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1 Introduction
D. B. A. Epstein and R. C. Penner proved in [EP] that every noncompact
complete hyperbolic manifold of finite volume admits a canonical $\mathrm{d}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{m}_{\mathrm{P}}+$

sition by ideal polyhedra. S. Kojima [Kol, Ko2] extended the result to the
case of complete hyperbolic manifolds of finite volume with non-empty totally
geodesic boundary. In fact, he proved that such a manifold is decomposed
by partially truncated polyhedra.

For each pair of integers $n$ and $k$ such that $n\geq 3,0\leq k\leq n-1$

and that the greatest common divisor $\mathrm{g}\mathrm{c}\mathrm{d}(n, 2-k)$ of $n$ and $2-k$ is 1,
L. Paoluzzi and B. Zimmermann [PZ] constructed a compact orientable hy-
perbolic 3-manifold $M_{n,k}$ with totally geodesic boundary (a surface of genus
$n-1)$ by identifying several faces of a certain hyperbolic polyhedron $\prime \mathcal{P}_{n}$ .
Our main purpose is to determine the canonical decomposition $D_{n,k}$ of $M_{n,k}$

(Theorem 2.2). This gives an alternative proof of the classification theo-
rem of $M_{n,k}$ (Corollary 2.3), which was shown in [PZ], and to determine the
isometry group of $M_{n,k}$ (Theorem 2.4).

The manifold $M_{n,1}$ is homeomorphic to the exterior of Suzuki’s Brunnian
graph $\theta_{n}$ of order $n$ (see [Sc, Su] and Figure 1). Hence, the results mentioned
above give an alternative proof of the non-triviality of $\theta_{n}$ and lead us to the
chirality of $\theta_{n}$ (Corollary 2.6). Furthermore, we determine the symmetry
groups of these graphs (Corollary 2.5).

S. Kinoshita and K. Wolcott [Wo] proved that $\theta_{3}$ is chiral in the 3-sphere
$\mathrm{S}^{3}$ , i.e., there does not exist an orientation-reversing homeomorphism of $\mathrm{S}^{3}$
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Figure 1: Suzuki’s Brunnian graph

that preserves $\theta_{3}$ . Fhrthermore, S. Kinoshita proposed the following problem
(see $[\mathrm{K}\mathrm{G}$ , Problem 2.3]):

Problem 1.1 Let $F$ be the boundary of the regular neighborhood of $\theta_{3}$ . Then,
is the pair $(\mathrm{S}^{3}F)j$ chiral, $i.e.$ , is it true that $\mathrm{S}^{3}$ does not admit an orientation-
reversing homeomorphism which preserves the surface $F$ ?

We give an affirmative answer to $\mathrm{t}$his
$’$

problem (Corollary 2.6).
Finally, we present some observation concerning the Heegaard splittings

of $M_{n,k}$ (Theorem 2.8), which supports the conjecture proposed by [Ad, ANS,
$\mathrm{S}\mathrm{W}]$ .

The author would like to thank Professor K.atsuo Kawakubo for his en-
couragement. The author also expresses his sincere gratitude to Professor
Makoto Sakuma for his helpful comments and advice. This paper grew out
of the discussion with him. The author would also like to thank Professor
Andrei Vesnin for his comments and advice, especially about the volume of
hyperbolic manifolds.
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2 Statement of results
Throughout this paper, $N(X)$ denotes the regular neighborhood of $X$ , int $X$

denotes the interior of $X$ and $\partial X$ denotes the boundary of $X$ .
First of all, we recall the topological construction of the manifold $M_{n,k}$ .

We start with the polyhedron $CP_{n}$ ; it is a solid double pyramid (or a solid
double cone) whose base is a regular $n$-gon $\mathcal{G}_{n}$ . Figure 3 shows the surface
of $CP_{n}$ flattened out on the plane where the bottom cone point is at infinity.
We imagine that the solid occupies the half-space behind the page. We
identify the faces of $CP_{n}$ in pairs as indicated in Figure 3: for the fixed
integer $k$ such that $0\leq k\leq n-1$ , the face $a_{i}b_{i+1}bi$ gets identified with the
face $c_{i+k}a_{i}+kci+k+1$ by a transformation (homeomorphisms of faces). These
identifications also induce those of the polyhedron $P_{n}$ , where $P_{n}$ denotes the
polyhedron $C’P_{n}$ truncated at all vertices (see Figure 2), and we denote this
resulting identification space by $M_{n,k}$ .

