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Weight Enumerators of Codes over Z/2kZ

Manabu Oura (Kl %)

In this note, we announce some results in [1].

1 Codes over Z/2kZ and lattices

We set R := Z/2kZ. A linear codes C of length n over R is an additive subgroup of R". The

n
Euclidean weight utF(J:) of a vector = (&1, -+, &n ) is Z.L,? mod 4k. We define the inner
=1
product of z and y in R" by < z,y >= z1y1 + -+ + nyn( mod 2k), where z = (1, ,&pn) and
¥y = (¥1,-**,Yn). The dual code Ct of C is defined as

¢l = {.L € R"| < z,y >= 0,%y € C}.
C is self-dual if C = C1. We define a Type II code over R as a self-dual code with Eudidean

weights divisible by 4k. We consider the natural projection p from Z to R, then this map induces
the map (also we denote p ) from Z" to R". We set A(C) = \/—%p"l(c ).

Theorem 1 If C is self-dual code of length n over R, then the lattice A(C) is an n-dimensioal
unimodular lattice. Moreover if C is Type II, then the lattice A(C) is an even unimodular lattice.

Proposition 2 There ezists a Type II code of length n over R if and only if n is a multiple of
etght.

Remark 3 For k = 2, Type II codes of lengths 8 and 16 are classified.

2 Weight enumerators and modular forms

Definition 4 For a code C over R, we define the g-th complete weight enumerator of C by

¢l(x, with a € RY) := Z H glalerseq)
Cy,,CgeCacRI

where n,(ci,---,cq) denotes the number of ¢ satisfying a = (Cliy- -+ 5 Cqi)-
We define a relation ~ in RY by
a~bo a=bora=-b,

where a,b € RY. We set RY := RI/ ~.



171

Definition 5 For a code C over R, we define the g-th symmetrized Weight enumerator of C by

6% (ya with @ € RY) = Z H "_(” e
c1,cg€C GeRe

where ng(ci, -+ ,¢g) denotes the number of ¢ satisfying @ = (c1i, -+, Cgi)-

We cousider the following procedure ¢: for g = (gab)apers, we set

C’)(g) = Z Gad
deR, with d=b 2GR
"y

Theorem 6 For a code C over R, we have

y 1 g
Cor(2a) = WT - €4 (xa),

and

641 (2a) = G o(T) - &¢(wa),

ICP

<u bh>
where T = (05" Jabera-

For a symmetric integral matrix S of size g x g, we define Dy := diag (7),%“1 with a € Rg) .

Let us define g
= () 7).
g,k \/2—]; S8

g
H&::(( ”8) &(T), #(Ds), >
g,k \/_Z—k ()( 5) 8

where S runs over all symmetric integral matrices of size g x g and ng denotes the primitive 8-th
root of unity.

Theorem 7 For any Type II code C over R, the g-th complete (resp symmetrized ) wetght
enumerator is tnvariant under the action of the group Gg,k‘ (resp. H k)

We define the thetas f(sk)(T) by
(k) L 2mikT| a+2ka] = Rg T e H_/
z€ERY

where H,, denotes the Siegel upper harf space of degree g.
The theta for a lattice L in genus g is denoted by

B (r) = Y. Thcijge™ 0", T =(n)) € Hy
Ty 2 gEL
Because of the identity f,&k’)(r) *a (T we may define f(—(,vk)(ﬂr) = (Sk’)(T). Direct compu-
tation shows o
k
( ( )(T)) (f((: (1)) = 0\(0)(7)'
In particular, we have ;
Theorem 8 For any Type IT code C, €4(fo(7)) is a Siegel modular form of weight n/f2 for the
Siegel modular group Ty = Sp, (Z).
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3 Dimension formulas

In this section, we discuss the dimension formulas of the invariant rings of G§3,2 and H ﬁQ.
First, let us recall the general invariant theory of finite groups. Let G be a finite subgroup
of GL(n; C). Then G acts on the polynomial ring C[x,...,x,] (C[x] for short) naturally, i.e.,

A f(@rye@a) =) Ajgg,..., D Anjz)),

1<j<n 1<j<n

where f € Clzx] and A = (Aij)i<ij<n. There exists a homogenueous system of parameters
{61,...,86,} such that the invariant ring C[z;]¢ is finitely generated free C[61,...,8,]-module.
The invariant ring has the Hironaka decomposition

C[:L'Ic]G = @lgms.‘;gmc[aly sy 911], a1 = 1
The invariant ring is an graded ring and the dimension formula is defined by

D (t) = Z dimClx )5,
d>1

where C[z]§ is the d-th homogeneous part of C[z]. The dimension formula for the Hironaka
decomposition given in the above form is

1+ tdesle2) 4 ... pdeg(gs)
(1 — ¢deg(en)... (1 — ¢dega))’

P(t) =

In general, the converse is not true. It is known that we have the identity

‘ 1
B(t)= det(1 = tA)’

AeG
This was shown by Molien and is sometimes called Molien series.
Let Wy (res. Sgx) denote the ring generated by the g-th complete (resp. symmetrized)

weight enumerators of Type II codes over Z/2kZ. We denote the d-th homogeneous part of
Wy (resp. S, k) by W, k(d) (res Sgk(d)). Theorem 7 says that ng (resp. Sgk) is a

subring of C[.Dk.] ok (resp. Clz]"s k) We have dimW, 1(d) < dlIIlC[.’L‘k.]]”k and dimS, ,(d) <
dlmC[xk] d
|G§72| = 1536. Magma computation shows that we may have invariant ring has the ho-

mogenueous system of parameters with degrees 8, 8, 8, and 24. We have the dimension formula
of the invariant ring is:

Bgs () = 1448°+11¢'0 + 250" + 4867 4
= (148)(1+t6)? /(1 t8)3(1 — £24).
With the help of [6], we have dimW »(8) = 4, dimW), 2(16) = 11 and dimW; 2(24) > 23. At

the time of writing, the author doesn’t know if this invariant ring W; o can be generated by the
weight enumerators of Type II codes or not.
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|H 182| = 768. It is proved that the invariant ring C[zz]" 12 coincides with the ting 81 of
symmetrized weight enumerators of Type II codes in [2]. The dimension fomula is given by
@ps (t) = 1+260+ 40+ 7+ 1067 + -
= (1+t9/(1 -1 -,
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