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First-order necessary optimality conditions

m

fuzzy nonlinear programming problems
Nagata Furukawa (Faculty of Engineering, Soka University)

1. Fuzzy numbers

Definition 1.1. A fuzzy number A is a fuzzy set with a membership
function i : R— [0, 1] satisfying the following conditions :
(i) there exists a unique real number m such that p(m)=1,
(ii) w(#) is upper semi-continuous on R,
(iii) the support supp(A) of A is not a singleton, and u(¢) is strictly
increasing on (—oo, m] N supp(A), and strictly decreasing on [m, o) N

supp(A), -
(iv) in the case where the support of A is not bounded, it holds that
lim u(t)=0.
t—toeo

The set of all fuzzy numbers is denoted by F(R). Especially, the set of

all fuzzy numbers whose supports are compact is denoted by ¥ ‘(R).

We define a shape function by the following.
Definition 1.2. Let L be a function from R to [0, 1] satisfying the
following conditions :

(i) L(t)=L(-t) VteR,

) L(t)=1 iff t=0,

(iii) L(-) is upper semi-continuous on R.

(iv) supp(L) is not a singleton, and L(-) is strictly decreasing on

[0, + )N supp(L),
(v) lim L(t)£0.

t— 400
Then the functon L is called a shape function.
Let L be a shape function. Let m be an arbitrary real number, and let 8

an arbitrary positive number. Then an L fuzzy number u; is defined by
w(t)=L(@t-m)/p), teR. (1.1)

We call m the center of the L fuzzy number, and call S the deviation of L
In place of (1.1) we will use a parametric representation, that is,

(m7 ﬂ )L-
Given a shape function L, the set of all L fuzzy numbers is denoted by
FR)L.
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According to usual notation, for ‘an arbitrary fuzzy number A, we denote
the a-cut {reRlus(Hza} of A by A,. In the case where the support is

bounded, we define the O-cut of A by the closure of the support. We identi-
fy the shape function L with an L fuzzy number having its center O and its
deviation 1, that is, L =(0,1),. For each x €[0, 1], we denote the right end-

point of L, by t.. In the case where the support of L is not bounded, we
interpret as t, = + oo. |
Proposition 1.1. (i) For every shape function L, tOL, is continuous with

respect to o on (0, 1], and monotonically decreases in the wide sense as o
increases on (0,1]. Especially when L has a compact support, all of these
statements hold on the closed interval [0, 1] not on the interval (O, 1].

(ii) If L is continuous on R” and has a compact support, then t,f is
strictly decreasing as « increases on [O,1].

The following definition of an order relation on F(R) is well known and

is called the fuzzy max order.
Definition 1.3. Let A and B be two members of F(R). Then, the relatlon

A < B is defined by |
(supAa gsupBa) & (ianaginfBa) for each ax €[0,1]. (1.2)

In this paper we shall use two types of strengthened versions of the
fuzzy max order as follows.

Definition 1.4. Let A and B be two members of F°(R)UR. Suppose

that at least one of A and B belongs to F “(R) not to R. Then the order
relation A < B is defined by

r (supAO <sup By ) & (ianog inf B, ) ,

< and » (1.3)
k(supAa<supBa) & (infA, <infB, ) for Ve (0, 1],

and the order relation A << B is defined by

(supA,<supB, ) & (infA, <infB,) for Vae[0,1]. (1.4)

Espec1ally when B is a real number in the definition 14 we have the
following proposition.

Proposition 1.2. For a fuzzy number Ae FER) and a real number t, lt,
holds that | i
A<t<:>’supA0§t. u } o (1.5)

and
A=<t supA, <t. ‘ (1.6)
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2. One-sided directional derivatives of fuzzy mappings.

Let X be a real normed linear space. Throughout this section, U denotes
an open subset of X, and Q denotes an open convex subset of X.
Let F be a fuzzy mapping from U to F(R). Let zeU and he X. For

each a €(0,1], we put

_ . inf F(z+ Ah), = inf F(2),
n(e) =lim N , 2.1)
and
E(a) = lim =P F(z+Ah)g =sup F(2)g 22)

supposing that these two limits exist as finite values.
For a =0, we put

n(0) =limn(a), (2.3)
£(0) =1lim &(00). 2.4)
By the definition of #(R), when « =1, each one of F(z+ Ah); and
F(z), consists of a singleton. Accordingly it holds that n(1) = E().
We put
i(a) = min(n(@), &()),

| ae[0,1]. 2.5)
s(or) = max(n(a), &(a)). } |

Assumption I. The functions 7(-) and £(-) are continuous on (0, 1].
Assumption IL. i(-) is nondecreasing and s(-) is nonincreasing on (0, 1].