Figure 2: The truncated polyhedron $P_{6}$

We call a face of $P_{n}$ consisting the boundary of $M_{n,k}$ external (internal
otherwise); we also call an edge of an external face external (internal other-
wise). We note that the faces obtained by truncations are external and that
the faces induced by that of $CP_{n}$ are internal.
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Figure 3: The identification of faces of $CP_{n}$

We assume that $\mathrm{g}\mathrm{c}\mathrm{d}(n, 2-k)=1$ in the following; then all edges (resp.
vertices) of $CP_{n}$ become identified to a single edge (resp. vertex). Now $M_{n,k}$

is a compact orientable 3-manifold whose boundary is a closed orientable
surface of genus $n-1$ .

The following Theorem 2.1 wa.s proved in [PZ] by using Andreev’s theo-
rem;

Theorem 2.1 For each pair of integers $n$ and $k$ such that $n\geq 3,0\leq k\leq$

$n-1$ and that $\mathrm{g}\mathrm{c}\mathrm{d}(n, 2-k)=1$ , the manifold $M_{n,k}$ admits a hyperbolic
structure such that its boundary $\partial M_{n,k}$ is totally geodesic.

We note that (the mirror image of) $M_{3,1}$ is the hyperbolic manifold con-
structed by W. P. Thurston ([Th, Example 3.3.12]), and when $n=3$ ,
$\mathrm{V}\mathrm{o}\mathrm{l}(M_{3},k)=6.45198979\cdots$ . This value coincides with the smallest volume
among all compact hyperbolic 3-manifolds with totally geodesic boundary
shown by S. Kojima and Y. Miyamoto in [KM]. Determining the shape of
$P_{n}$ concretely, we give a brief review of a proof of this theorem in Section 4.

S. Kojima proved in [Kol, Ko2] that every complete hyperbolic manifold
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of finite volume with non-empty totally geodesic boundary admits a canonical
decomposition by partially truncated polyhedra. It is isotopic to a dual to
the cut locus of the boundary. The cut locus is a subset in the manifold
which consists of the points that admit at least two distinct shortest paths
to the boundary. In Section 5, we prove Theorem 2.2 below, which is the
main theorem of this paper and describes the canonical decomposition of
$M_{n,k}$ . This is the main theorem of this paper. To present Theorem 2.2, we
suppose $CP_{n}$ is in the Euclidean 3-space $\mathrm{R}^{3},$ $\mathcal{G}_{n}$ is on the x-y plane and that
two cone points are on the z-axis.

Theorem 2.2 The canonical decomposition $D_{n,k}$ of the manifold $M_{n,k}$ , where
$n\geq 3_{f}0\leq k\leq n-1$ and $\mathrm{g}\mathrm{c}\mathrm{d}(n, 2-k)=1_{f}$ is given as followsj

(1) Suppose $n=3$ . Let $\triangle_{0}$ and $\Delta_{1}$ be the truncated tetrahedra obtained
from $P_{3}$ by cutting along the x-y plane. Then $D_{3,k}$ consists of $\triangle_{0}$ and
$\triangle_{1}$ .

(2) Suppose $n=4$ . Then $D_{4,k}$ consists of $P_{4}$ .

(3) Suppose $n\geq 5$ . Let $\triangle_{0},$ $\triangle_{1},$

$\ldots$ , $\triangle_{n-1}$ be the truncated tetrahedra ob-
tained from $P_{n}$ by slicing by half planes, each of which is bounded by the
$z$ -axis and contains a vertex of $\mathcal{G}_{n}$ . Then $D_{n,k}$ consists of $\triangle 0,$ $\triangle 1,$

$\ldots,$
$\triangle n-1$ .

We give a shorten proof of this theorem in Section 5.

Using Theorem 2.2, we can solve the classification problem of $M_{n,k}$ . In
fact, by virtue of Mostow rigidity theorem (cf. [PZ, Proposition 2]) com-
bined with the canonical decomposition, two manifolds $M_{n,k}$ and $M_{n’k’,)}$ are
homeomorphic (or equivalently, isometric) if and only if their canonical de-
compositions have the same combinatorial structures. Thus we can recover
the following classification theorem of $M_{n,k}$ established by [PZ];

Corollary 2.3 The manifold $M_{n,k}$ and $M_{n’,k’}$ are homeomorphic (or
$equiv-$

alently, isometric) if and only if $n=n’$ and $k=k’$ .

