1$ .

Now (2) yields
$\chi(s)^{2}-(n-1)\chi(S)+1=0$ . (3)

Since the 4-th roots of unity $\mathrm{a}\mathrm{r}\mathrm{e}\pm\sqrt{-1},$ $\pm 1$ alud $\chi$ is real valued, $\chi(s)$ is a
rational integer. There is no integer solution for (3) as $n>3$ . $\blacksquare$

$\bullet$ Final contradiction.

Proof. If $\psi(1)=1$ , then we have $n=\chi(1)$ divides 2 by (1) as $c=1$ . Let
$g\in G$ with $\psi(g)=0$ . Since there is no element of order 4, $g^{2}$ and $g^{4}$ are
odd order. Hence $\chi(g^{2})$ and $\chi(g^{4})$ are algebraic conjugate. By (1) and
(2), we have the following.

$0$ $=$ $\chi(g)^{2}-a\cdot\chi(g)-1$ ,
$\chi(g^{2})$ $=$ $\chi(g)^{2}-(n-1)x(g)\in Q(x(g))\subset Q(\sqrt{a^{2}+4})$ ,
$\chi(g^{4})$ $=$ $\chi(g^{2})^{2}-(n-1)\chi(g^{2})\in Q(\chi(g))\subset Q(\sqrt{a^{2}+4})$ .

From these equations, we obtain a nontrivial relation, which finally yi
$e1\mathrm{d}.\mathrm{s}$

a contradiction.

113



4Group Association Schemes and Representa-
tion

Let $G$ be a finite group and let $C_{\{)},$ $C_{1},$ $.,$ $.,$
$c_{d}$ be the conjugacy classes. Let

$R_{i}=\{(g_{1},g2)\in G\mathrm{x}G|g_{2}g_{1}-1\in C_{i}\}$ .

Then $\mathcal{X}(G)=(G, \{R_{i}|i=0,1, \ldots , d\})$ becomes a commutative association
scheme and $\mathcal{X}(G)$ is called a group association scheme. For a conjugacy class
$C$ , let $\hat{C}=\{g, g^{-1}|g\in C\}$ . If we take $\hat{C}_{i}$ instead of $C_{i}$ above, we obtain a
symmetric association scheme $\mathcal{X}(G)$ , which is called the symmetrization of the
group scheme.

It is well-known that the Bose-Mesner algebra of the group association
scheme of a finite group $G$ is isomorphic to $Z(C[G])$ , the center of the group al-
gebra. Let $E_{0},$ $E1,$

$\ldots,$
$Ed$ be the primitive idem.potents of the group association

scheme and let

$E_{i} \mathrm{o}E_{j}=\frac{1}{|G|}\sum_{f_{l=}0}q_{i},j\prime E\iota dh$ .

Then these primitive idempotents correspond to irreducible modules and $q_{i,j}^{h}$

can be computed from the irreducible characters $\chi(),$ $x1,$ $..*’\chi_{d}$ of $G$ by the
following formula.

$q_{i,j}^{h}= \frac{\chi_{i}(1)xj(1)}{x_{l\iota}(1)}<\chi_{h},$ $\chi ix_{j}>$ .
The representation diagram of a commutative association scheme $\mathcal{X}(G)=$

$(G, \{R_{i}|i=0,1, \ldots , d\})$ with respect to a primitive idempotent $E_{h}=\overline{E}_{h}$ ,
denoted by $D^{*}=D^{*}(\mathcal{X}, E\prime_{b})$ , is all undirected graph with $\{0,1, \ldots, d\}$ as the
vertex set such that the adjacency for distinct vertices $\dot{i}$ and $j$ is defined as
follows.

$\dot{i}\sim j\Leftrightarrow q_{l\iota,i}^{j}\neq 0$ .
A commutative association scheme is said to be $Q$-polynomial if the repre-

sentation diagram with respect to a primitive idempotent is a path.
The representation diagram of a group $G$ with respect to a $\mathrm{r}e$al valued char-

acter $\chi$ , denoted by $D^{*}=D^{*}(G, \chi)$ , is an undirected graph with $\mathrm{I}\mathrm{r}\mathrm{r}(G)$ as the
vertex set such that the adjacency for distinct vertices $\chi_{i}$ and $\chi_{j}$ is defined as
follows.

