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A theoretical framework is developed to evaluate the de-
gree of convergence of quantum entangled pure states towards
a dispersion-free state of no intrinsic uncertainty. The tem-
poral evolution of states in quantum computing is analyzed
diagramatically, providing a visual tool for the refining of
quantum algorithms to help achieve minimal uncertainty and
maximal efficiency, as well as for better understanding of the
quantum entanglements crucial to quantum computing.
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I. INTRODUCTION

Since early $1980’ \mathrm{s}$ when quantum mechanics was intro-
duced into the study of novel computing processes [1] [2]
[3], scientists have conceived various schemes of super-
parallel computation on the basis of the superposition
principle and unitary temporal evolution in quantum me-
chanics [4] [5] [6].

So far, however, the most fundamental questions of
how and to what degree the quantum mechanical paral-
lelism supplies a nearly unique solution that can be read
by classical devices, is not clearly understood. This may
be one of the reasons why there is still considerable am-
biguity and skepticism in this field.

This paper provides a diagramatic method to visualize
and assess limitations due to intrinsic uncertainty inher-
ent in quantum states. This intrinsic uncertainty is not
the same as operational uncertainty, which is the noise
accumulated by inefficiencies of physical devices. The
purpose is to help build quantum circuit algorithms that
converge intrinsic uncertainty to a level low enough so
that reduction in operational uncertainty becomes effec-
tive.

II. THE QUANTUM COMPUTING PROCESS

The quantum computing process begins with an input
port, consisting of an $n$-bit preparation register in a su-
perposition state of maximal uncertainty, together with
an input register. We can visualize this input port as
a row of boxes, with $n=a+f$ boxes representing two
preparation registers on the left, and some boxes on the
right to represent the input register, as shown in Fig.1.

$\mathrm{F}\mathrm{l}\mathrm{G}$. $1$ . The input port consisting of preparation registers
and an input register.

The computation proceeds via a bank of row opera-
tions, that are facilitated either by a spatial array of par-
allel set of quantum gates, or by a temporal series of
parallel operations. A row operation consists of a paral-
lel collection of $\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{l}-\mathrm{b}\mathrm{i}\mathrm{t}/\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{t}$ -bit (C-T) operations,
such as controlled not $(\mathrm{C}\mathrm{N})$ , controlled rotation $(\mathrm{C}\mathrm{R})$ ,
and controlled phase shift (CPS), as represented in Fig.2.
Each C-T operation produces the unitary (or quasiuni-
tary) evolution of the target bits, initially kept in ground
state, driven by the propagation of excited control bit
states [7] or by series of external optical excitations.

FIG. 2. A parallel collection of C-T operations. Each
pair connected by an arrow represents a control-bit/target-bit
pair.

The overall process of quantum computation may be
understood as consisting of four main steps. Fig.3 rep-
resents this situation schematically, for a quantum com-
puter of different methods such as solid state [5], ion trap
[8] [9], CQED (cavity quantum electrodynamics) [10], or
even NMR (nuclear magnetic resonance) [11] [12].

Each small box in Fig.3 represents a quantum bit.
Each row represents a quantum state, which evolves from
row to row to the final solution state through row op-
erations. The four main steps for the computation are
represented by sections or sessions $\mathrm{A},\mathrm{B},\mathrm{C}$ and D.

The first step is to prepare the preparation registers
(section A), which is a superposition (minimum entan-
glement) of the ground state $|0\rangle$ and the excited state $|1$ )
in each of $a$ bits, and a ground state in each of $f$ bits. The
latter preparation register is used to accomodate inter-
mediate results in some algorithms such as for factoring
[4]. $\mathrm{W}\mathrm{e}’ 11$ call the state of each bit a bit-state [13].
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The state of the preparation registers can be repre-
sented by an $n$-dimensional vector $(b_{1)}b_{2}, \ldots , b_{n})$ , where
each $b_{i}$ is a number between $0$ and 1, representing the
probability that bit $i$ is in the excited bit-state $|1\rangle$ . The
number $b_{i}$ is obtained by $b_{i}=|e_{i}|^{2}$ , where each bit is in a
superposition $g_{i}|0\rangle$ $+e_{i}|1\rangle$ . The initial preparation state
is the state of maximum intrinsic uncertainty in the first

