
Lecture II : Finite order automorphisms of a $r$adic open disc

by Michel Matignon

Notations: Same as in Lecture I.

$0$ . Introduction

We would like to understand when the local lifting problem has a positive answer, and

moreover for a given group as automorphism group of $k[[z]]$ we would like to classify the

possible liftings via geometric datas suppress, the inverse Galois type conjecture as settled
in Lecture I says that we expect a lot of solutions.

The first important case to handle is that of p–cyclic groups.

I. Generalities

$\mathrm{a}$. Open disc over $R$.
Definition. Let $R$ be as above, let $D^{o}$ be the $R$-scheme $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{C}R[[z]]$ , it’s geometric generic

fiber $D_{()}^{o_{K^{\mathrm{a}\mathrm{l}}\mathrm{g}}}=\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(R[[Z]]\otimes_{R}K^{\mathrm{a}})$ can be easily described. The closed points are given

by the ideals $(Z-z_{0})$ where $Z_{0}\in K^{\mathrm{a}}$ is in the open disc $v(Z_{0})>0$ . Then

$D_{(K}^{o}\simeq D^{o})(K^{\mathrm{a}})/\mathrm{G}\mathrm{a}1(K^{\mathrm{a}}/K)$ ,

this is the open disc over $K$ (of ray 1) and we will call its minimal smooth model over $R$ ,
$D^{o}$ the open disc over $R$ .

$:.\cdot.\cdots.....$.: $\bullet$...
$....-\cdot\cdot.\cdot$

$\mathrm{s}_{\mathrm{p}\mathrm{e}\mathrm{C}}R$

$\mathrm{b}$ . Automorphisms of open discs.
The $R$-automorphisms of $R[[Z]]$ are continuous for the $(\pi, Z)$ -adic topology, we denote

by $\mathrm{A}\mathrm{u}\mathrm{t}_{R}R[[Z]]$ their set.
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Such $\sigma\in \mathrm{A}\mathrm{u}\mathrm{t}_{R}R[[Z]]$ is determined by $\sigma(Z):=a_{0}+a_{1}Z+\cdots$ such $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}_{J}a_{0}\in\pi Z$ and
$a_{1}\in R^{\cross}$ .

As usual $\sigma$ acts on the scheme $D^{o}$ ; namely for $Z_{0}\in\pi R$ , the action on the ideal $(Z-Z_{0})$

is the ideal $\sigma^{-1}(Z-Z_{0})=(Z-z_{0}’)$ where $Z_{0}’$ is the series $\sigma(Z)$ evaluated in $Z_{0}$ . We will
do the following abuse, we will denote $Z_{0}arrow\sigma(Z_{0})$ this action on closed points in $D_{(K)}^{o}\mathrm{a}\mathrm{l}\mathrm{g}$ .
Definiton. Let $\sigma\in \mathrm{A}\mathrm{u}\mathrm{t}_{R}R[[Z]]$ be a finite order $automorphism_{\mathrm{i}}$ we denote by $F_{\sigma}$ the
set of geometric points in $D_{(K^{\mathrm{a}18)}}^{o}$ which are fixed by the action of $\sigma$, i.e. the roots of the
series $\sigma(Z)-Z$ .

In the sequel unless mentionned we focus our attention on finite order $\sigma’ \mathrm{s}$ for which
$F_{\sigma}\neq\emptyset$ .

Write $\sigma(Z)-Z=b_{0}+b_{1}Z+\cdots=f_{m+1}(z)U(Z)$ by Weierstrass Preparation Theorem,
where $f_{m+1}(Z)$ is a degree $m+1$ distinguished polynomial and $U(Z)$ a unit in $R[[Z]]$ .

One can show that $f_{m+1}(Z)$ has $m+1$ distinct roots in $K$alg (with value $||<1$ ), then

$|F_{\sigma}|=m+1= \inf\{\dot{i}|v(b_{i})\leq v(b_{j}),\forall j\}$ .

Say order $\sigma=p$ and $F_{\sigma}\neq\emptyset$ . To each point $Z_{0}\in F_{\sigma}$ we attached a primitive n-th root
of unity namely $\frac{\sigma(Z-^{z_{0})}}{Z-Z_{\mathrm{O}}}\mathrm{m}\mathrm{o}\mathrm{d} (Z-Z_{0})$ .

