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1 Introduction
In this article we consider the elementariness of M\"obius groups of several dimensions

which are not necessarily discrete. In two or three dimensional cases, the elementariness of
M\"obius groups is defined in several ways. In the theory of Kleinian groups, which are re-
garded as three dimensional discrete M\"obius groups, Ford’s definition of elementary groups
is well known ([3]). However A. F. Beardon and $\mathrm{T}.\mathrm{J}\emptyset \mathrm{r}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{S}\mathrm{e}\mathrm{n}$ defined independently the

elementariness of M\"obius groups with no assumption of discreteness ([1] and [4]). These

three definitions of two or three dimensional M\"obius groups can be directly extended to

several dimensional groups. On the other hand G. J. Martin gave a more precise definition

of elementariness of several dimensional M\"obius groups ([5]). Recently A. N. Fang and

Y. P. Jiang proved that Beardon’s definition and Martin’s definition are equivalent to each

other ([2]). Here we show that $\mathrm{J}\emptyset \mathrm{r}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{S}\mathrm{e}\mathrm{n}’ \mathrm{S}$ definition of elementarinesis is stronger than

Martin’s definition by $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{n}\dot{\mathrm{g}}$ an example.

2 Elementary M\"obius groups

For $n=2,3,4,$ $\cdots$ , let $M(B^{n})$ be the group of M\"obius transformations acting on the

unit ball $B^{n}$ . For a discrete subgroup $G$ of $M(B^{n})$ , Ford’s definition of the elementariness

is well known.

(D-1) A discrete subgroup $G$ is said to be $\mathrm{F}$-elementary, if the limit set $\Lambda(G)$

for $G$ consists of at most two points.

For any point $x\in Cl(B^{n})$ , the closure of $B^{n}$ in $R^{n}$ , the orbit $G(x)$ of $x$ is the subset of
$Cl(B^{n})$ defined by

$G(x)=\{g(_{X})\in Cl(B^{n})|g\in G\}$ .

If there exists a point $x_{0}\in Cl(B^{n})$ so that $G(x_{0})$ is a finite set, we call that $G$ has a finite
orbit in $Cl(B^{n})$ . Following two definitions are not based on discreteness.
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(D-2) A subgroup $G$ of $M(B^{n})$ is said to be $\mathrm{B}$-elementary, if $G$ has a finite
orbit in $Cl(B^{n})$ .

(D-3) A subgroup $G$ of $M(B^{n})$ is called $\mathrm{J}$-elementary, if every two elements
of infinite order of $G$ have a common fixed point.

If $G$ is discrete, we can see that these three definitions are equivalent to each other. In
a view of several dimensional case, Martin gave the following definition. An element $f$ of
$M(B^{n})$ is said to be an irrational rotation, if $f$ is elliptic and $\mathrm{o}\mathrm{r}\mathrm{d}(f)$ , the order of $f$ , is
infinite.

(D-4) A subgroup $G$ of $M(B^{n})$ is called $\mathrm{M}$-elementary, if every two elements
of infinite order which are not irrational rotations have a common fixed point.

If $G$ contains an irrational rotation, $G$ is not discrete. An elliptic element of finite order
is called a rational rotation. If $G$ is discrete, we can easily see that definitions $(D-3)$ and
$(D-4)$ are equivalent to each other. Recently A. N. Fang and Y. P. Jiang proved in [2]
that $(D-2)$ and $(D-4)$ are equivalent to each other even if $G$ is not discrete. In this note
we show that the definition $(D-3)$ is essentially stronger than $(D-4)$ by constructing a
group which is $\mathrm{M}$-elementary, but J-elementary.

3 An example

We can construct examples for each $n\geq 4$ . But it suffices to show the four di-
mensional case. For any matrix $A$ , denote by $A^{T}$ the transposed matrix of $A$ . Let
$R^{4}=\{(x1, x2, X3, x4)T |x_{k}\in R, k=1,2,3,4\}$ be the four dimensional Euclidean space
and regarded as a direct product