Again using Theorem 2.2, we can also determine the isometry group of
$M_{n,k}$ . Let $I_{Som}(M)n,k$ be the isometry group of $M_{n,k},$ $Aut(Dn,k)$ the combi-
natorial automorphism group of $D_{n,k}$ and $\mathcal{M}(M_{n,k})$ the mapping class group
of $M_{n,k}$ , that is, the group consisting of the self-homeomorphisms of $M_{n,k}$

modulo isotopy. Again, by virtue of Mostow rigidity theorem combined with
the canonical decomposition, $\mathcal{M}(M_{n,k})\cong I_{Som}(Mn,k)\cong Aut(Dn,k)$ . Thus,
calculating $Aut(Dn,k)$ we can determine Isom$(Mn,k)$ and $\mathcal{M}(M_{n,k})$ .
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Figure 4: The canonical decomposition $D_{n,k}$
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Theorem 2.4 For each pair of integers $n$ and $k$ such that $n\geq 3,0\leq$

$k\leq n-1$ and that $\mathrm{g}\mathrm{c}\mathrm{d}(n, 2-k)=1_{f}Isom(Mn,k)$ (and hence $\mathcal{M}(M_{n,k})$) is
isomorphic to $D_{2n}$ , where $D_{2n}$ is the dihedral group of order 2 $n,$ $i.e,$.

$D_{2n}=\langle t,$ $r|t^{n}=1,$ $r^{2}=1$ , $rtrt=1\rangle$

Here, $t$ (resp. $r$) is induced by the $\frac{2\pi}{n}$ -rotation of $\mathcal{G}_{n},$ $i.e_{f}.$ the $\frac{2\pi}{n}$ -rotation of
$P_{n}$ around the geodesic arc joining the top and the bottom cone points of $CP_{n,\coprod}$

(resp. a reflection about a line through the origin and a vertex of $\mathcal{G}_{n}$ ).

A graph $G$ embedded in $\mathrm{S}^{3}$ is called a spatial $\theta$ -curve (of order $n$) if it has
two vertices and $n$ edges connecting one vertex to the other, and $G$ is said to
be trivial if it is contained in a 2-sphere in $\mathrm{S}^{3}$ . S. Suzuki introduced a certain
family $\theta_{n}$ of spatial $\theta$-curves in [Su] (see Figure 1), which are called Suzuki $\mathrm{z}_{S}$

Brunnian graphs or the Suzuki’s $\theta_{n}$ -curves (cf. [Sc]). These spatial $\theta$-curves
are generalizations of Kinoshita’s theta-curve introduced in [Ki], and satisfy
the following interesting property: $\theta_{n}$ is not trivial, though every proper
subgraph of $\theta_{n}$ is trivial. When $n\geq 3$ , this property is obtained from the
fact that the handlebody does not admit a hyperbolic structure with totally
geodesic boundary. We note that this is an alternative proof of [Sc, Su].
It is shown in [Th, pp. 136-137] that the exterior $E(\theta_{3})=\mathrm{S}^{3}$ –int $N(\theta_{3})$

is homeomorphic to $M_{3,1}$ . Using the same method, we can see that the
exterior $E(\theta_{n})$ of $\theta_{n}$ is homeomorphic to $M_{n,1}$ . Since the the exterior $E(\theta_{n})$

of $\theta_{n}$ admits a hyperbolic structure such that its boundary $\partial N(\theta_{n})$ is totally
geodesic, in the same fashion as hyperbolic knots and links, we may say
that $\theta_{n}$ is a $‘(\mathrm{h}\mathrm{y}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{b}_{0}1\mathrm{i}_{\mathrm{C}}$

” graph. Let $Sym(\mathrm{S}3, \theta n)$ be the symmetry group
of $(\mathrm{S}^{3}, \theta_{n})$ , i.e., the group consisti’ng of the self-homeomorphisms of $(\mathrm{S}^{3}, \theta_{n})$

modulo pairwise isotopy. Using Theorem 2.4, we can determine $Sym(\mathrm{S}^{3}, \theta n)$ ;

Corollary 2.5 For each $n\geq 3_{f}Sym(S;, \theta_{n})\cong D_{2n}$ . $\square$

A graph $G$ (resp. a surface $F$ ) in $\mathrm{S}^{3}$ is chiral if there does not exist an
orientation-reversing homeomorphism of $\mathrm{S}^{3}$ that fixes $G$ (resp. $F$ ). It has
been shown by S. Kinoshita and K. Wolcott [Wo] that $\theta_{3}$ is chiral. Corol-
lary 2.5 leads us to the following corollary, which generalizes this result and
also gives an affirmative answer to Problem 1.1 proposed by S. Kinoshita.