$a$

preparation register,
$( \frac{1}{2}, \frac{1}{2}, \ldots)\frac{\sim 1}{2};^{\mathrm{o}},$$0,.-,$$0)f..[14],$

$[15]$ .
$\mathrm{W}\mathrm{e}’ 11$ also call this a state of maximal dispersion, as op-
posed to a dispersion-free state, where each $b_{i}$ is either $0$

or 1 [15]. $\mathrm{I}\mathrm{t}$

)
$\mathrm{s}$ not hard to see that there are $2^{n}$ vectors

representing dispersion-free states in the n-dimensional
state space.

In the second step, computation proceeds as the down-
ward sequential execution of a bank of row operations
(section B). Each row operation results in an evolution
of the preparation state, generating the quantum me-
chanical entangled states. A row operation may increase
or decrease the intrinsic uncertainty (dispersion) of the
preceding state. $\mathrm{W}\mathrm{e}’ 11$ address that issue in Section III of
this paper.

In the case of solid state scheme involving ensemble
of quantum dots [5], within section $\mathrm{B}$ there may be sub-
sections $\mathrm{B}’$ , where bit states might be transformed by

a Hadamard transformation $\tau_{2}^{1}$ for increased re-
sistance to phase errors. Because a phase error in the
transformed state corresponds to a bit error in an original
bit state, stabilization may be increased by dipole-dipole
interactions within each ensemble of quantum dots to re-
duce bit errors [5]. After a Phase-sensitive row operation,
the reverse Hadamard transformation may be applied to
the bits. We denote a bank of rows accomplishing these
transformations by $\mathrm{B}’$ . There may be many such banks
within B.

The third step in the overall computation, represented
by section $\mathrm{C}$ in Figure 3, is another unitary evolution,
converging into the final less dispersive state, or even into
a dispersion-free state [16], i.e. a minimal uncertainty
state in the first $a$ bits corresponding to the preparation
register 1. This is achieved as the cumulative effects of ro-
tary operations causing interference among the quantum
bits. The quantum Fourier transform for the case of the
factoring algorithm [4] is an example of such a third step
[17] [18] [19]. The iterative combination of two Walsh-
Hadamard transforms and a CPS (or conditional phase
shift) in a quantum search algorithm [20], and the build-
ing up of the correlation function in a quantum simulator
[21] may also be considered as examples of the third step.

The fourth step, which we represent as section $\mathrm{D}$ in
Figure 3, is the reading or measuring of the final solution
state. The less the uncertainty in this final stak, the
more accurately one can read it.

FIG. 3. A schematic diagram representing sequential steps
in quantum computing. Section A is the input step, providing
the preparation registers 1 and 2 on the left, and the input
register on the right. Section $\mathrm{B}$ is the first bank of row opera-
tions containing the algorithim for making the super-parallel
quantum computation. Section $\mathrm{C}$ is the bank of row opera-
tions such as quantum Fourier transform designed to reduce
overall intrinsic uncertainty, and section $\mathrm{D}$ is the output step.
Sections $\mathrm{B}$ and $\mathrm{C}$ might contain subsections $\mathrm{B}’$ and $\mathrm{C}’$ for
reducing phase errors.

III. DIAGRAM FOR THE EVOLUTION OF
LOGICAL STATES

A. State Space Diagram

The third step in our quantum computing schematic
is crucial for making quantum computing useful, because
without this all we can achieve is an utterly unreadable
superposition of all the provisional solutions. $\mathrm{W}\mathrm{e}’ \mathrm{v}\mathrm{e}$ cre-
ated a diagram (Fig.4 [22]) to visualize the evolution
of uncertainty in the quantum logical process of a pair
of bits working as an elemental gate, such as a $\mathrm{C}\mathrm{N},$ $\mathrm{C}\mathrm{R}$ ,
or CPS gate. Each such gate can be represented as an
operation on bit-states by an $\mathrm{S}\mathrm{U}(2)$ matrix [6].
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Figure $4(\mathrm{a})$ represents the state space for a single pair
of bits, consisting of a control bit $c_{i}$ and target bit $t_{j}$ .
The horizontal axis represents the probability $C$ that the
control bit is in state $|1\rangle$ , and the vertical axis represents
the same probability $T$ for the target bit. In the termi-
nology of quantum logic, we are plotting the temporal
change of the truth value of the proposition the target
bit is in state $|1\rangle$ together with the truth value of the
proposition the control bit is in state $|1\rangle$ .

