
Selecting an Optimum Configuration of One-Way
and Two-Way Routes Using Tabu Search

Zvi Drezner
Department of Management $\mathrm{S}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}/\mathrm{I}\mathrm{n}\mathrm{f}_{\mathrm{o}\mathrm{r}\mathrm{m}}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ Systems

California State University-Fullerton
Fullerton, CA 92834.

Said Salhi
Management Mathematics Group

School of Mathematics and Statistics
University of Birmingham

Birmingham, United Kingdom.

Abstract

The problem of designing a near optimal configuration of a system of one-way and two
way route system is investigated. Each arc of the network can be designed as either a two-
way arc or a one-way arc in one of the two directions. The traffic speed on a one-way arc
is faster than the speed on a two-way arc by a given factor. The problem is to design a
network which minimizes total travel time between all pairs of nodes by the proper selection
of one-way and two-way arcs. Efficient implementations of the metaheuristic Tabu search
are designed for solving this network design problem. These approaches are tested on a set
of network problems with encouraging results.

1 Introduction

In recent years, network design problems have received increasing attention, see $[1, 3]$ . Network

design problems arise in several applications varying from industrial installations requiring the

transport of materials to communication networks. In this paper we address the problem of

designing optimum configurations for one- and two-way routes system. A network of roads

is given and each road can be designed either as a two-way street or a one-way street in one

direction. The objective is to optimize the configuration of one-way streets in a network for

a given efficiency ratio for one-way travel. Making streets or routes one way is well known to

increase the capacity of the artery, while at the same time increasing the travel distances for some

flows. Many congested urban areas, for example, employ one-way streets. One-way traffic is
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also useful in many industrial installations requiring the transport of materials. Communication

networks also use one-way flows. The model can be applied in a wide variety of congested traffic,

shop-floor flow and communication situations. Drezner and Wesolowsky [3] were the first ones

to study this problem. They designed various heuristic procedures for its solution.

2 Definitions

Define:

$n$ Number of nodes in the network

$m$ Number of arcs in the network

$S$ The set of all arcs. Each member in $S$ is defined as an ordered pair $(\dot{i}, j)$ of nodes. Each

arc is defined twice in both directions. The cardinality of $S$ is $2m$ .

$d_{ij}$ defined for all $(i, j)\in S$ , and is the length of the arc $(\dot{i}, j)$ when it is a two-way street. It

is possible that $d_{ij}\neq d_{ji}$ .

$\alpha$ is the factor by which distances are multiplied when an arc is turned into a one-way street

(a $<1$ ). $\frac{1}{\alpha}$ is the factor by which the speed is increased when a two-way street is turned

into a one way street.

$w_{ij}$ is the number of vehicles traveling from origin $\dot{\iota}$ to destination $j$ .

$W$ is the set of all origin-destination pairs $(i,j)$ for which $w_{ij}>0$ .

$z_{ij}$ for $(i,j)\in S$ is a variable defining a particular one-way configuration for the network.

$z_{ij}=0$ if the arc from $i$ to $j$ is not available, and $z_{ij}=1$ if the arc is available.

$Z$ is the vector of variables $z_{ij}$ of length $2m$ .

$S_{ij}(Z)$ is the shortest distance from $i$ to $j$ for a network defined by $Z$ .
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$F(Z)$ is the objective function for a given $Z$ .

$F(Z)=(i,j) \sum_{\in W}w_{ij}Sij(z)$
. (1)

An efficient procedure for the calculation of $F(Z)$ is detailed in [3].

Various heuristic approaches of the greedy type are studied in [3]. The recommended proce-

dure is termed there as “the modified algorithm”. In this paper we refer to it as the “greedy”

heuristic. The main steps of the greedy heuristic are as follows:

The Greedy Heuristic

1. The starting solution is all two-way streets.

2. Each arc i-j can assume three values: two way street, one way from $i$ to $j$ , and one way

from $j$ to $i$ . The direction of each arc can be changed in two ways. There are therefore $2m$

individual changes in arc directions. The $2m$ possible changes are checked starting from

a randomly selected arc. Arcs are checked consecutively in a circular way until the arc

preceding the one we started with is reached.

3. Each time a better solution is found, it is accepted as the next solution and a new iteration

begins.

4. If none of the $2m$ possible changes produces a better solution, the algorithm terminates.

3 Tabu Search Methods

Tabu Search methods were proposed by Glover [4]. A review of Tabu search methods can be

found in $[5, 7]$ .