Corollary 2.6 Both the graph $\theta_{n}$ and the surface $\partial N(\theta_{n})$ are chiral for
$every\square$

$n\geq 3$ .
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An unknotting tunnel for a compact 3-manifold $M$ is an arc, say $\tau$ , prop-
erly embedded in $M$ such that $M$ –int $N(\tau)$ is a handlebody. Two unknot-
ting tunnels $\tau_{1}$ and $\tau_{2}$ for $M$ are said to be isotopic (resp. homeomorphic),
if there is an ambient isotopy (resp. homeomorphism) of $M$ carrying $\tau_{1}$ to
$\tau_{2}$ . For a cusped hyperbolic 3-manifold, the following problem is proposed
by [Ad, ANS, $\mathrm{S}\mathrm{W}$]:

Problem 2.7 Is an unknotting tunnel for a cusped hyperbolic 3-manifold
isotopic to a vertical geodesic, or even to an edge of the canonical decompo-
$s.i$

. tion? Is it short?

Here, a vertical geodesic is a geodesic which is perpendicular to the cusp at
each of its ends. This problem leads us to the following natural generalization:
is an unknotting tunnel for a compact hyperbolic 3-manifold isotopic to a
vertical geodesic, or even to an edge of the canonical decomposition? Is it
short? Here, a vertical geodesic is a geodesic which is perpendicular to the
boundary at each of its ends. The following theorem gives the answer to this
problem for the manifold $M_{n,k}$ . Let $e_{1}$ be the geodesic arc in $M_{n,k}$ induced by
internal edges of $P_{n}$ , and $e_{2}$ the geodesic arc in $M_{n,k}$ induced by the geodesic
arc in $CP_{n}$ joining the top and the bottom cone points through its center.

Theorem 2.8 (1) The geodesic arc $e_{1}$ is the only unknotting tunnel for
$M_{n,k}$ up to isotopy.

(2) The geodesic arc $e_{1}$ is the shortest vertical geodesic. $\square$

The first statement of this theorem is proved by using [He, Main The-
orem 1.5], and the second one is obtained by evaluating the lengths like
Section 4.

3 Hyperbolic geometry
We give a brief review of the Minkowski space $\mathrm{E}^{1,n}$ . It is the real vector space
$\mathrm{R}^{n+1}$ with the inner product $\langle x, y\rangle=-x_{0}y_{0}+x_{1}y_{\mathrm{L}}+\cdots+x_{n}y_{n_{\vee}}$ . The set
$H^{+}=\{x\in \mathrm{E}^{1,n}|\langle x, x\rangle=-1, x_{0}>0\}$ forms the hyperboloid model (or the
Minkowski space model) of the hyperbolic $n$-space $\mathrm{H}^{n}$ . A ray from the origin
in the positive light cone $L^{+}=\{x\in \mathrm{E}^{1,n}|\langle x, x\rangle=0, x_{0}>0\}$ corresponds
to a point on the ideal boundary of $\mathrm{H}^{n}$ . The set of such rays forms the sphere
at infinity and we denote it by $\mathrm{S}_{\infty}^{n-1}$ . Let $H_{s}=\{x\in \mathrm{E}^{1,n}|\langle x, x\rangle=1\}$ be
the hyperboloid of one sheet. We call an affine hypersubspace $S$ in $\mathrm{E}^{1,n}$
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a hyperplane, and a hyperplane through the origin linear. Suppose $S$ is a
linear hyperplane which contains a time-like vector, and let $S^{+}$ be a half
space bounded by $S$ . Then we can associate a unique unit vector $q\in H_{s}$

so that $\langle q, v\rangle\leq 0$ for arbitrary $v\in S^{+}$ . This establishes a duality between
half spaces in $\mathrm{E}^{1,n}$ and points on $H_{s}$ .

Let us denote by II the projection from $\mathrm{E}^{1,n}$ to the compactification of
the plane A $=\{x_{0}=1\}$ , by adding the set of lines on $\{x_{0}=0\}$ , along the
ray from the origin. The projection $\Pi$ is a homeomorphism on $H^{+}$ to the
open unit sphere $P^{n}$ on $\Lambda$ , which is the projective model of $\mathrm{H}^{n}$ , and $\partial P^{n}$