$R^{4}=R_{1}\cross R_{2}\cross R_{3^{\cross R}4}$ ,

where $\dot{R}_{1}=\{(x_{1},0,0,0)T | x_{1}\in R\},$ $R_{2}=\{(0, x_{2},0, \mathrm{o})^{T}$ $\{ x_{2}\in R\}$ and so on. The
unit ball $B^{4}=\{x\in R^{4} | ||x||<1\}$ with the metric $ds^{2}=dx^{2}/(1-|x|^{2})^{2}$ is a model
of the four dimensional hyperbolic space. Any element $g\in M(B^{4})$ extends to a conformal
automorphism of $Cl(B^{4})$ and consequently have a fixed point in $B^{4}$ or on its boundary
$\partial B^{4}$ . We denote $F_{g}$ by the set of fixed points of $g\in M(B^{4})$ in $\overline{R^{4}}=R^{4}\cup\{\infty\}$ . Here we
define an orthogonal matrix $T_{0}$ by
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where $\theta_{0}\in R$ and $\theta_{0}/2\pi$ is irrational. This matrix is regarded as an element of $M(B^{4})$ .

Since $\theta_{\dot{0}}/2\pi$ is an irrational number, then $\mathrm{o}\mathrm{r}\mathrm{d}(T\mathrm{o})$ is infinite. So it follows that $T_{0}$ is an

irrational rotation. Note that $T_{0}$ fixes every point of $R_{4}$ and invert a hyperbolic geodesic
$R_{1}\cap B^{4}$ .

Now we define two spheres $S_{1}$ and $S_{2}$ by

$S_{1}=\{_{X}\in R^{4}| ||x-\sqrt{5}/2e_{1}||=1/2\}$

$S_{2}=\{_{X}\in R^{4}| ||x+\sqrt{5}/2e_{1}||=1/2\}$

,where $e_{1}=(1,0,0,0)^{T}$ . Then $S_{1}$ (resp. $S_{2}$ ) is a three dimensional sphere centered at
$\sqrt{5}/2e_{1}$ (resp. $-\sqrt{5}/2e_{1}$ ) and orthogonal to $S^{3}=\partial B^{4}$ . Let $f$ be a hyperbolic transfor-
mation which maps $Ext(s_{1})$ , the exterior of $S_{1}$ , to Int $(S_{2})$ , the interior of $S_{2}$ . We define
two irrational rotations by

$g_{1}=T_{0}$ , and $g_{2}=f\circ\tau_{0^{\circ}f}-1$ .

Then we have that $F_{\mathit{9}1}=\overline{R_{4}},$ $F_{g_{2}}=f(\overline{R_{4}}),$ $F_{g1}\cap F_{g_{2}}=\emptyset$ and $g_{1}$ and $g_{2}$ invert a geodesic
$R_{1}\cap B^{4}$ . In fact we can easily see $g_{k}(R_{1}\cap B^{4})=R_{1}\cap B^{4},$ $g_{k}(e_{1})=-e_{1},$ $g_{k}(-e_{1})=e_{1}$

and $g_{k}^{2}.|_{R_{1}}.=Id$ , the identity transformation for $k=1,2$ . Let $G$ be the group generated
by $g_{1},g_{2}$ . Since $G$ contains irrational rotations $g_{1},g_{2}$ , then $G$ is a non-discrete subgroup
of $M(B^{4})$ . Two elements $g_{1},g_{2}$ of infinite order have not a common fixed point. So we
conclude that $G$ is not $\mathrm{J}$-elementary. Now we prove that $G$ is $\mathrm{M}$-elementary. To show this

result, we need the following proposition.

PROPOSITION If a non trivial element $g\in M(B^{n})$ inverts a hyperbolic line $\sigma,$ $g$ is

elliptic.

PROOF Let $\zeta_{1},$ $\zeta_{2}\in\partial B^{n}$ be the end points of a. Since $g(\sigma)=\sigma,$ $g(\zeta_{1})=\zeta_{2}$ and
$g(\zeta_{2})=\zeta_{1}$ , then $g^{2}(\zeta_{k})=\zeta_{k^{\wedge}}$ and $g^{2}(\sigma)--\sigma$ for $k=1,2$ . Any parabolic transformation

cannot fix two distinct points. So $g^{2}$ is loxodromic or elliptic. Suppose that $g^{2}$ is loxodromic.

Since $g^{2}$ fixes $\zeta_{1},$ $\zeta_{2}$ , then a is the axis of $g^{2}$ . Hence $g$ is loxodromic and fixes $\zeta_{1}$ and $\zeta_{2}$ . It

contradicts that $g$ inverts $\sigma$ . So $g$ is elliptic.