Fixing a primitive m-th root of 1 say $\zeta$ this defines for $F_{\sigma}=\{Z_{0}, \cdots, Z_{m}\}$ a set
$\{h_{0}, \cdots, h_{m}\}\in((\mathbb{Z}/p\mathbb{Z})^{\cross})^{m}$ , we call this set the Hurwitz data $H(\sigma)$ of the automorphism
$\sigma$ .
$\mathrm{c}$ . Let a as above. After a finite extension of $R$ we can assume that $F_{\sigma}\subset D^{o}(R)$ . We
denote by $D^{o}$ , the minimal semi-stable model of $D_{(K)}^{o}$ in which the points in $F_{\sigma}$ specialize
in distinct smooth points (this can be achieved by successive blowing up centered in
$(\pi, Z))$ , moreover by the minimality condition this model is unique and so $\sigma$ acts on $D^{o}$ .
This model gives a picture of the geometry of points in $F_{\sigma}$ .

The special fibre is an oriented tree like of projective lines attached to the original
generic point $(\pi)\in D^{o}$ (as origin); each projective line gets in this way a natural $\infty$ point.
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Main problem: Describe the possible trees and the relative positions of crossing points
as well of specializations of points in $F_{\sigma}$ .

$\mathrm{d}$ . Some examples.
$0$ . Finite order automorphisms $\sigma$ such that $F_{\sigma}=\emptyset$ naturally occur when consider-
ing Lubin-Tate formal groups. Namely let $F(Z_{1}, z_{2})$ be a formal group law over $R$,
$R^{s}$ (resp. $\mathfrak{m}^{s}$ ) $:=$ { $z\in K^{\mathrm{a}}|v(Z)\geq 0$ (resp. $>0)$ } and denote by $F(\mathfrak{m}^{S})$ the group whose
underlying space is $\mathfrak{m}^{s}$ and the group law is given by $z_{1}+_{F}z_{2}=F(z_{1,2}z)$ .

Let $\Lambda(\mathfrak{m}^{S})\subset F(\mathfrak{m}^{S})$ be the torsion subgroup. The map $\Phi$ : $\Lambda(\mathfrak{m}^{S})arrow \mathrm{A}\mathrm{u}\mathrm{t}_{R^{S}}RS[[Z]]$

defined by $\Phi(z)(Z)=F(Z, z)$ is an injective homomorphism ([Ha] 35.2.6). It is easy to
see that $\Phi(z)$ induces the identity automorphism at the special fiber and that it has no
fix point. Moreover when $\Lambda(\mathfrak{m}^{S})\simeq(\mathbb{Q}_{p}/\mathbb{Z}_{p})^{h}$ where $h$ is the height of $F(Z_{1}, z_{2})$ (see [H]
35.1.6). Now consider $G$ a finite abelian p–group of $p$ rank $h$ , let $F(Z_{1}, Z_{2})$ be a Lubin-Tate
formal group of height $h$ then $G\subset\Lambda(\mathfrak{m}^{s})$ occurs as a subgroup of $\mathrm{A}\mathrm{u}\mathrm{t}_{R}R[[Z]]$ .
1. Let $o(\sigma)=n$ and $(n,p)=1$ , then $\sigma$ has a unique fix point which is rational, moreover
it is linearizable i.e. there is a new parameter $Z’$ such that $\sigma(z^{J})=\zeta^{h}Z’$ for $\zeta^{h}$ a primitive
n-th root of unity. This classifies such automorphism up to conjugation.
2. More generally (see [G-M2] Prop.6.2.1) if $\sigma$ is a finite order automorphism with only
one fix point then it is linearizable.
3. Let $(m,p)=1$ and consider the order $r$-automorphism build in the previous lecture
$\sigma(Z)=\zeta Z(1+Z^{m})^{-1/m}$ , then

$F_{\sigma}=\{0, \theta^{i}(\zeta^{m}-1)1/m|0\leq i<m\}$

where $\theta$ is a primitive m-th root of 1. The Hurwitz datas are $(1, -1/m, \ldots, -1/m)$ and the
tree as considered in $\mathrm{c}$ . has only one projective line (i.e. the fix points are equidistant).
4. In [M] we build an example of order p–automorphism with equidistant fix points in
order to lift some $(\mathbb{Z}/p\mathbb{Z})^{n}$-realization as an automorphism group of $k[[z]]$ . (See end of
previous lecture.)