is canonically identified with $\mathrm{S}_{\infty}^{n-1}$ . Then the projection II of $H_{s}$ to the
compactified space $\overline{\Lambda}$ becomes precisely a $\mathrm{t}\mathrm{w}\mathrm{o}^{-}\mathrm{t}\mathrm{o}^{-}\mathrm{o}\mathrm{n}\mathrm{e}$ map. Suppose a linear
hyperplane $S$ intersects $P^{n}$ , then the dual vector $q\in H_{s}$ to the half space
$S^{+}$ is projected to a point on $\overline{\Lambda}$ so that a cone from $\Pi(q)$ to $S\cap\partial P^{n}$ is
tangent to $\partial P^{n}$ . Thus II $(S)=S\cap\Lambda$ becomes a polar hyperplane to II $(q)$ .
The duality in $\mathrm{E}^{1,n}$ induces a duality between points on $\overline{\Lambda}-(P^{n}\cup\partial P^{n})$ and
polar hyperplanes in $\mathrm{t}\mathrm{w}\mathrm{o}^{-}\mathrm{t}\mathrm{o}^{-}\mathrm{o}\mathrm{n}\mathrm{e}$ manner.

Consider a compact Euclidean polyhedron $\mathcal{R}$ in A so that its vertices
lie outside $\partial P^{n}$ and that each edge meets $\partial P^{n}$ . We can regard $\mathcal{R}\cap P^{n}$

as an ideal polyhedron in $\mathrm{H}^{n}$ . For each vertex $v$ of $\mathcal{R}$, we have its polar
hyperplane $L_{v}$ intersecting $P^{n}$ . This plane intersects each face of $\mathcal{R}$ meeting
the vertex in question perpendicularly. buncating a neighborhood of each
vertex by a polar hyperplane, we get a polyhedron in $P^{n}$ . We call it a
truncated polyhedron of $\mathcal{R}$ .

4 Proof of Theorem 2.1
We want to realize $P_{n}$ as a hyperbolic polyhedron in the hyperbolic 3-space
$\mathrm{H}^{3}$ such that Poincare”s theorem on fundamental polyhedra ([Ma]) can be
applied realizing $M_{n,k}$ as a compact orientable hyperbolic 3-manifold with
totally geodesic boundary. To do this, we put $CP_{n}$ in $\mathrm{R}^{3}$ as follows: its
center sets at the origin, one of the vertices of $\mathcal{G}_{n}$ at $(r, 0,0)$ and the top
(resp. bottom) cone point of $CP_{n}$ at $(0,0, h)$ (resp. $(0,0,$ $-h)$ ).

We regard the interior of the unit ball $\mathrm{B}^{3}$ centered at the origin as the
projective model $P^{3}$ of $\mathrm{H}^{3}$ . Then $\partial \mathrm{B}^{3}=\mathrm{S}^{2}$ is the sphere at infinity $\partial P^{3}$ of $P^{3}$ .
Now we suppose that the vertices of $CP_{n}$ lie outside $\partial P^{3}$ and that each edge of
$CP_{n}$ intersects $\partial P^{3}$ twice. Then we can truncate $CP_{n}$ and obtain a compact
truncated hyperbolic polyhedron $P_{n}$ . The assumption that each edge of $CP_{n}$

intersects $\partial P^{3}$ twice means that all external faces are ultraparallel. Using
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half planes each of which is bounded by the $z$-axis and contains a vertex of
$\mathcal{G}_{n}$ , we divide $P_{n}$ into $n$ mutually isometric truncated tetrahedra $Q_{n}$ . Let
$A,$ $B,$

$\ldots$ be the vertices (or the points) of $Q_{n}$ as in Figure 2. We denote by
$l_{E}$ (AB) (resp. $l_{H}$ (AB)) the Euclidean (resp. hyperbolic) length of the line
$AB$ .

The identifying transformations of $P_{n}$ can be chosen as hyperbolic isome-
tries in $\mathrm{H}^{3}$ if and only if the following equation holds:

$l_{H}(BC)--\iota_{H}(DE)$ . (4.1)

Expressing $l_{H}(BC)$ and $\iota_{H}(DE)$ in $r,$ $h$ and $c_{n}$ , we get the following relation;

$h=h_{n}(r)= \frac{r\sqrt{c_{n}^{2}r-22c_{n}+1}}{1-c_{n}r^{2}}$ .

If this condition is satisfied, $M_{n,k}$ has a structure of hyperbolic 3-cone
manifold. After this, we find the condition for $M_{n,k}$ to have a complete
hyperbolic structure.