The temporal evolution of the state of a provisional
solution (an entire row in the quantum computer) may
be tracked in the $n$-dimensional state space by consid-
ering the 2-dimensional subspaces generated by control-
target pairs for each row. With that in mind we de-
fine the dispersion of the state represented by row-vector
$b=(b_{1}, b_{2}, \ldots, b_{n})$ as

$D= \min_{d}${ $||b-d|||d$ is a dispersion–free vector}. (1)

This is a measure of how close $b$ is to one of the $2^{n}$

dispersion-free vectors in the state space. We now con-
sider the effect that row operations have on $D$ .

$(a)$ $(b)$

FIG. 4. State space diagrams for control-target bit pairs.
The temporal evolution of the truth probability $T$ of the state-
ment the target bit $b_{j}$ is in state $|1\rangle$ at time step $t$ is plotted
with an open circle labled $T_{j}.,(t)$ . [The subscript $i$ means that
bit $b\dot{.}$ is the control bit for this target.]

For a control-target bit (C-T) pair i-j, suppose both
the control and target are in an initial superposition of
maximal uncertainty: $\tau_{2}^{1}(|0)+|1\rangle)$ . Then we represent
the pair by the closed circle at the center point (0.5, 0.5)
in the left diagram, Fig.4 (a). The theoretical dispersion
for a pair of bits is maximal in this initial superposi-
tion, because the shortest distance to any one of all the
dispersion-free states $(0,0),$ $(0,1),$ $(1,0)$ , or $(1, 1)$ is
maximal at this middle point. Since $\mathrm{w}\mathrm{e}’ \mathrm{r}\mathrm{e}$ interested in
the evolution of the truth values of target bits, $\mathrm{w}\mathrm{e}’ 11$ label
this first point $T_{i.j}(0)$ . $\mathrm{W}\mathrm{e}’ 11$ follow the evolution of the
state as it is affected by controlled rotations.

A controlled rotation by angle $\beta$ around the $y$ axis
$\hat{R}^{\beta}$ moves the truth value of the target bit away from
$\mathrm{t}\mathrm{h}^{yi}\mathrm{e}$’initial superposition point, into some point in the tri-
angular region defined by $\mathrm{t}\mathrm{h}\mathrm{e}\pm 45$ degree lines connecting
the points $(0,0.5)$ and $(1, 1)$ or $(0,0.5)$ and $(1, 0))$ and the
vertical line at $C=1$ , as shown in Fig.4 (a) or (b). If the
angle of rotation $\mathrm{i}\mathrm{s}\pm\frac{\pi}{2}$ , the truth value of the target bit
increases or decreases so that the C-T pair falls on one of
$\mathrm{t}\mathrm{h}\mathrm{e}\pm 45$ degree lines. This is proven in Subsection IIIB
below.

Suppose the target is subjected to a $y$-rotation through
angle $\frac{\pi}{2}$ . Then the pair state is moved from the center
of the left diagram (with $T_{i,j}(0)$ ) to a state with truth
value $T_{i,j}(1)$ .

Now suppose that target becomes a control bit $b_{j}$ with
truth value $C_{j,k}(1)=T_{i,j}(1)$ for a new target bit $b_{k}$ in
a state of maximal dispersion (Point A with $T_{j,k}(1)$ in
the right diagram). Another $y$ rotation through angle

$\frac{\pi}{2}$ moves the new target to a bit state with probability
$T_{j,k}(2)$ .

