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Abstract

Theory of subdynamics is formulated as the variational principle
which has been presented by the present authors. The von Neumann
equation for the system of conduction elctrons as a typical charge
carriers which are scattered by the static impurity potential and ex-
posed to an applied electric field is reduced to the Boltzmann type
equation, where the collision operator is essentially identical to the
block-diagonalized Liouville operator in the theory of subdynamics.
This superoperator is known to be positive definite, which leads to
damping of the deviation of the state from equilibrium and manifests
the irreversibility. On the other hand, the collision operator on the
Boltzmann type equation which is positive definite and self adjoint
provides the formulation of the variational principle which represents
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the principle of entropy production and thus demonstrate the irre-
versibility. It is concluded that these two theory is intimately related
to each other.

1 $\mathrm{I}\mathrm{n}\mathrm{t}_{\Gamma}\mathrm{o}.\mathrm{d}...\mathrm{u}$ction

We have investigated the variational principles of irreversible processes $\mathrm{b}\mathrm{a}s$ed

on the von Neumann equation for the density matrix of the many-body

$\mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{m}[1-5]$ . Contracting the information of the density matrix in the equa-

tion, we have derived the Umeda-Kohler-Sondheimer(UKS) variational prin-

$\mathrm{c}\mathrm{i}\mathrm{p}\mathrm{l}\mathrm{e}[6]$ on the Boltzmann-Bloch equation for.. the conduction electrons in

solids, which concerns with the entropy production and thus irreversibility.

That is, the contraction of information causes irreversibility.

On the other hand, in the so-called theory of subdynamics [7-12] the Liouville

superoperator is block-diagonalized by means of non-unitary transformation,

where the Liouville superoperator with exclusively positive eigenvalues has

been derived. This superoperator shows that any state of the system neces-

sarily damps towards the equilibrium, manifesting irreversibility.

In this paper, we formulate an extremum variational principle on the basis

of the theory of subdynamics for the system of conduction electrons in solids

which are elastically scattered by static impurity potentials. In Sec.2 and 3,

we obtain the von Neumann equation for the system to which an external

electric field is switched on and off adiabatically is reduced to the Boltzmann

type equation concerning the diagonal elements of the density matrix. Owing
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to the Liouville superoperator with positive definite nature, we present the

extremum variational principle in Sec.4. We finally summarize the result in

Sec.5

2 General formulation

We investigate the system of conduction electrons elastically scattered by

impurities in solids, the Hamiltonian of which is $H$ . Under the electric field

$E(t)$ , we express the density matrix $\rho(t)$ as

$\rho(t)=\rho_{C}+\rho_{C}\int_{0}^{\beta}d_{\mathcal{T}\mathrm{e}}\mathrm{x}\mathrm{p}(\mathcal{T}H)\Phi(t)\exp(-\mathcal{T}H)$, (2.1)

where $\rho_{C}$ is the grand canonical density matrix given by

$\rho_{C}=K\exp[-\beta(H-\mu N)]$ . (2.2)

The von Neumann equation for $\Phi$ is

$\frac{\partial}{\partial t}\Phi(t)=-iL\Phi(t)+E(t)j$ , (2.3)

where $j$ is the current operator and the superoperator $L$ is defined as

$L \Phi\equiv\frac{1}{\hslash}[H, \Phi]$ . (2.4)

Introducing the creation operator $a_{k}^{+}$ and the annihiration operator $a_{k}$ of

the conduction electron with wave vector $k,\grave{\mathrm{w}}\mathrm{e}$ express the Hamiltonian, the

density matrix and the current operator as

$H$ $=$
$\sum_{k,k’}\langle k|h|k’\rangle a_{kk}a’+$

, (2.5)
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$h$ $=$ $h_{0}+V$, (2.6)

$\Phi(t)$ $=$
$\sum_{k,k’}\langle k|\phi(t)1^{k}’\rangle a_{kk}^{+_{a\prime}}$

(2.7)

$j$ $=$
$\sum_{k}\langle k|ev|k\rangle a^{+_{a_{k}}}k$ ’

$v \equiv\frac{p}{m}$
) (2.8)

in which $V$ is the perturbation potential due to the impurities. Then the von

Neumann equation is

$\frac{\partial}{\partial t}\phi(t)=-il\phi(t)+evE(t)$ , (2.9)

where the superoperator $l$ is defined as

$l \phi\equiv\frac{1}{\hslash}[h, \phi]$ . (2.10)