We prove
Theorem $([\mathrm{M}])$ . Let $a_{1},$ $a_{2},$ $\cdots$ , $a_{n}\in \mathbb{Z}_{p}^{\mathrm{u}\mathrm{r}}$ and

$P(X)= \prod_{1(\epsilon,\cdots,\Xi_{n})\in\{0\mathrm{P}^{-}1\}^{n}},\cdots,[1+(_{1\leq i}\sum_{\leq n}\epsilon iai)^{p}X]^{\Xi 1}$
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then there exists $u\in \mathbb{Z}_{p^{j}}^{\mathrm{u}\mathrm{r}}Q(x),$ $R(x),$ $s(X),$ $T(X)\in \mathbb{Z}_{p}^{\mathrm{u}\mathrm{r}}[X]$ and $m_{n}=p^{n-1}(p-1)-1$

such that

$P(X)=(1+XQ(X))\mathrm{P}+u^{p}X^{m_{n}}(1+XR(x))+px^{()}m_{n}+1/ps(x)+p^{2}T(x)$ .

Moreover there are infinitely many choices of $a_{i}$ such that the $p$-cydic cover of $\mathrm{P}^{1}$ defined
by the equation $Y^{p}=P(X)$ has potentially good reduction at $p$ relatively to the $S- Ga\prime LLss$

valuation for $S:=\lambda^{-p/m_{n}}X$ and mod $\pi$ induces an \’etale cover of $\mathrm{P}^{1}$ with conductor
$m_{n}+1$ at $\infty$ . In particvlar the morphism at the level of formal fibre at $\infty$ induces
an order $p$-automo$7ph\dot{i}sm$ of the open disc with $m_{n}+1$ fix points. Hurwitz datas are
{1 ($p^{n}$ times), 2 $(p^{n}$ times), ..., $p-1(p^{n}$ times)} and the tree as considered in $\mathrm{c}$ . has only
one projective line (i.e. the fix points are equidistant).
5. An example with more than 1 component. Let $p=2$ and consider the elliptic curve
$Y^{2}=X(X-1)(X-\rho)$ . For $|2|^{4}<|\rho|<1$ ,

$|j(p)|=| \frac{2^{8}(\rho^{2}-\rho+1)3}{p^{2}(\rho-1)^{2}}|<1$ ,

$\mathfrak{o}$ . $\mathrm{u}\mathrm{r}(\mathrm{l}\mathrm{e}\mathrm{r}p$ automorpmsm wltouij lnertla at $\pi$ narurally $\mathrm{a}\mathrm{l}\mathrm{S}\mathrm{O}$ occur wnen $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{l}\mathrm{o}\mathrm{e}\Gamma \mathrm{m}\mathrm{g}$

endomorphisms of the so called Lubin-Tate formal groups (see [G-M 2] II.3.3.3). The
number of fix points is a power of $p$ and the Hurwitz datas are $(1, 1, \ldots, 1)$ . The geometry
of tree is that of a tree of valence $\eta_{-}$

Unented tree $D^{\cup}$.

109



Along the same line one can give order $p^{n}$ automorphism without inertia at $\pi$ and in

this way we prove the cyclic p–groups have the Inverse Galois type property (see lecture

I).

II. Order p-automorphisms

Let a be an order p.automorphism with $F_{\sigma}\neq\emptyset$ . Consider the morphism $f$ : $D^{o}arrow$

$D^{o}/\langle\sigma\rangle$ . From the unicity of $D^{o}$ it follows that $\sigma$ is the identity on each irreducible
component of $D_{s}^{O}$ and so $f_{s}$ : $D_{s}^{o}arrow(D^{O}/\langle\sigma\rangle)_{s}$ is an homeomorphism.