3.1 The Basic Tabu Search Procedure

3.1.1 Initialization:

$\bullet$ Generate an initial solution, $Z$ .
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$\bullet$ Set the best current solution $Z_{best}=z$ .

$\bullet$ Define a neighborhood $N(Z)$ and evaluate all the moves in the neighborhood.

$\bullet$ Define the Tabu list and set values for the Tabu size.

$\bullet$ Set the counter $iter=0$ (current iteration).

3.1.2 The Tabu List

. The Tabu list contains a list of Tabu moves.

. The length of the Tabu list is termed “Tabu size”.

. When a move is performed (for example, $z_{ij}$ is changed from $0$ to 1), $z_{ij}=0$ is added to

the Tabu list.

$\bullet$ A more efficient procedure is to record for each state (for example, $z_{ij}=0$ ) the last

iteration number for which it was changed from $0$ . A state is in the Tabu list if the

difference between the current iteration number and the recorded value is not greater than

the Tabu size.

3.1.3 Selection Strategy:

1. Evaluate $F(Z’)$ for all $Z’\in N(Z)$ in a random order as the order in the greedy heuristic.

2. If $F(Z’)<F(Z_{best})$ for any $Z’\in N(Z)$ , terminate the iteration (i.e., do not proceed to

check whether there are even better solutions in $N(Z))$ , set $Z_{best}=Z^{*}=Z’$ , and go to

step 4.

3. Else, choose among the admissible solutions $Z’\in N(Z)$ the best one. Let the best one be

$Z^{*}$ . (An admissible solution is a solution whose move is not in the Tabu list.)

4. Set $Z=Z^{*}$ and $iter=\dot{i}ter+1$ .

5. Update the Tabu list and go to Step 1.
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3.1.4 Stopping Criterion:

A suitable stopping criterion such as a limit on the number of iterations is required.

3.1.5 Diversification (Optional):

Apply some forms of diversification on well defined solutions. A diversification scheme that was

used in this paper is outlined below in section 4.5.

These Tabu search steps seem to be straight forward to implement. However, the success of

the method is dependent on having a good insight of the problem. There are a few questions

which usually help in devising a successful implementation. The success of Tabu search methods

depends on the choice of the Tabu size, the definition of the neighborhood, how diversification

schemes are developed and employed, the way previous solutions are identified, the efficiency of

the computer program, and above all a good understanding of the problem. For further details

on these issues, see $[5, 7]$ .

4 Various Parameters for the Tabu Search

4.1 The Neighborhood

Since each arc $\dot{i}-j$ can assume three values: two way street, one way from $\dot{i}$ to $j$ , and one

way from $j$ to $\dot{i}$ , there are $3^{m}$ possible feasible solutions to the problem. The neighborhood to

be searched consists of 2’$m$ possible changes in the road structure. These consist of changing

a certain arc from the direction it is in the present iteration to one of the other two possible

directions.

4.2 Starting Solutions and Stopping Criterion

Two possible schemes are proposed for generating the set of starting solutions, and terminating

the Tabu search. In each, the greedy heuristic is applied $K\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}_{\dot{\mathrm{P}}}\mathrm{r}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{i}\mathrm{n}\dot{\mathrm{g}}K$ terminal solutions.
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To have control over the running time of the Tabu search, we adopted the following stopping

rules. Note that other measures which are geared toward solution quality instead of computing

time also exist. For instance, the use of non-improvement over the best solution after a permitted

number of iterations, or no improvement in a certain number of successive iterations, etc.. These

stopping rules, though producing good results, can be too time consuming. The following two

rules require the same total number of Tabu iterations per problem and thus a similar computer

time.

. Each terminal greedy solution defines a starting solution for the Tabu search. The number

of Tabu iterations is set to the same number that were required for the greedy heuristic.

The number of iterations required for the greedy heuristic is an indicator for the complexity

of the problem.

$\bullet$ The best greedy solution is used as the starting solution in our Tabu search methods. The

number of iterations in the Tabu search is $K$ times the number of the iterations required

for obtaining the best greedy solution.

4.3 The Tabu List

Two different schemes are proposed for handling the Tabu list:

$\bullet$ Whenever a new best solution $Z_{b\epsilon st}$ (including the final greedy solution) is found, the Tabu

list is emptied. We do not $\mathrm{f}_{0\dot{\mathrm{r}}}\mathrm{b}\mathrm{i}\mathrm{d}$ previous Tabu search moves leading to the best solution.

We treat $Z_{best}$ as if it is a starting solution for the Tabu search.

$\bullet$ The Tabu list was maintained throughout the search including the iterations performed

by the greedy algorithm preceding the start of the Tabu search.