According to the theory of Subdynamics,the superoperator $l$ is block-diagonalized

by the non-unitary transformation as

$\lambda^{-1}l\mathrm{A}=\theta$
$\equiv$

$\lambda^{-1}$
$\equiv$

$\lambda$ $\equiv$

$A,$ $C,$ $D$ and $\theta$ are defined, in terms of the projection superoperator $P$ which

projects any operator onto the diagonal one in the scheme of diagonalizing

the unperturbed Hamiltonian $h_{0}$ , and the complementary superoperator $Q=$

1–P, as

$\Psi(z)$ $\equiv$ $PlP+PlQ \frac{1}{z-QlQ}QlP$, (2.14)
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$A$ $\equiv\sum_{j=0}\frac{1}{j!}\frac{d^{j}}{dz^{j}}\Psi^{j}(z)$ ,

$AD$ $\equiv$ $\sum_{j=0}\frac{1}{j!}\frac{d^{j}}{dz^{j}}\Psi j(Z)P\iota Q\frac{1}{z-QlQ}$ ,

$CA$ $\equiv$ $\sum_{j=0}\frac{1}{j!}\frac{d^{j}}{dz^{j}}\frac{d^{j}}{dz^{j}}\frac{1}{z-QlQ}Q\iota P\Psi^{j}(z)$ ,

$\theta_{0}$ $\equiv$ $PlP+PlQc$,

(2.15)

(2.16)

(2.17)

(2.18)

$\theta_{C}$ $\equiv$ QlQ–QlPD, $(2.\mathrm{I}9)$

where $z=i\epsilon$ and $\epsilon$ is a positive infinitesimal. $i\Psi$ is called the collision

operator which appear explicitly in the Boltzmann-Bloch equation as shown

in the next section. Multiplying both sides of (2.9) by $\lambda^{-1}$ , and defining the

privileged density matrix $\phi^{(p)}$ as

$\phi^{(p)}(t)\equiv\lambda^{-1}\phi(t)$ , (2.20)

we get the von Neumann equation

$\frac{\partial}{\partial t}\phi^{(p)}(t)=-i\theta\phi^{(}p)(t)+i\lambda^{-1}evE(t)$ . (2.21)

Using the equations $(2.14)-(2.18)$ , we can express $\theta_{0}$ in a power series of the

collision operator $\Psi$ as

$\theta_{0}=\Psi+\frac{d\Psi}{dz}\Psi+\cdots$ , (2.22)

where $i\Psi$ is a positive definite as shown in a following section. Neglecting

higher order terms of $\Psi$ in the right hand side of (2.22), $\dot{i}\theta_{0}=i\Psi$ is positive

definite, and the diagonal part $\phi_{0}^{(p)}$ damps in the future in a absence of an

electric field.
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3 Boltzmann-Bloch equation

We consider a situation in which an electric field is adiabatically applied from

the infinite past

$E(t)=E\exp(st)$ , (3.1)

where $s$ is a positive infinitesimal, and assume, corresponding to this situation

$\phi^{(p)}(t)=\emptyset(p)\exp(st)$ . (3.2)

Setting $\frac{\partial}{\partial t}\phi^{(p)}(t)=0$ , we get the von Neumann equation

$i\theta\phi^{(p)}=\lambda^{-1}evE$ , (3.3)

which is written separately, for the diagonal part $\phi_{0}^{(p)}$ and the off-diagonal

part $\phi_{C}^{(p)}$ as

$\dot{i}\theta_{0}\phi_{0}^{(p)}$ $=$ $AevE$ , (3.4)

$\dot{i}\theta_{C}\phi_{C}^{()}p$ $=$ $-CAevE$ . (3.5)

These equations show the relation

$\phi_{c}^{(p})=-\theta\overline{c}1c\theta 0\phi^{(}0^{p)}$

’
(3.6)

that the off-diagonal part $\phi_{C}^{(p)}$ is expressed in terms of the diagonal part $\phi_{0}^{(p)}$

We transform $\phi_{0}^{(p)}$ to the diagonal part $\phi_{0}$ , as

$\phi_{0}^{(p)}=(A+AD\frac{1}{z-QlQ}QlP)\phi 0$ , (3.7)
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and $\phi_{C}^{(p)}$ as

$\phi_{C}^{(p)}=(-CA+(1-^{c}AD)\frac{1}{z-QlQ}Q\iota P\mathrm{I}\phi 0\cdot$ (3.8)

This corresponds to express the off-diagonal density matrix $\phi_{C}$ in terms of

the diagonal part $\phi_{0}$ as

$\phi_{C}=\frac{1}{z-QlQ}QlP\phi_{0}$ . (3.9)

Using the relations

$\theta_{0}(A+AD\frac{1}{z-QlQ}QlP)$ $=$ $A\Psi$ , (3.10)

