A remark on the critical exponent of Kleinian groups

Katsuhiko Matsuzaki

Department of Mathematics, Ochanomizu University 松崎 克彦 (お茶の水女子大学理学部数学)

In this note, we remark the following lemma on the critical exponent $\delta(G)$ of a non-elementary Kleinian group G, which is equal to the Hausdorff dimension of the conical limit set of G.

Lemma 1 Let G be a Kleinian group, and let Γ be a subgroup of G such that the limit set $\Lambda(\Gamma)$ is a proper subset of $\Lambda(G)$. Suppose that the Poincaré series for Γ diverges at the critical exponent $\delta(\Gamma)$. Then $\delta(G) > \delta(\Gamma)$.

Bowen [2] proved that the limit set of a quasifuchsian group Γ has Hausdorff dimension 1 if and only if Γ is a Fuchsian group. Generalizing this fact, Canary–Taylor [3] and Bishop–Jones [1] determined all the finitely generated Kleinian groups whose limit sets have Hausdorff dimension not greater than 1.

Theorem 2 If the Hausdorff dimension of $\Lambda(G)$ for a finitely generated Kleinian group G is not greater than 1, then $\Lambda(G)$ is either a circle or a totally disconnected set.

We prove Theorem 2 by using Lemma 1.

Proof of Theorem 2. By Maskit's classification, G has either a quasifuchsian subgroup, a totally degenerate subgroup or the totally disconnected limit set. However, it cannot have a totally degenerate subgroup because the Hausdorff dimension of its limit set is known to be 2. If G has a quasifuchsian subgroup Γ , it follows from Bowen's theorem that Γ is Fuchsian. Since the Poincaré series for Γ diverges at the critical exponent (= 1), Lemma 1 implies that $\Lambda(G) = \Lambda(\Gamma)$.

Proof of Lemma 1. By a result due to Patterson and Sullivan [4], there exists a $\delta(G)$ -dimensional, G-invariant, conformal probability measure μ on the sphere at infinity. Then we can choose a disk $\Delta \subset \Omega(\Gamma)$ such that $\mu(\Delta) > 0$ and $\Delta \cap \gamma(\Delta) = \emptyset$ for any non-trivial element $\gamma \in \Gamma$. Since

$$1 > \sum_{\gamma \in \Gamma} \mu(\gamma(\Delta)) \approx \mu(\Delta) \cdot \sum_{\gamma \in \Gamma} |\gamma'(x)|^{\delta(G)},$$

where x is the center of Δ , the Poincaré series for Γ converges at the exponent $\delta(G)$. This implies that $\delta(G) > \delta(\Gamma)$.

References

- C. Bishop and P. Jones, Hausdorff dimension and Kleinian groups, Acta Math. 179 (1997), 1–39.
- [2] R. Bowen, Hausdorff dimension of quasi-circles, Publ. Math. IHES. 50 (1979), 11-26.
- [3] R. Canary and E. Taylor, *Kleinian groups with small limit sets*, Duke Math. J. 73 (1994), 371-381.
- [4] D. Sullivan, The density at infinity of a discrete group of hyperbolic mot ions, Publ. Math. IHES. 50 (1979), 172–202.