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Lecture II : Finite order automorphisms of a p-adic open disc

by Michel Matignon

Notations: Same as in Lecture 1.

0. Introduction

We would like to understand when the local lifting problem has a positive answer, and
moreover for a given group as automorphism group of k[[z]] we would like to classify the
possible liftings via geometric datas suppress, the inverse Galois type conjecture as settled
in Lecture I says that we expect a lot of solutions.

The first important case to handle is that of p-cyclic groups.

I. Generalities

a. Open disc over R.

Definition. Let R be as above, let D° be the R-scheme SpecR|[[Z]], it’s geometric generic
fiber Diyugy = Spec(R[[Z]] ®r K™8) can be easily described. The closed points are given
by the ideals (Z — Zy) where Zg € K8 is in the open disc v(Zy) > 0. Then

Diy) =~ Dy [ Gal(K™8/ K),

this is the open disc over K (of ray 1) and we will call its minimal smooth model over R,
D? the open disc over R.

.....

Spec R i

b. Automorphisms of open discs.

The R-automorphisms of R[[Z]] are continuous for the (7, Z)-adic topology, we denote
by AutgR[[Z]] their set.
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Such o € AutgR][[Z]] is determined by ¢(Z) := ag + a1Z + - - - such that, ap € 7Z and
a; € R*. '

As usual o acts on the scheme D°; namely for Z, € R, the action on the ideal (Z — Zp)
is the ideal 0Y(Z — Zy) = (Z — Z') where Zy' is the series 0(Z) evaluated in Z;. We will
do the following abuse, we will denote Zy — 0(Zp) this action on closed points in Dy g
Definiton. Let o € AutrR[[Z]] be a finite order automorphism, we denote by F, the
set of geometric points in D‘(’Kdg) which are fived by the action of o, i.e. the roots of the
series 0(Z) — Z.

In the sequel unless mentionned we focus our attention on finite order o’s for which
F, #0.

Write 0(Z) —Z = bg+ 01 Z + -+ = fm1(Z)U(Z) by Weierstrass Preparation Theorem,
where fy,41(Z) is a degree m + 1 distinguished polynomial and U(Z) a unit in R[[Z]].

One can show that fm41(Z) has m + 1 distinct roots in K*% (with value | | < 1), then

|Fyl = m+1=inf{i|v(b;) < v(b;),Vi}.

Say order o = p and F,, # (. To each point Z; € F, we attached a primitive n-th root
of unity namely ﬂzz_"TZO"l mod (Z — Zy).

Fixing a primitive m-th root of 1 say ( this defines for F, = {Zg, -+ ,Zn} a set
{ho," -+ ,hm} € ((Z/pZ)*)™, we call this set the Hurwitz data H (o) of the automorphism
o.

c. Let o as above. After a finite extension of R we can assume that F, C D°(R). We
denote by D°, the minimal semi-stable model of DZ’K) in which the points in F, specialize
in distinct smooth points (this can be achieved by successive blowing up centered in
(m,Z)), moreover by the minimality condition this model is unique and so o acts on D°.
This model gives a picture of the geometry of points in F.

The special fibre is an oriented tree like of projective lines attached to the original
generic point (7) € D° (as origin); each projective line gets in this way a natural co point.
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Main problem: Describe the possible trees and the relative positions of crossing points
as well of specializations of points in F,.

d. Some examples.

0. Finite order automorphisms o such that F, = @ naturally occur when consider-
ing Lubin-Tate formal groups. Namely let F(Z;,7Z;) be a formal group law over R,
Ré(resp. m*) := {z € K*¢|u(2) > 0 (resp. > 0)} and denote by F(m®) the group whose
underlying space is m® and the group law is given by z; +F 20 = F(21, 22).

Let A(m®) C F(m®) be the torsion subgroup. The map @ : A(m®) — Autg:R*[[Z]]
defined by ®(2)(Z) = F(Z, 2) is an injective homomorphism ([Ha] 35.2.6). It is easy to
see that ®(2) induces the identity automorphism at the special fiber and that it has no
fix point. Moreover when A(m®) =~ (Q,/Z,)" where h is the height of F(Z, Zy) (see [H]
35.1.6). Now consider G a finite abelian p-group of p rank h, let F'(Z;, Z3) be a Lubin-Tate
formal group of height h then G C A(m®) occurs as a subgroup of AutgR[[Z]].