$\chi_{i}\sim xj\Leftrightarrow<\chi x_{i},$ $xj>\neq 0$ .

The real representation diagram $\overline{D}^{*}=\overline{D}^{*}(G, \chi)$ is defined similarly by taking
RIrr$(G)$ as the vertex set.

As remarked above the irreducible charact$e\mathrm{r}\mathrm{s}$ of a group $G$ correspond to
the primitive idempotents of the corresponding group association scheme. It is
easy to see from the formula for $q_{h,i}^{j}$ above that the representation diagram of
a group with respect to a real valued irreducible character is isomorphic to the
corresponding representation diagram of its group association scheme. And each
real representation diagram is isomorphic to the corresponding representation
diagram of the symmetrization of its group association scheme.

Suppose $D^{*}=D^{*}(G, \chi)$ is a path, i.e., the corresponding group associa-
tion scheme is $Q$-polynomial. Then the group association scheme is necessarily
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symmetric. So we consider the condition when the symmetrization of a group
association scheme becomes $Q$-polynomial. Then $\hat{\chi}^{2}$ is a lin$e$ar combination of
a principal character 1, $\hat{\chi}$ and at most one more member of RIrr$(G)$ . Hence it
satisfies the assumption of Theorem 2.1 and Corollary 2.2. Now by inspection.,
we have the following.

Theorem 4.1 Let $G$ be a finite group with $d+1conjugaCy\underline{cla}Sses$, and let $\mathcal{X}\overline{(G}$)
be the $symmetri_{Za},tion$ of its group association scheme. If $\mathcal{X}(G)$ is Q-polynomial,
then one of the following holds.

(1) $G\simeq Z_{n}$ , the cyclic group of order $n$ .
(2) $G\simeq S_{3}$ , the symmetric group of degree 3.
(3) $G\simeq A_{4}$ , the alternating group of degree 4.
(4) $G=<x,$ $y,$ $z|x=y=Z^{3}=xyz>\simeq SL(232,3)$ .
(5) $G\simeq F_{21}$ , the Frobenius group of order 21.

5 Generalization
Using the similar methods of proof in Section 3, we can prove a generalization
of Theorem 2.1 as follows.

Theorem 5.1 Let $\chi,$
$\sqrt J_{1},$

$\ldots,$
$\sqrt J_{r}\in \mathrm{I}\mathrm{r}\mathrm{r}(G)$ . Suppose

$x^{2}=1+a\chi+\psi 1+\cdots+^{\psi_{r}}$

and $\{\psi_{1}, \ldots, \psi_{r}\}$ is a single orbit under the action of $Gal(\overline{Q}/Q(\chi)),$ where $\overline{Q}$ is
the algebraic closure of Q. If $n>3$ , then $G/\mathrm{k}\mathrm{e}\mathrm{r}\chi\simeq GF(2^{l})$ : $GF(2^{i})^{*}$ , where
$2^{l}-1$ is a Mersenne prime and $GF(2^{l})$ is the additive group of a field with $2^{l}$

elements and $GF(2^{l})^{*}$ is the multiplicative $gr_{\wedge}oup$ of the field. Here-. $’$

X: $\mathrm{Y}$ means
a semidirect product.

6 Some Remarks
1. Let $\{\chi(g)|g\in G, g\neq 1\}=\{\alpha_{1}, \alpha_{2}, \ldots, \alpha\}S$ . $(G, \chi)$ is said to be sharp, if

$|G|=(x(1)-\alpha_{1})(\chi(1)-\alpha 2)\cdots(\chi(1)-\alpha \mathit{8})$ .

Study relation with the condition ‘sharp’. See $[1, 6]$ .
2. When a representation diagram of an association scheme becomes a tree,

the $\mathrm{e}_{d}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{d}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}$ of the points of the scheme on a sphere enjoys a very nice
$\mathrm{g}\mathrm{e}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{l}\mathrm{i}_{\mathrm{C}\mathrm{a}}1$ condition called ‘balanced condition’. Since a path is a tree, it
defines a class of association schemes containing $Q$-polynomial association
schemes. All finite irreducible subgroups in $GL(2, C)$ satisfy this property.
Can we determine all such group association schemes?

3. All known balanced 2-groups have $\overline{D}_{n}$ or a star graphs as representation
diagrams.

4. Study the dual.
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