Consecutive similar rotations for C-T pairs, where the
control is the target from the preceding rotation, and the
target is in a maximally uncertain state, produce targets
with truth values converging to 1. As a matter of course,
these dispersions are measured relative to the fixed basis,
which may be preferentially determined by experimental
situation. The states in the sessions $\mathrm{B}’$ and $\mathrm{C}’$ in Fig.3
where phase error is suppressed, are treated separately
in the estimation of dispersion.

B. Derivation of the Truth Values

$\mathrm{W}\mathrm{e}’ 11$ show the method for calculating the probability
$T$ for the case of a controlled rotation around the $y$ axis.

A free rotation around the $y$ axis by angle $\beta[6]$ is
expressed as

$\hat{R}_{y}^{\beta}=$ (2)

Applying this to an initial target bit $j$ , in state
$\sqrt{2}1(|0\rangle+|1\rangle)$ with $T_{j}(0)= \frac{1}{2}$ , [we write $T_{j}$ instead of
$T_{1j}.$, because the control bit $\mathrm{i}\mathrm{s}\mathrm{n}’ \mathrm{t}$ at issue in this case], we
get

$\hat{R}_{y}^{\beta}|T_{j}(0))=\frac{1}{\sqrt{2}}[\pm]$

$= \frac{1}{\sqrt{2}}[(\cos\frac{\beta}{2}\mp\sin\frac{\beta}{2})|0)+(\pm\cos\frac{\beta}{2}+\sin\frac{\beta}{2})|1\rangle]$ . (3)

Thus, the free rotation results in

$T_{j}(1)=| \frac{1}{\sqrt{2}}(\pm\cos\frac{\beta}{2}+\sin\frac{\beta}{2})|^{2}$. (4)
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Then the change of $T$ in the controlled rotation for
control bit $i$ of a truth value $C$ and target bit $j$ is given
as

$\triangle T_{i,j}=(T_{j}(1)-\tau j(\mathrm{O}))c$

$=[| \frac{1}{\sqrt{2}}(\pm\cos\frac{\beta}{2}+\sin\frac{\beta}{2})\frac{1}{\sqrt{2}}|^{2}]C$

$=[ \frac{1}{2}(1\pm\sin\beta)-\frac{1}{2}]c$

$= \pm\frac{\sin\beta}{2}c$ , (5)

which gives the new $T$ value:

$T_{i,j}(1)=\tau_{i},j(0)+\triangle\tau_{i,j}$ . (6)

Similar calculations give the change $\triangle T_{\dot{\iota},j}$ for other
operations such as CR’s around the $x$ axis.

It is not difficult to establish that a CN operation
$\hat{P}_{CN}$ , which can be represented in terms of $\mathrm{a}\pm\pi$ rotation
around the $x$ axis by $P_{CN}=\pm i\hat{R}_{x}^{\pm\pi}$ , does not change the
truth value of the target bit $(\triangle T_{i,j}=0)$ , if it is initially
in the $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\frac{1}{\sqrt{2}}(|0)+|1\rangle)$, leaving the target bit
always on the horizontal line at $T=0.5$ for any state of
the control bit.

The $\dot{\mathrm{c}}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{d}$ controlled not (CCN) operation
$\hat{P}ccNij,k$ ($i,j$ control bits, $k$ target bit), which is useful
to construct NAND gates for classical computing, can be
decomposed into C-T operations as follows:

of which $\mathrm{e}\mathrm{q}.(5)$ is a special case, and * denotes the com-
plex conjugate.

Furthermore, for a controlled rotation by a fractional
angle $\beta=\frac{\pi}{2m}$ , the following is obtained using $\mathrm{e}\mathrm{q}.(9)$ .