4.4 The Tabu Size

The common way of defining the Tabu size is to set it to a fixed value a priori [6] or to choose the

Tabu size from a defined range [8]. In this study we define the Tabu size in a dynamic manner
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by letting the Tabu size value change at each iteration. Two ways to determine the Tabu size

at each iteration are proposed:

4.4.1 Alternating Tabu Size Value

The Tabu size $TS$ is alternated between two values $TS_{\min}$ and $TS_{\max}$ regardless of the change in

the value of the objective function. It is similar, in principle, to the random selection of the Tabu

size at every iteration. This is also similar in concept to the systematic dynamic Tabu tenure

where the values alternatively increased then decreased within a range [5]. In our experiments

the alternating approach seems to work well. In our view, this may provide researchers with

another facet of Tabu search.

4.4.2 Varying the Tabu Size

$\bullet$ Two values constraining the Tabu size are set. These are $TS_{\min}$ and $TS_{\max}$ .

$\bullet$ The Tabu size, $TS$ , in any given iteration is $\mathrm{a}1_{\mathrm{W}\mathrm{a}}\mathrm{y}\dot{\mathrm{s}}$ bounded. by $TS_{\min}\leq TS\leq TS_{\max}$ .

$\bullet$ Whenever a new best solution is found, or when a diversification is performed, $TS$ is set

to $TS_{\max}$ .

. Each time the value of the objective function increases, $TS$ is decreased by one as long as

it does not go below $TS_{\min}$ .

$\bullet$ Each time the value of the objective function decreases, $TS$ is increased by one as long as

it does not exceed $TS_{\max}$ .

4.5 A Diversification Scheme

This module is introduced to guide the search in exploring other regions which might be difficult

to visit otherwise. This is useful when the search appears not to discover any promising solution.

It may not be easy to detect the right timing for diversification or to define the appropriate
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way of diversifying the search. One common approach is to start from a random solution or a

solution which has much dissimilarity as possible with other solutions. In this study the following

diversification procedure is suggested:

$\bullet$ The Tabu size is varied as in section 4.4.2.

$\bullet$ A diversification is performed when $TS=TS_{\min}$ is reached. Since $TS$ is increased by a

down move in the objective function and decreased by an up move, then, in most cases,

a diversification is performed when there are $TSmax-TSmin$ more up moves than down

moves since the last diversification (or a new best solution found). An exception to this rule

occurs when a down move in the value of the objective function occurs when $TS=TS_{\max}$ .

This is very rare and may result in a diversification when the difference between up and

down moves is less than $TS_{\max\min}-TS$ .

$\bullet$ The diversification diverts the search back to $Z_{best}$ but forcing the search to choose a

different path from there. This different path is achieved by defining a forbidden list

which contains the first two moves previously performed from $Z_{best}$ . This forbidden list is

augmented with new forbidden moves whenever we diversify back to the same $Z_{best}$ .

$\bullet$ The first two exchanges which are chosen after either a diversification or when the last new

best solution was found are put in a new list which we refer to as the forbidden list. Note

that this forbidden list is different from the Tabu list. This list is emptied when a new

best solution is found, initially contains the first two moves after the best new solution is

found, and is increased by two moves at every diversification.

$\bullet$ The solution is returned to $Z_{best}$ while stopping the search from following the same path

which was previously selected when $Z_{best}$ was initially found. This means that the moves in

the forbidden list are not allowed to be used. A similar approach was successfully applied

by [9] when solving the project scheduling problem with limited resources.

$\bullet$ After each diversification, the Tabu list is emptied except for the forbidden list.
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5 The Test Problems and Computational Results

We used two scenarios to evaluate the performance of the proposed Tabu search heuristics: the

medium and small test problems given by [3].

5.1 Investigational Experimentation

We tried many possible strategies in the implementation of the Tabu search. In all the investiga-

tive experimentations we solved the five test problems given in [3]. All these problems have the

same network with $n=40$ nodes and $m=99$ arcs. The five problems differ in the value of $\alpha$ .

The neighborhood for these problems consists of 198 possible exchanges. Evaluating the value

of the objective function for each member in the neighborhood took less than 0.03 seconds on a

Pentium $166\mathrm{M}\mathrm{H}\mathrm{z}$ computer. Therefore, each iteration required less than 6 seconds of computer

time. We performed the greedy algorithm $K=8$ times. Therefore, if the best greedy solution is

used for the Tabu search, the number of iterations is $K=8$ times the number of the iterations

required by the greedy heuristic. We checked all the cross possibilities of the options for starting

solutions, handling the Tabu list, and determining the Tabu size, as described above.