For $M_{n,k}\mathrm{b}\mathrm{e}\mathrm{i}\mathrm{n}\mathrm{g}$ hyperbolic 3-manifold, the angle along the single edge cycle
have to sum up to $2\pi$ , so we get the following conditions:

$n\cross\alpha+2n\cross 2\beta=2\pi$

$\Leftrightarrow$ $\cos\alpha(2\cos^{2}2\beta-1)+2\sin\alpha$ sin2 $\beta$ cos2 $\beta-c_{n}=0$ . (4.2)

Expressing $\cos\alpha$ and $\cos\beta$ in $r$ and $c_{n}$ , we get the following relation; if
$n=4$, then

$r=r(4)=\sqrt{4\sqrt{3}-5}$ ,

and if $n\neq 4$ , then

where

$c_{n}$ $=$

$f_{1}(n)$ $=$

$f_{2}(n)$ $=$

$f_{3}(n)$ $=$
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Thus we obtain $P_{n}$ satisfying two equations (4.1) and (4.2). By Poincar\’e’s
theorem on fundamental polyhedra (see [Ma]), we get the compact orientable
hyperbolic 3-manifold $M_{n,k}$ with non-empty totally geodesic boundary by
gluing $P_{n}$ as above. We have thus completed the proof of Theorem 2.1. $\square$

5 The canonical decomposition
We first give a brief review of the canonical decomposition of a compact
hyperbolic $n$-manifold $M$ with non-empty $\mathrm{t}\mathrm{o}\underline{\mathrm{t}\mathrm{a}\mathrm{l}}\mathrm{l}\mathrm{y}$ geodesic boundary (cf.
[Kol, Ko2] $)$ . We regard the universal cover $M$ of $M$ as a subset of the
hyperboloid model $H^{+}$ . To each component of $\partial\overline{M}$ , assign a label. To each
component of $\partial\overline{M}$ labeled by $\alpha$ , we can associate a unique linear hyperplane
$S_{\alpha}$ in $\mathrm{E}^{1,n}$ including it. The positive half space $S_{\alpha}^{+}\mathrm{b}_{\mathrm{o}\mathrm{u}\mathrm{n}}\mathrm{d}\mathrm{e}\mathrm{d}$ by $S_{\alpha}$ will
be the side containing $\overline{M}.\overline{M}$ is identified with the intersection of $H^{+}$ and
$\bigcap_{\alpha}S_{\alpha}^{+}$ . To each $S_{\alpha}$ , we associate a dual space-like vector $b_{\alpha}\in H_{s}$ so that
$\langle b_{\alpha}, v\rangle\leq 0$ for all $v\in S_{\alpha}^{+}$ . Let $A$ be the set of dual vectors $\{b_{\alpha}\}$ on $H_{s}$ .
Then $A$ is invariant under the action of the covering transformation group.
Let $\mathcal{H}_{A}$ be the closed convex hull of $A$ in $\mathrm{E}^{1,n}$ . The projection $\Pi(\mathcal{H}_{A}\underline{)}\mathrm{c}\mathrm{o}\mathrm{n}-$

tains $P^{n}$ ( $[\mathrm{K}\mathrm{o}1$ , Lemma 4.3]), and the intersection of $\Pi(\mathcal{H}_{A})\underline{\mathrm{w}}\mathrm{i}\mathrm{t}\mathrm{h}\Pi(M)$ in
A defines a $\pi_{1}(M)$-equivariant polyhedral decomposition on $M$ . It induces
a truncated polyhedral decomposition of $M$ ( $[\mathrm{K}\mathrm{o}1$ , Theorem 4.8]), which we
call the canonical decomposition of $M$ .

We now recall an intrinsic construction of the canonical decomposition of
$M$ . The cut locus $C$ of $\partial\overline{M}$ in $\overline{M}$ is a set of points in the interior of $\overline{M}$ each
of which admits at least two disti,nct shortest paths to $\partial\overline{M}$ . The cut locus
$C$ admits a locally finite cell complex structure with respect to its canonical
stratification by number of shortest paths. To each vertex of $C$ , assign a
label. To each vertex $v_{\beta}$ of $C$ labeled by $\beta$ , we associate the components of
$\partial\overline{M}$ closest to $v_{\beta}$ . Let $A^{\beta}$ be the subset of $A$ which consists of dual points
to these closest components. Then there is a unique elliptic hyperplane $S_{\beta}$

so that $S_{\beta}\cap A=A^{\beta}$ and that $S_{\beta}$ is an $n$-dimensional face of $\mathcal{H}_{A}$ . Let $\mathcal{H}^{\beta}$

be the closed convex hull of $A^{\beta}$ , i.e., $\mathcal{H}^{\beta}=S_{\beta}\cap \mathcal{H}_{A}$, then the intersection
of $\Pi(\mathcal{H}^{\beta})$ with $\Pi(\overline{M})$ is a truncated polyhedron, which is a dual to $v_{\beta}$ .