$\triangle T_{i,j}=\frac{1}{2}[(|g|^{2}-|e|^{2})(\frac{\beta^{2}}{2}-\frac{\beta^{4}}{24}+\frac{\beta^{6}}{720}-\cdots)$

$\pm(ge^{*}+ge)*(\beta-\frac{\beta^{3}}{6}+\frac{\beta^{5}}{120}-\cdots \mathrm{I}]C$ (10)

$= \frac{1}{2}[\pm(ge^{*}+g^{*}e)\beta]c+W$ (11)

where the remainder of the Taylor expansion $W$ is esti-

mated to be less than $(4\triangle^{2}+\triangle^{3})2C$ , because $|g|,$ $|e|\leq$

$1$ .
Then the number of steps for consecutive controlled

rotations $\hat{R}^{\frac{\pi}{y^{2m}}}$ to reach the dispersion-free state at $(1, 1)$

in Fig.4 may be estimated to be no more than

$\frac{1}{\triangle T_{i,j}}=\frac{1}{\beta C+W}\approx\frac{1}{\beta C}=\frac{4m}{\pi}\sim 1.27m$ , (12)

assuming the new target bits always begin in the maxi-
mally uncertain state. The upper bound of the accumu-
lated error in the consecutive rotation is estimated as

$W\cross$ (number of $\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{p}\mathrm{s}\approx\frac{1}{\beta C}$ ) $< \frac{\beta}{4}+\frac{\beta^{2}}{2}$

$\Rightarrow 0$ for $\betaarrow 0$ ; i.e. $marrow\infty$ . (13)

$\hat{P}_{CcN}|.j,k=\hat{s}_{j}^{l}T,\cdot\hat{S}_{i,ji}\hat{R},\hat{P}C|\S\pi x/2kN\cdot,j\hat{R}\pi 2\hat{P}_{C}Ni,jxj,k\hat{R}\pi/2k3/xj,’(7)$

where $\hat{R}_{xj,k}^{\alpha}$ denotes a CR operation around the $x$ axis

by angle $\alpha,\hat{P}_{CNi,j}$ a $\mathrm{C}\mathrm{N}$ , and $\hat{S}_{i,j}^{\gamma}$ a CPS by angle $\gamma$

respectively [6]. Therefore, the overall change $\triangle T_{1j,k}$ can
be estimated as the sum of the changes of these elemental
operations, resulting in $\triangle T_{ij,k}=0$ when applied to a
target initially in the maximally uncertain state.

Moreover, application of the controlled rotation around
$y$ axis $\hat{R}_{y}^{\beta}$ to a general superposition state $|T_{k}(\mathrm{o})\rangle=g|0)$

$\pm e|1)$ gives

$\hat{R}_{y}^{\beta}|T_{k}(0)\rangle=[g\pm e]$

$=[(_{\mathit{9}^{\mathrm{c}\mathrm{o}}} \mathrm{s}\frac{\beta}{2}\mp e\sin\frac{\beta}{2})|0\rangle+(g\sin\frac{\beta}{2}\pm e\cos\frac{\beta}{2})|1\rangle]$ (8)

where $|g|^{2}+|e|^{2}=1$ . Then, by a procedure simillar
to that leading to $\mathrm{e}\mathrm{q}.(5))$

$\triangle T_{i,j}=[(|_{\mathit{9}}|^{2}-|e|^{2})\frac{1-\cos\beta}{2}$

$\pm(ge^{*}+g^{*}e)\frac{\sin\beta}{2}]c$, (9)

The convergence of this process is also verified by a.Bloch
vector making up an angle $\frac{\pi}{2}$ by consecutive $\beta=\frac{\pi}{2m}$

rotations.

IV. CONCLUSIONS

We have developed a way to estimate intrinsic uncer-
tainties in provisional results of quantum computations.
$\mathrm{W}\mathrm{e}’ \mathrm{v}\mathrm{e}$ also calculated the reduction of uncertainty re-
sulting from particular controlled rotations applied to
control-target bit pairs, and also showed that other C-
$\mathrm{T}$ operations do not reduce target bit uncertainty when
the initial state is the maximal uncertainty superposition.

A lower bound in the number of computational steps to
make the provisional solutions converge into a dispersion-
free state having minimal uncertainty, is estimated by
this method, within a finite error which decreases with
the angle of controlled rotation. In this way the intrin-
sic or theoretical efficiency could be maximized for any
quantum computing process, so that efforts to reduce op-
erational uncertainty should become effective.

This method could be applied to various kinds of quan-
tum computing schemes. Such a tool may be effective
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for designing and refining quantum algorithms, and for
implementing quantum systems, as well as an aid for un-
derstanding quantum entanglements.
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