We concentrated on four main approaches:

Fixed Using a fixed length Tabu list $(TS)$ , i.e., $TS_{\min}=TS_{\max}$ .

$Alt$ Alternating between $TS_{\min}$ and $TS_{\max}$ in consecutive iterations regardless of the

values of the objective function in these iterations.

$Div$ The Tabu size was varied as described in section 4.4.2 and a diversification per-

formed as given in section 4.5.

$NoDiv$ Varying the Tabu size as described in section 4.4.2 but without using diversifica-

tion.

We concluded from these tests that:
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$\ulcorner\Gamma \mathrm{o}\mathrm{h}1_{D}\rceil$ . $\mathrm{Q}_{0}\circ 111+\mathrm{Q}\cap \mathrm{f}1\cap\cap \mathrm{R}11\mathfrak{n}.\mathrm{Q}\cap \mathrm{f}\mathrm{t}\mathrm{h}p$

. Alt.erna.t.in $Q^{\cdot}$ Method

$\bullet$ Starting the Tabu search from each terminal greedy solution is superior in most cases to

selecting the best greedy solution and performing the Tabu search with eight times the

number of iterations.

$\bullet$ Emptying the Tabu list whenever a new best solution is better than retaining the history

of Tabu moves in the majority of cases.

. We tested various fixed values of $TS$ and various values for $TS_{\min}$ and $TS_{\max}$ . It was

found that the values of 10 (5%) and 20 (10%) of the neighborhood size are better than

other values.

$\bullet$ The best performance was obtained by the alternating method. A close second was the

diversification approach. However most of the methods described above performed quite

well.

5.1.1 Obtaining the Bench Mark Solutions

Since the optimal solutions for these problems are not known, we conducted an extensive com-

putation to obtain high quality solutions which we refer to as our bench mark.

We performed the following experiments:

The alternating method was repeated one hundred times for each $\alpha$ to obtain a good solution

for each case. The results are summarized in Table 1. The best solution that was found by the
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Table 2: Using Additional Iterations on the Best Solution of Table 1

\dagger A better solution of 108213 was obtained by
starting with the $\alpha=0.6$ solution and perform-
ing one greedy iteration.

Tabu search in these one hundred experiments, was run an additional 1000 iterations, using

the alternating methods and then 1000 more iterations using the diversification method. This

extensive Tabu search resulted in the best solutions listed in Table 2. These solutions are used

as the bench mark for comparison between various approaches.

5.1.2 Medium.Size Problems

For comparison, five approaches were repeated ten times each (rather than eight times in the

preliminary experiments). We report for each problem the best solution found in these ten

experiments, and the average value of the objective function. The results are summarized in

Table 3. The best value in each column is marked in boldface. These results confirm the results

of the preliminary experiments. The alternating method was best (or tied for best) in six out of

ten measures. The diversification method was best in five, the no-diversification approach was

best three times, and the fixed approach was best in four cases each.

5.1.3 Small Problems

We experimented with the five small problems tested in [3]. This small problem contains $n=14$

nodes, and $m=20$ arcs. The size of the neighborhood is therefore $2m=40$. The 5%-10% rule

for the Tabu size leads to Tabu size between 2 and 4. For such a small problem these Tabu
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Table 3: Ten Repetitions of Various Tabu Approaches

Table 4: Results for the Small Problems

\dagger Number of optimal solutions

sizes are too small. We obtained better results by using Tabu sizes of 3 and 6. The results

are summarized in Table 4. Each procedure was repeated fifty times. One run took about

one second of computer time. In the table we give the optimal solution and two simulated

annealing experiments that are reported in [3]. We report new results for the greedy algorithm,

and the five approaches tested for the medium size problem. For these particular problems, all

methods obtained the optimal solution at least once. In these small problems the diversification

approach outperformed the other variants and produced, on the average, solutions within 0.8%

of optimality.
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6 Conclusions

This study investigates the optimal desi $g\mathrm{n}$ of a road system which may include one-way and

two-way routes. A Tabu search technique is developed in order to find good solutions for this

problem. New ways of handling the Tabu size and a new diversification strategy are proposed.

These implementations are tested on two random networks. These approaches yield better

results than those obtained by commonly used strategies employed in Tabu search.

The diversification approach was found to be the best one when a relatively large number of

iterations are allowed in the Tabu search. When we limit the number of iterations to a smaller

number, the alternating approach performs slightly better.
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