1. Let o(c) = n and (n,p) = 1, then ¢ has a unique fix point which is rational, moreover
it is linearizable i.e. there is a new parameter Z' such that o(Z’) = ("*Z' for (" a primitive
n-th root of unity. This classifies such automorphism up to conjugation.

2. More generally (see [G-M2] Prop.6.2.1) if ¢ is a finite order automorphism with only
one fix point then it is linearizable.

3. Let (m,p) = 1 and consider the order p-automorphism build in the previous lecture
o(Z) = CZ(1+ Z™)~Y/™ then

F,={0,66({™-1)Y™|0<i<m}

where 0 is a primitive m-th root of 1. The Hurwitz datas are (1, —1/m, ..., —1/m) and the
tree as considered in c. has only one projective line (i.e. the fix points are equidistant).
4. In [M] we build an example of order p-automorphism with equidistant fix points in
order to lift some (Z/pZ)"-realization as an automorphism group of k[[z]]. (See end of
previous lecture.)

We prove
Theorem([M]). Let ai,az, -+ ,a, € Zy" and

P(X) = 11 [1+ (Z eiai)pXTl

(1) ,8n)€{0, p—1} 1<i<n
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then there exists u € Zy'; Q(X), R(X),S(X),T(X) € Z,¥[X] and m, = p*'(p—1) — 1
such that

P(X) =1+ XQ(X))? + w?X™ (1 4+ XR(X)) + pXm=+tV/PS(X) 4 p?T(X).

Moreover there are infinitely many choices of a; such that the p-cyclic cover of P! defined
by the equation Y? = P(X) has potentially good reduction at p relatively to the S-Gauss
valuation for S = A 7P/™ X and mod 7 induces an étale cover of P! with conductor
my, + 1 at co. In particular the morphism at the level of formal fibre at co induces
an order p-automorphism of the open disc with m, + 1 fix points. Hurwitz datas are
{1 (p™ times),2 (p" times),...,p— 1 (p" times)} and the tree as considered in c. has only
one projective line (i.e. the fix points are equidistant).

5. An example with more than 1 component. Let p = 2 and consider the elliptic curve
Y2=X(X-1)(X —p). For |2|* < |p| < 1,

25(p® —p+1)°

pAp—1)2

so the curve has potentially good reduction which is supersingular i.e. a 2-étale cover of
Al

<1,

l7(p)| =

So it induces an order 2-automorphism of the open disc.

6. Order p automorphism witout inertia at 7 naturally also occur when considering
-endomorphisms of the so called Lubin-Tate formal groups (see [G-M 2] 11.3.3.3). The
number of fix points is a power of p and the Hurwitz datas are (1,1, ...,1). The geometry

of tree is that of a tree of valence p.

p new companents

/

p new camponents

Oriented tree D?



110

Along the same line one can give order p® automorphism without inertia at m and in
this way we prove the cyclic p-groups have the Inverse Galois type property (see lecture

I).

II. Order p-automorphisms

Let o be an order p-automorphism with F, # @. Consider the morphism f : D° —
D°/{c). From the unicity of D° it follows that o is the identity on each irreducible
component of D? and so fs : DI — (D°/{0)), is an homeomorphism.

The first qualitative result is
Theorem([G-M2]). The fix points in F, specialize in the terminal components.

Proof. Say Z; = 0 € F, is a fix point. Let D°(0,p) be the closed disc inside Dy,
centered in 0 and ray v(p). Let v, be the Gauss-valuation relative to -f—, it defines a
pcyclic valued field extension FrR[[Z]]/FrR[[Z]]* which is residually purely inseparable,
moreover the valuation ring is monogenic generated by %. Let d(v(p)) be the degree of

the different in this valued extension. Then
dw(p)) = (0 = V("> = 1)
ifo(Z) =¢Z(1+ a1 Z +---); then

d(v(p)) = (p— 1 inf{v(¢ — 1), v(an) + n0(p)} < v(p)

——-1=[] @-2)v2)
Z;#0
Z;eF,

o(Z)
zZ

where U(Z) is an unit.
We get the graph of d(v(p)).

d(v(p))
s, = gradient = (p — 1)m

Pe; :Zjnéfpg(Zi —Zj)

V(p) "'"'"“""""""""'"'"/E
sy,

a0 Z

v(p) vpy,) v(p)
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Now consider an other fixed point Z;. We remark that for v(p) < v(Z; — Z;) one has

o CE =2y o(Z-2)-(Z-2)
T g Z -7,

)7

so the graphs of different centered in Z; on Z; coincide for v(p) < v(Z; — Z).