The first qualitative result is
Theorem $([\mathrm{G}-\mathrm{M}2])$ . The fix points in $F_{\sigma}$ specialize in the terminal components.

Proof. Say $Z_{i}=0\in F_{\sigma}$ is a fix point. Let $D^{c}(0, \rho)$ be the closed disc inside $D_{(K)}^{o}$

centered in $0$ and ray $v(\rho)$ . Let $v_{\rho}$ be the Gauss-valuation relative to $\frac{Z}{\rho}$ , it defines a
$l\succ \mathrm{c}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{i}\mathrm{C}$ valued field extension $\mathrm{F}\mathrm{r}R[[Z]]/\mathrm{F}\mathrm{r}R[[Z]]^{\langle\sigma\rangle}$ which is residually purely inseparable,

moreover the valuation ring is monogenic generated by $\frac{Z}{\rho}$ . Let $d(v(p))$ be the degree of

the different in this valued extension. Then

$d(v( \rho))=(p-1)v_{\rho}(\frac{\sigma(Z)}{Z}-1)$

if $\sigma(Z)=\zeta Z(1+a_{1}Z+\cdots)$ ; then

$d(v( \rho))=(p-1)\inf\{v(n\geq 0\zeta-1), v(a_{n})+nv(p)\}\leq v(p)$

and
$\frac{\sigma(Z)}{Z}-1=$

$\prod_{0,z_{j}\in FZ_{j}\neq}(Z-z_{j})\sigma U(Z)$

where $U(Z)$ is an unit.
We get the graph of $d(v(\rho))$ .

$s_{1}=\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t}=(p-1)m$

$\rho_{f_{i^{--\inf_{j}}}}v(zi-Z_{j})Z\in F\sigma$
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Now consider an other fixed point $Z_{j}$ . We remark that for $v(\rho)\leq v(Z_{i}-Z_{j})$ one has

$v_{\rho}( \frac{\sigma(Z)-Z}{Z})=v_{\rho}(\frac{\sigma(Z-Z_{j})-(Z-z)j}{Z-Z_{j}})$ ,

so the graphs of different centered in $Z_{i}$ on $Z_{j}$ coincide for $v(\rho)\leq v(Z_{i}-Z_{j})$ .
As the value of the different in $\rho_{l_{i}}$ is $v(p)$ , it follows that $\rho_{l_{i}}=\rho_{l_{j}}$ for $Z_{j}$ in the first

neighborhood of $Z_{i}$ , i.e. the points in the first neighborhood of $Z_{i}$ are equidistant.
Now in order to get information the trick is to look at equations induced by $\sigma$ and to

compare formulas for the different with the previous one.
Theorem[G-M2] $)$ . Let $X^{p}= \prod_{i,j}(T-\tau_{ij})^{n_{ij}}u$ (where $u$ is a unit, $(n_{ij},p)=1$) be a $\mu_{p^{-}}$

torsor of the punctured closed disc $D^{c}-\{T_{ij}\}$ . We assume that $V(\pi)\subset$ (Branch locus).
Two cases can occur.
l-st case. $\overline{u}$ is not a $p$ -power then it is defined up to multiplication by a p-power.
Moreover the equation gives an \’etale equation outside the branch locus which mod $\pi$ gives
the equation of the reduction component which is smooth outside the specialization of
branch points. Moreover $v(\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{n}\mathrm{t})=v(\rho)$ and $\omega=d\overline{u}\dot{i}S$ defined up to multiplication by
p-powers.
$2-\mathrm{n}\mathrm{d}$ case. $\overline{u}$ is a $p$-power then afler a transformation one gets a new equation $X^{p}=1+$

$\pi^{p^{t}}u$ where $\overline{u}$ is not a $p$ -powerj the irreducuble polynomial of $\frac{X-1}{\pi^{t}}$ gives the integral model
and in reduction this model gives the equation of the reduction component which is smooth
outside the specialization of branch points and the different $v(d_{\dot{i}}ff)=v(\rho)-(p-1)t<v(p)$

and $\omega=d\overline{u}$ is uniquely defined.
We then apply the Theorem to the closed discs which correspond to the irreducible

components in $D_{s}^{O}$ .
The result is as follows: For simplification sake we assume that $P_{\alpha}$ is an internal com-

ponent meeting only one other internal component.
$E_{i}=\mathrm{e}\mathrm{n}\mathrm{d}$ component $E_{i}$