REMARK
If a non-trivial element $g$ inverts a hyperbolic line, $g$ is an elliptic element of order two

in two dr three dimensional cases. But it is not valid when the dimension is greater than

three. For example, $T_{0}$ invert a hyperbolic line $\sigma=R_{4}\cap B^{4}$ , but $T_{0}$ is an irrational rotation,

not an elliptic element of order two.

Now we can see that every element $g$ of $G$ fixes $e_{1},$ $-e_{1}$ or exchange $e_{1}\mathrm{a}\mathrm{n}\mathrm{d}-e_{1}$ . In any
case $g^{2}$ fixes $e_{1}\mathrm{a}\mathrm{n}\mathrm{d}-e_{1}$ . So $G$ does not contain any parabolic element. If $g$ is loxodromic,
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Proposition yields that $g$ fixes $e_{1}\mathrm{a}\mathrm{n}\mathrm{d}-e_{1}$ . Hence we conclude that any element of infinite
order which is not an irrational rotation and fixes $e_{1}\mathrm{a}\mathrm{n}\mathrm{d}-e_{1}$ must be a loxodromic element.
In fact such a loxodromic element exists in $G$ . To show this, we need to define the element
$h$ by

$h=g_{1^{\mathrm{O}}}g_{2}=T0\circ f\mathrm{o}\tau_{0^{\mathrm{o}}f}-1$ .

We show that $h$ is loxodromic. Since

$h(\pm e_{1})=\tau_{0}\circ f\circ T0^{\circ f^{-1}()}\pm e_{1}=\tau_{0}\circ f\circ T0(\pm e_{1})=T_{0}\circ f(\mp e_{1})=\tau_{0}(\mp e1)=\pm e_{1}$ ,

$h$ fixes $e_{1}$ and $-e_{1}$ . Suppose that $h$ is an elliptic element. Every elliptic element has a
fixed point in $B^{4}$ . So there exists a point $x_{0}$ in $B^{4}$ so that $h(x_{0})=x_{0}$ . Let $g_{0}$ be a M\"obius

transformation which maps $x_{0}$ to the origin $0$ . Now we set $\tilde{h}=g_{0}\circ h\circ g_{0}^{-1}$ . Then the element
$\tilde{h}$ fixes three points $0,$ $g_{0}(e_{1})$ and $g_{0}(-e_{1})$ . For any distinct points $\zeta_{1},$ $\zeta_{2}\in Cl(B^{4})$ , we denote
$\sigma(\zeta_{1}, \zeta_{2})$ by the geodesic with the end points $\zeta_{1},$ $\zeta_{2}$ . Since $\tilde{h}$ is an orthogonal matrix, every
point in $\sigma(0, g_{0}(e1))$ and $\sigma$ ( $0,$ go $(-e1)$ ) is fixed by $\tilde{h}$ . It follows that the eigenspace of $\tilde{h}$

with the eigenvalue 1 contains $\sigma(0, g_{0}(e_{1})),$ $\sigma(0, g_{0}(-e_{1}))$ and so $\sigma(g_{0}(e_{1}), g0(-e1))$ . Hence
we conclude that $\tilde{h}(x)=x$ for any $x\in go(\sigma(e1, -e1))$ . Therefore $h$ fixes every point
in $\sigma(e_{1}, -e_{1})=R_{1}\cap B^{4}$ . But it cannot occur. To prove this fact, it suffices to show
$h(\mathrm{O})\neq 0$ . Note that the orthogonal transformation $T_{0}$ exchange two spheres $S_{1}$ and $S_{2}$ .
Since $0\in Ext(s_{2})$ , then $f^{-1}(0)\in Int(S_{1})$ and we have $T_{0}\circ f-1(0)\in Int(S_{2})$ . Note that
Int $(S_{2})$ is contained in $Ext(s_{1})$ . So $f\circ T_{0^{\circ f(}}-10$) $\in Int(S_{2})$ and we have

$h(0)=\tau_{0\circ}f\mathrm{o}^{\circ}To$ $\circ f^{-}1(0)\in Int(S_{1})$

and so $h(\mathrm{O})\neq 0$ . Since the origin $0$ is contained in $\sigma(e_{1}, -e_{1})$ , then it contradicts the fact
every point in $\sigma(e_{1}, -e_{1})$ is fixed by $h$ . So we conclude that the element $h$ is loxodromic.
Hence any two elements of infinite order which are not irrational rotations have same fixed
point $e_{1}\mathrm{a}\mathrm{n}\mathrm{d}-e_{1}$ . It means that $G$ is M-elementary.
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