Under Assumptions I and II, define f: R—[0,1] by

max{ae[0,1]  i(e)=t} if i(0)<tZi()(=sD),
f() =4 max{@el[0,1] | s(@)=t} if s()£t<s(0), (2.6)
0 } if  otherwise,

for reR.
When Assumptions I and 1II are satisfied, it is easily verified that f defined

by (2.6) is qualified as a membership function.

Definition 2.1. When Assumptions I and Il are satisfied, the fuzzy number
f given by (2.6) is called the one-sided directional derivative of F at z in
the direction h, and is denoted by F’(z;h),and then F is said to be one-
sided directionally differentiable at z in the direction h. If F is one-
sided directioally differentiable at z in every direction h, then F is said to be
one-sided directionally differentiable at z.

Definition 2.2. ([3]) Let F be a mapping from U to FS(R). Let xybe a
point of U. Then F is said to be continuous at x, iff for each £>0 there
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exists a neigh- borhood U(x,) of x satisfying that
F(xg)—€<xF(x)x F(xg)+& VxeU(xp).

Definition 2.3. ([3]) A mapping F from Q to F “(R) is said to be
convex on  iff for every x,y € Q and every A €(0,1) it holds that
F(Ax+(1-2)y) 2 (- F(x)) ® ((1-24)- F(y)), (2.7)
where @ and - are the addition and the multiplication, respectively, defined
by the usual extension principle. For the sake of simplicity we write (2.7)

as
F(Ax+(1—=A)y) < AF(x) @ (1-1) F(y). (2.8)

Proposition 2.1. Let F: Q — F°(R) be a convex mapping. Then, for

every zeU, he X and for each o €[0, 1], the limits n(a) - and é(a) defined
by (2.1) and (2.2), respectively, exist as finite values.

Theorem 2.1. Let L be a shape function whose support is compact. Let F
be a convex mapping from Q to F(R),, and let the parametric representation
of the mapping be given by

oy e
() = (m), ), } e
B 20,

Then wé have
(1) both m(-) and B(-) are one-sided directionally differentiable in the usual

sense at all ze U and in every dlrectlon heX and for each o €[0, 1], n(a)
and £(a) can be expressed as

n(@) = m'(z; h) - B (z; Wig, Q9

E@)=m'(z;h)+ B (z; h)tl, (2.10)
where m’(z ; h) and B’(z;h) denote the one-sided dlrectlonal derlvatlves (in
the usual sense) of m and f3, respectively,

(i) for every z€ U and every he X, F is one-sided dlrectlonally differen-

tiable at z in the direction h, and the directional derivative of F is expressed
as

F'(z;h) = (m'(z;h), 1z m)1),. 2.11)

Theorem 2.2. Let L be an arbitrary shape function. Let F be a mapping
from an open subset U of R" to F(R). , having its parametric representation

F(x) =(mx), B(x)),, xeU,

B(x)=0, xeU.
Suppose that m(-) and B(-) are differentiable in the usual meaning on U.
For every zeU and every he X,then, F is one-sided directionally differen-
tiable at z in the direction A, and the directional derivative of F is expressed
as

F(z:h) = (Vm@h, IVB@)h!),. 2.12)



138

3. Fuzzy nonlinear programming.

3.1. The unconstrained problem.

Let F be a mapping from R" to F(R). We consider the following
unconstrained minimization problem : _
(P1) Minimize F(x),

xeR"
where the minimization is taken in the meaning of the fuzzy max order.

Definition 3.1. A point zeR" is called a local minimum solution to
(P1), if there exists a neighborhood V of z such that
F(z)< F(x) VxeV. 3.1

A point zeR" is called a global minimum solution to (P1), if (3.1) holds
for all xeR".

Theorem 3.1. Let L be an arbitrary shape function. Let F be a mappimg
from R" to F(R), with the parametric representation :

F() = (m(x), B),., } R
X .

B(x) 20,

Suppose that m(-) and B(-) are differentiable on R". If z is a local
minimum solution to (P1), then it holds that

{Vm(z) =0,

3.2
VB(2) =0. (3.2)

3.2. The problem with inequality constraints.

Let F be a mapping from R" to F “(R), and let G, G,, -, G, be m
mappings from R" to 7 ‘(R). Let B, B,,*++, B, be m elements of ¥ ‘(R).
Then we consider the following problem.

Minimize F(x)
(P2) subject to
Gi(x)<B;, i=12,---,m.

Define the set of all feasible solutions to (P2) by
S={xeR"I G;(x)<B;, i=12,--,m}.

Definition 3.2. A point zeS§ is called a local minimum solution to (P2),
if there exists a neighborhood V of z such that

F(2)<F(x) VxeVnNS. (3.3)
A point ze€ S is called a global minimum solution to (P1), if (3.3) holds
for all xeS.
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Definition 3.3. A point z€S is called a local nondominated solution to
(P2), if there exists a neighborhood V of z such that there is no point x in
VNS satisfying both of F(x) < F(z) and F(x)# F(z).