$\theta_{C}(-CA+(1-cAD)\frac{1}{z-QlQ}QlP)$ $=$ $-CA\Psi$ , (3.11)

which can be proved from $(2.14)-(2.19)$ , we write (3.4) and (3.5) as

$iA\Psi\phi_{0}$ $=$ $AevE$ , (3.12)

$-iCA\Psi\phi_{0}$ $=$ $-CAevE$ , (3.13)

both of which are satisfied by Boltzmann-Bloch equation for $\phi_{0}$

$i\Psi\phi_{0}=evE$ . (3.14)

The collision operator $i\Psi$ appears instead of $i\theta_{0}$ , by transformation (3.7) from

$\phi_{0}^{(p)}$ to $\phi_{0}$

4 Extremum principle

A complete orthonormal basis of the superspace $|k;k’$ ) is given in terms of

dyadic operators $|k\rangle\langle$ $k’|$ expressed in terms of the unperturbed eigenstates of
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$h_{0}$ by

$|k;k’)\equiv||k\rangle\langle k’|$ ). (4.1)

The matrix element of $i\Psi$ is

$i(k;k| \Psi|k^{J};k’)=\frac{2\pi}{\hslash}(\delta_{kk’}\sum_{q}|\langle k|T(Ek)|q\rangle\delta(Ek-E_{q})-|\langle k|T(Ek)|k’\rangle|^{2}\delta(Ek-E_{k}’)\mathrm{I}$

(4.2)

where $T$-matrix is defined in terms of $\mathrm{t}\mathrm{h}\mathrm{e}\backslash$ perturbed potential $V$ as

$T(E_{k})=V+V \frac{1}{i\epsilon+E_{k}-h_{0}}T(E_{k})$ . (4.3)

Using an abbreviation $\phi_{k}$ for the diagonal part of the density matrix as

$\phi_{k}\equiv\langle k|\phi|k\rangle$ , (4.4)

we express the Boltzmann-Bloch equation (3.14) as

$\frac{2\pi}{\hslash}\sum_{q}|\langle k|T(Ek)|q\rangle|^{2}\delta(Ek-E_{q})(\phi_{k}-\phi q)$ $=$ $ev_{k}E$ , (4.5)

$v_{k}$ $\equiv$ $\frac{\hslash k}{m}$ . (4.6)

This equation is expressed as the extremum principle as follows. We first

define the inner product $\langle\phi, \psi\rangle$ between the diagonal operators $\phi$ and $\psi$ as

$\langle\phi, \psi\rangle$ $\equiv$ $- \sum_{k}\frac{\partial f_{k}^{0}}{\partial E_{k}}\phi_{k}\psi k$ , (4.7)

$=$ $\int_{0}^{\beta}tr\{\phi f0\exp(\tau h\mathrm{o})\psi(1-f^{0})\exp(-\tau h_{0})\}d\mathcal{T}$, (4.8)

where $f^{0}$ is the Fermi distribution function

$f_{k}^{0} \equiv\frac{1}{\exp(\sqrt E_{k}-\sqrt\mu)+1}$ . (4.9)
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We then introduce the variational functional $W(\phi)$ as a function of a diagonal

operator $\phi$ as

$W(\phi)\equiv-\langle\phi, i\Psi\phi\rangle+2\langle\phi, evE\rangle$ . (4.10)

Due to the positive definite properties of $i\Psi$ , the inner product $\langle\phi,\dot{i}\Psi\phi\rangle$ is

shown to be positive as

$\langle\phi, i\Psi\phi\rangle=-\sum_{k}\frac{\partial f_{k}^{0}}{\partial E_{k}}\frac{\pi}{\hslash}|\langle k|T(Ek)|k’\rangle \mathrm{t}2\delta(E_{k}-Ek’)(\phi k-\phi k^{\prime)}2\geq 0$. (4.11)

Maximizing $W$ with respect to $\phi$

) we get the Boltzmann-Bloch equation (4.5).

This is the $\mathrm{U}\mathrm{m}\mathrm{e}\mathrm{d}\mathrm{a}-\mathrm{K}_{\mathrm{o}\mathrm{h}}1\mathrm{e}\mathrm{r}-\mathrm{s}_{0}\mathrm{n}\mathrm{d}\mathrm{h}\mathrm{e}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{r}$ variational principle.

5 Conclusion

The UKS type variational principle is obtained by transforming the diagonal

component of the privileged density matrix into the diagonal density matrix

in the theory of subdynamics. The extremum nature of the principle is

due to the positive definite collision operator which is essentially equal to

the diagonal component of the block-diagonalized liouville superoperator.

Irreversibility is concerned with the positive definite nature ot the relevant

superoperator.
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