The family $\{\Pi(\mathcal{H}^{\beta}\cap\overline{M})\}_{\beta}$ defines a $\pi_{1}(M)$-equivariant truncated polyhedral
decomposition of $M$ and it coincides with the canonical decomposition of $M$ .

Next, we give a condition for a given truncated polyhedral decomposition
$D$ of $M$ to be canonical. Let $\sigma$ be a ($n$-dimensional) truncated polyhedron
in $D$ and $\overline{\sigma}$ a lift of $\sigma$ to $\overline{M}$ . Let $v_{1},$ $v_{2},$ $\ldots$ , $v_{k}$ be the dual vectors in $H_{s}$
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corresponding to the faces of $\overline{\sigma}$ each of which is included in $\partial\overline{M}$ . Let $\hat{\sigma}$ be
the convex hull of $\{v_{1}, v_{2}, \ldots , v_{k}\}$ . We suppose the affine hull $A(\hat{\sigma})$ of $\hat{\sigma}$

is an elliptic hyperplane i.n $\mathrm{E}^{1,n}$ . Then we can define the center $o(\overline{\sigma})$ of
$\overline{\sigma}$ as follows: let $p$ be the unit normal to $A(\hat{\sigma})$ in $\mathrm{E}^{1,n}$ , i.e., $\langle p,p\rangle=-1$

and $\langle p, x-y\rangle=0$ for arbitrary $x,$ $y\in A(\hat{\sigma})$ . Then $o(\overline{\sigma})=p\in H^{+}$ . It
should be noted that $o(\overline{\sigma})$ is not necessarily contained in $\overline{\sigma}$ . If we choose a
coordinate of $\mathrm{E}^{1,n}$ so that $\hat{\sigma}$ lies in a horizontal plane $x_{0}=$ constant, then
$p=$ $(1, 0, \ldots , 0)$ . bom this fact, we can see that $o(\overline{\sigma})$ is characterized by the
property that its hyperbolic distance from the linear hyperplanes dual to the
unit vectors $v_{1},$ $v_{2},$ $\ldots$ , $v_{k}$ are equal. This means that $o(\overline{\sigma})$ corresponds to
a vertex of the projective image of the cut locus $C$ in case $D$ is the canonical
decomposition of $M$ .

Proposition 5.1 Suppose a truncated polyhedral decomposition $D$ of $M$ sat-
isfies the following conditions:

(1) The affine hull $A(\hat{\sigma})$ of $\hat{\sigma}$ corresponding to a truncated polyhedron $\sigma$ in
$D$ is an elliptic hyperplane in $\mathrm{E}^{1,n}$ .

(2) $D$ is the coarsest truncated polyhedral decompositions among those of
$M$ having the same truncated polyhedra.

(3) The center $o(\overline{\sigma})$ lies in the interior of $\overline{\sigma}$ for an arbitrary truncated
polyhedron $\sigma$ in $D$ .

Then $D$ is the canonical decomposition of $M$ . $\square$

The proof of this proposition is,the same as that of [$\mathrm{S}\mathrm{W},$
$\overline{\mathrm{P}}\mathrm{r}\mathrm{o}\mathrm{p}_{0}\mathrm{S}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ I. 1.4]

except for obvious modifications. We should note that there is a error in its
proof. The final equation should be read $t_{1}/t_{0}=(s_{0}-s)/(s_{1}-s)$ .

We prepare some notations to prove Theorem 2.2. Let $F_{1},$ $F_{2},$
$\ldots$ , $\mathcal{F}_{n}$ be

the external faces of $P_{n}$ , each of which is obtained by truncating $CP_{n}$ at a
vertex of $\mathcal{G}_{n}$ , and $\mathcal{T}$ (resp. $B$) the external face obtained by truncating $CP_{n}$

at the top (resp. bottom) cone point. We denote by $\mathcal{L}_{n}$ the “cut locus of
the external faces of $P_{n}$ in $P_{n}$”, that is, $\mathcal{L}_{n}$ is the set of points in $P_{n}$ each of
which admits at least two distinct shortest paths to its external faces. We
call the vertices of $\mathcal{L}_{n}$ in $\mathrm{i}\mathrm{n}\mathrm{t}P_{n}(‘ \mathrm{t}\mathrm{h}\mathrm{e}$ vertices of $\mathcal{L}_{n}$

” To prove Theorem 2.2,
we need the following lemma

Lemma 5.2 The vertices of $\mathcal{L}_{n}$ are as follows:

12
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(1) If $n=3_{f}$ then $\mathcal{L}_{3}$ has two vertices $v_{T}$ and $v_{B}$ on the $z$ -axis. The vertex
$v_{T}$ (resp. $v_{B}$) has four shortest paths to four external faces $\mathcal{T}$ (resp. $B$),
$\mathcal{F}_{1},$ $\mathcal{F}_{2}$ and $\mathcal{F}_{3}$ (see Figure 5).