Definition 3.4. A point zeSis called a local weak nondominated
solution to (P2), if there exists a neighborhood V of z such that there is no
point x in VNS satisfying F(x) < F(z). .

Proposition 3.1. (i) If zeS is a local minimum solution to (P2), then z is
a local nondominated solution.

(ii) If ze S is a local nondominated solution to (P2), then z is a local
weak nondominated solution.

Proposition 3.2. Let L be a shape function which is continuous on its

compact support. Let F be a mappimg from R" to F(R),. Then, for a
point z € S, the statements (i) and (ii) are equivalent to each other :

(1) z is a local nondominated solution to (P2).

(i) z is a local weak nondominated solution to (P2).

Proposition 3.3. Let L be same as in Proposition 3.2. Let A and B be
two members of F(R); such that A < B. Then, for the pair A and B, the

statements (i), (il) and (iii) are equivalent one another :
(i) There exists a number ay €[0,1] such that

inf A a = inf B,
or
supAgy, = sup By, .
(ii) FEither one and only one of the following three statements holds :
(ii-1) A=B,
(ii-2) (infA, <infB,) & (supA, <supB,) for all o
except for (infAy =infB;),
(ii-3) (infA, <infB,) & (supA, <supB,) for all o
except for (supAy =supBy).
(iii) Either one of the following three statements holds :
(iii-2) infAy =infB,
(iii - 3) supAO =supBy.

In the remainder of this section we assume the following assumptions to
the problem (P2). For each i=0,1,---,m, let L; be‘ a shape function which

has a compact support and is continuous on its support. We asssume that F
is a mapping from R" to T(R)Lo,and that, for eachi=1,2,---,m, G; is a
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mapping from R" to ¥ (R);., and B; is an element of F(R), . Let

F(x) = (mo (0, Bo),

xeR", (3.4)
ﬁo(x)EO,
Gi(x) = (m,'(x)a ﬁ,’ (x) >L >
i xeR", i=1,2,---,m. 3.5)
ﬁ,t(x)g(),

Now, for an arbitrary feasible solution x €S, we define the two kinds of
index sets as follows :

inf G;(x)q, = inf(B;)q,
I(x)=<ie{l,2,---,m) da; €[0,1]; or 5,
supG;(x)g, = sup(B;)g,

and

_ (a) Gi(x)1= (B, )

or
(b) infG;(x)y = inf(B;)y,
I(x)=1ie{l,2, - m) Ao 701

or
(C) Squi(x)(): Sup(Bi)O

holds true.

Then, it is easily seen from Proposition 3.3 that the relation

1(x)=I(x) (3.6)
holds. We call I(x) the index set for the binding constraints at x in the
problem (P2). Owing to (3.6), I(x) is also qualified to be called the binding
set. But, I(x) is more suitable than I(x) in order to descript optimality con-

ditions as seen later on. The index set I(x)is used only to develop our ar-
guments in the course of deriving optimality conditions.

The following proposition gives a first-order necessary optimality condition
in a primal form.

Proposition 3.4. Let ze€S be a local nondominated solution to (P2). Sup-
pose that the following two assumptions hold :

(i) In (3.4) and (3.5), {m;(-)} and {B;(-)} are all differentiable on R".
(ii) For each i ¢ I(z), G; is continuous at Z.
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Define |
‘P(z)={heR"| F'(z;h)«o}

and
r(z)={heR" |G/ (z; k) <0 Viel(z)} .

Then it holds that ,
lI’(z)‘ NI'@)=9¢. 3.7

When T'(z) = ¢, the necessary optimality conditon (3.7) holds vacuously.
For this reason, we set up a constraint qualification as follows.

Constraint Qualification at z: T'(2)#¢ .

Under the assumption of Constraint Qualification, first-order necessary
optimality conditions in a dual form are given by the following.

Theorem 3.2. Let zeS be a local nondominated solution to (P2). Suppose
the assumptions (i) and (ii)) in Proposition 3.4 to be satisfied. Under Const-

raint Qualification at z, then, there exist multipliers {u;;i=0,1,---,m} and
{A;;i=1,2,---,m} satisfying that ' '

V() + gtV B (2) + iz'lzlivmi(z) + __ﬁlu,.tg"Vﬂ,.(z) =0, (3.9

)'go’ i=1’ 2"“am’ ) (3'9)

A; (mi(z) - (Bi)l)( m;(z) - f(L)ilBi(Z) - inf(Bi)O)

><(m,-(z)+té"ﬁ,-(z)—sup(B,-)o)=0, i=1,2,-,m. (3.10)

u; (m,-(z) - (Bi)l)( m;(z) - ’éiﬂi(z) - inf(Bi)O)

x(m,-(z)+tl(;iﬁ,-(z)~sup(B,-)0)=0, i=1,2,--,m.  (3.11)
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