$arrow f_{s}$
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End components $E_{i}$ correspond to the first case above ( $\mu_{p}$-type degeneration), there is $\overline{u_{i}}$

such that $X^{p}=\overline{u_{i}}$ defines a smooth curve outside $Z_{ij}$ and $\infty$ so $supp\sigma rt(d\overline{u}_{i})\subset\{t_{ij}, \infty\}$ ,
moreover

$\mathrm{o}\mathrm{r}\mathrm{d}t_{ij}\omega i\equiv h_{ij}-1$ mod $p$

and
$\mathrm{o}\mathrm{r}\mathrm{d}_{\infty_{i}=t_{\alpha_{i}}i}\omega=m_{i}-1$ .

Internal component correspond to the second case ( $\alpha_{p}$-type degeneration). Let $\omega_{\alpha}=$

$du_{\alpha}^{-}$ be the corresponding differential then $ord_{t_{\alpha_{t}}}\omega_{\alpha}=-(m_{i}+1)$ (this is a crucial part,
the trick consists in comparing the gradient of the different obtained on one side from the
graph $d(v(\rho))$ and on the other side by deforming the ray of the closed disc in second part
of the theorem above).

It follows that
$\mathrm{o}\mathrm{r}\mathrm{d}_{\infty}\omega_{\alpha}=-2+\sum mi+*1$

.

A first noticeable application is
Theorem $([\mathrm{G}-\mathrm{M}2])$ . Let $\sigma$ an order $p$ -automorphism and assume $|F_{\sigma}|=m+1\geq 2$ and
$m<p$ , then the points in $F_{\sigma}$ are equidistant i.e. $D_{s}^{O}$ has only one irreducible component.

Proof. If we had more than one component then concider a path of maximal length in
the tree it ends as in the example above. Now we remark that the function $u_{\alpha}^{-}$ defines
a finite cover $\mathrm{P}^{1}arrow \mathrm{P}^{1}$ which is \’etale outside $\infty$ and $0$ (it is ramified above $\infty$ in $t_{\alpha_{i}}$

with order $m_{i}<p$ so tamely ramified and above $0$ in $\infty$ with $\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}-1+\sum(m_{i}+1)\leq$

$-1+m+1<p)$ , so we get a tame cover of $\mathrm{P}^{1}-\{0, \infty\}$ so it is as in characteristic $0$

totally ramified and cyclic so $u_{\alpha}^{-}$ has only one pole; this contradicts the minimality of $D^{o}$ .
Moreover the coordinates of the specialization of the points in $F_{\sigma}$ satisfy the following

equations;

$\{$

$h_{0}+\cdots+h_{m}=0$

$h_{0}t_{0}+\cdots+hmt=\mathrm{o}m$

$h0t_{0}^{m-}+\cdots+h1t_{m}m-1=\mathrm{o}m$

and
$\prod(t_{i}-t_{j})\neq 0$ .

In particular for fixed $t_{0},t_{1}$ there are only a finite number of solutions; this is the first
step to prove:
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Theorem $([\mathrm{G}-\mathrm{M}2])$ . Assume $1\leq m+1\leq p$ then there are only a finite number of
conjugacy classes of order $p$ -automorphism without inertia at $\pi$ with $m+1$ fix points.

A representative system occurs when considering the $r$cyclic cover of $\mathrm{P}^{1}$ (which has
potentially good reduction an \’etale cover of $\mathrm{A}^{1}$ with conductor $m+1$ at $\infty$)

$Y^{n}= \prod(1-\tau_{i}x)^{h_{i}}$

where $T_{i}$ are solutions in $\mathbb{Z}_{p}^{\mathrm{u}\mathrm{r}}$ of the system of equations

$\{$

$h_{0}\tau_{0}+\cdots+h_{m}T_{m}=0$

$h_{0^{T_{0}^{m}h_{m}}=0}-1+\cdots+\tau_{m}m-1$ .
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