(2) If $n=4$, then $\mathcal{L}_{4}$ has one vertex $v_{O}$ at the center of $P_{n}$ . The vertex $v_{O}$

has the shortest paths to all extemal faces (see Figure 6).

(3) If $n\geq 5$ , then $\mathcal{L}_{n}$ has $n$ vertices $v_{0},$ $v_{1},$ $\ldots$ , $v_{n-1}$ on the x-y plane. The
vertex $v_{i}$ has four shortest paths to four $extema\iota\backslash$ faces $\mathcal{T},$ $B,$ $\mathcal{F}_{\dot{i}}$ and $\mathcal{F}_{i+1}$

(mod $n$) (see Figure 7).

Proof of Lemma 5.2. By the definition of the cut locus $\mathcal{L}_{n}$ , we can under-
stand it as follows: let the external faces of $P_{n}$ expand at a constant speed
until they collide with themselves. Then the collision locus is equal to the
cut locus $\mathcal{L}_{n}$ . Using this interpretation, we now determine $\mathcal{L}_{n}$ .

Case 1. $n=3$ . Since

$r^{2}-h_{3}^{2}(r)= \frac{r^{2}(r^{2}-1)(r+44)}{(r^{2}+2)^{2}}>0$ ,

we have $r>h_{3}(r)$ . This means that $l_{H}(OG)<l_{H}(oN)=\iota_{H}(os)$ . By
the symmetry of $P_{3}$ , when the external faces expand, first $\mathcal{F}_{1},$ $\mathcal{F}_{2}$ and $\mathcal{F}_{3}$

arrive at the center $O$ simultaneously. Hence, again by the symmetry of $P_{3}$ ,
a small neighborhood of $O$ in the $z$-axis is contained in a collision locus by
the external faces. Therefore $\mathcal{L}_{3}$ has precisely two vertices (Figure 5 shows
$\mathcal{L}_{3}$ restricted to $Q_{3}$ ). We have thus proved the case (1).

Case 2. $n=4$ . Since $h_{4}(r)=r$ , we have $l_{H}(oG)=l_{H}(oN)=l_{H}(os)$ .
Hence $O$ is the unique vector of $\mathcal{L}_{4}$ (see Figure 6), and we have proved the
case (2).

Case 3. $n\geq 5$ . Since

$h_{n}(r)^{2}-r= \frac{c_{n}r^{2}(r^{2}-1)(2-C_{n}r^{2})}{(c_{n}r^{2}-1)2}2>0$ .

we have $h_{n}(r)>r$ . This means that $l_{H}(OG)>l_{H}(oN)=\iota_{H}(os)$ . This
inequality requires that, when the external faces expand, $\mathcal{T}$ and $B$ are the
first to arrive at the center $O$ . Thus $\mathcal{L}_{n}$ has precisely $n$-vertices on the x-y
plane (see Figure 7), and we have proved the case (3).

We have thus completed the proof of Lemma 5.2. $\blacksquare$
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Figure 5: $\mathcal{L}_{3}$ restricted to $Q_{3}$ Figure 6: $\mathcal{L}_{4}$ restricted to $Q_{4}$

Figure 7: $\mathcal{L}_{n}$ restricted to $Q_{n}$
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Proof of Theorem 2.2. Proposition 5.1 and Lemma 5.2 (1) show that the
truncated polyhedral decomposition obtained by cutting $P_{3}$ along the x-y
plane is the canonical decomposition $D_{3,k}$ . In case $n=4$ , Proposition 5.1 and
Lemma 5.2 (2) shows that $D_{4,k}$ consists of $P_{4}$ . In case $n\geq 5$ , Proposition 5.1
and Lemma 5.2 (3) requires that we should slice $P_{n}$ by half planes, each of
which is bounded by the $z$-axis and includes a vertex of $\mathcal{G}_{n}$ , to obtain

$D_{n,k\cdot\square }$

We have thus proved Theorem 2.2.
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