As the value of the different in py; is v(p), it follows that p;;, = pi; for Z; in the first
neighborhood of Z;, i.e. the points in the first neighborhood of Z; are equidistant.

Now in order to get information the trick is to look at equations induced by o and to
compare formulas for the different with the previous one.
Theorem|[G-M2]). Let X? = [[, (T —T;;)™u (where u is a unit, (ny,p) = 1) be a p,-
torsor of the punctured closed disc D¢ — {T;;}. We assume that V() C (Branch locus).
Two cases can occur.
1-st case. U is not a p-power then it is defined up to multiplication by a p-power.
Moreover the equation gives an étale equation outside the branch locus which mod 7 gives
the equation of the reduction component which is smooth outside the specialization of
branch points. Moreover v(different) = v(p) and w = du is defined up to multiplication by
p-powers.

2-nd case. 1 is a p-power then after a transformation one gets a new equation X? = 1+
X-1
't

77"y where @ is not a p-power; the irreducuble polynomial of gives the integral model
and in reduction this model gives the equation of the reduction component which is smooth
outside the specialization of branch points and the different v(diff) = v(p) —(p—1)t < v(p)
and w = du is uniquely defined.

We then apply the Theorem to the closed discs which correspond to the irreducible
components in DY.

The result is as follows: For simplification sake we assume that P, is an internal com-
ponent meeting only one other internal component.

FE; = end component E;

m; + 1 f s m; + 1
fix pts. — pts. L
1 zj Hurwitz data hj; » 1ty

a;
P, = internal 4 P!
component
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End components F; correspond to the first case above (p,-type degeneration), there is u;
such that X? = ; defines a smooth curve outside Z;; and oo so support(du;) C {t;;,c0},
moreover ‘

ordy, .w; = h;; — 1 mod p

and
ordooi:taiw,i =m,; — 1.

Internal component correspond to the second case (a,-type degeneration). Let w, =
di, be the corresponding differential then ord,, w, = —(m; + 1) (this is a crucial part,
the trick consists in comparing the gradient of the different obtained on one side from the
graph d(v(p)) and on the other side by deforming the ray of the closed disc in second part
of the theorem above).

It follows that

ordewo = —2 + Zmi + 1.

A first noticeable application is
Theorem([G-M2]). Let o an order p-automorphism and assume |F,| = m+1 > 2 and
m < p, then the points in F,, are equidistant i.e. D? has only one irreducible component.

Proof. 1f we had more than one component then concider a path of maximal length in
the tree it ends as in the example above. Now we remark that the function 4, defines
a finite cover P! — P! which is étale outside co and 0 (it is ramified above co in t,,
with order m; < p so tamely ramified and above 0 in co with order —1+4 Y (m; + 1) <
—14+m+1 < p), so we get a tame cover of P! — {0, 00} so it is as in characteristic 0
totally ramified and cyclic so 4, has only one pole; this contradicts the minimality of D°.

Moreover the coordinates of the specialization of the points in F, satisfy the following

equations;

ho+-- 4+ hyn=20

hotg L4+ 4 Apt™ = 0
and

[T -1 #o.
In particular for fixed #y,t; there are only a finite number of solutions; this is the first
step to prove:
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Theorem([G-M2]). Assume 1 < m+ 1 < p then there are only a finite number of
congugacy classes of order p-automorphism without inertia at m with m + 1 fix points.

A representative system occurs when considering the p-cyclic cover of P! (which has
potentially good reduction an étale cover of A! with conductor m + 1 at co)

y* =[] -7x)™

where T; are solutions in Z;" of the system of equations
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