Lecture II : Finite order automorphisms of a p-adic open disc

by Michel Matignon

Notations: Same as in Lecture I.

0. Introduction

We would like to understand when the local lifting problem has a positive answer, and moreover for a given group as automorphism group of k[[z]] we would like to classify the possible liftings via geometric datas suppress, the inverse Galois type conjecture as settled in Lecture I says that we expect a lot of solutions.

The first important case to handle is that of *p*-cyclic groups.

I. Generalities

a. Open disc over R.

Definition. Let R be as above, let D^o be the R-scheme SpecR[[Z]], it's geometric generic fiber $D^o_{(K^{alg})} = \text{Spec}(R[[Z]] \otimes_R K^{alg})$ can be easily described. The closed points are given by the ideals $(Z - Z_0)$ where $Z_0 \in K^{alg}$ is in the open disc $v(Z_0) > 0$. Then

$$D^{o}_{(K)} \simeq D^{o}_{(K^{\mathrm{alg}})} / \mathrm{Gal}(K^{\mathrm{alg}}/K),$$

this is the open disc over K (of ray 1) and we will call its minimal smooth model over R, D° the open disc over R.

b. Automorphisms of open discs.

The *R*-automorphisms of R[[Z]] are continuous for the (π, Z) -adic topology, we denote by $\operatorname{Aut}_{R}R[[Z]]$ their set.

Such $\sigma \in \operatorname{Aut}_{R}R[[Z]]$ is determined by $\sigma(Z) := a_0 + a_1Z + \cdots$ such that $a_0 \in \pi Z$ and $a_1 \in \mathbb{R}^{\times}$.

As usual σ acts on the scheme D° ; namely for $Z_0 \in \pi R$, the action on the ideal $(Z - Z_0)$ is the ideal $\sigma^{-1}(Z - Z_0) = (Z - Z_0')$ where Z_0' is the series $\sigma(Z)$ evaluated in Z_0 . We will do the following abuse, we will denote $Z_0 \to \sigma(Z_0)$ this action on closed points in $D^{\circ}_{(K^{\text{alg}})}$. **Definiton.** Let $\sigma \in \text{Aut}_R R[[Z]]$ be a finite order automorphism; we denote by F_{σ} the set of geometric points in $D^{\circ}_{(K^{\text{alg}})}$ which are fixed by the action of σ , i.e. the roots of the series $\sigma(Z) - Z$.

In the sequel unless mentionned we focus our attention on finite order σ 's for which $F_{\sigma} \neq \emptyset$.

Write $\sigma(Z) - Z = b_0 + b_1 Z + \cdots = f_{m+1}(Z)U(Z)$ by Weierstrass Preparation Theorem, where $f_{m+1}(Z)$ is a degree m+1 distinguished polynomial and U(Z) a unit in R[[Z]].

One can show that $f_{m+1}(Z)$ has m+1 distinct roots in K^{alg} (with value || < 1), then

$$|F_{\sigma}| = m + 1 = \inf\{i \mid v(b_i) \le v(b_j), \forall j\}.$$

Say order $\sigma = p$ and $F_{\sigma} \neq \emptyset$. To each point $Z_0 \in F_{\sigma}$ we attached a primitive *n*-th root of unity namely $\frac{\sigma(Z-Z_0)}{Z-Z_0} \mod (Z-Z_0)$.

Fixing a primitive *m*-th root of 1 say ζ this defines for $F_{\sigma} = \{Z_0, \dots, Z_m\}$ a set $\{h_0, \dots, h_m\} \in ((\mathbb{Z}/p\mathbb{Z})^{\times})^m$, we call this set the Hurwitz data $H(\sigma)$ of the automorphism σ .

c. Let σ as above. After a finite extension of R we can assume that $F_{\sigma} \subset D^{o}(R)$. We denote by \mathcal{D}^{o} , the minimal semi-stable model of $D^{o}_{(K)}$ in which the points in F_{σ} specialize in distinct smooth points (this can be achieved by successive blowing up centered in (π, Z)), moreover by the minimality condition this model is unique and so σ acts on \mathcal{D}^{o} . This model gives a picture of the geometry of points in F_{σ} .

The special fibre is an oriented tree like of projective lines attached to the original generic point $(\pi) \in D^o$ (as origin); each projective line gets in this way a natural ∞ point.

Main problem: Describe the possible trees and the relative positions of crossing points as well of specializations of points in F_{σ} .

d. Some examples.

0. Finite order automorphisms σ such that $F_{\sigma} = \emptyset$ naturally occur when considering Lubin-Tate formal groups. Namely let $F(Z_1, Z_2)$ be a formal group law over R, $R^s(resp. \mathfrak{m}^s) := \{z \in K^{alg} | v(z) \ge 0 \ (resp. > 0)\}$ and denote by $F(\mathfrak{m}^s)$ the group whose underlying space is \mathfrak{m}^s and the group law is given by $z_1 +_F z_2 = F(z_1, z_2)$.

Let $\Lambda(\mathfrak{m}^s) \subset F(\mathfrak{m}^s)$ be the torsion subgroup. The map $\Phi : \Lambda(\mathfrak{m}^s) \to \operatorname{Aut}_{R^s} R^s[[Z]]$ defined by $\Phi(z)(Z) = F(Z, z)$ is an injective homomorphism ([Ha] 35.2.6). It is easy to see that $\Phi(z)$ induces the identity automorphism at the special fiber and that it has no fix point. Moreover when $\Lambda(\mathfrak{m}^s) \simeq (\mathbb{Q}_p/\mathbb{Z}_p)^h$ where h is the height of $F(Z_1, Z_2)$ (see [H] 35.1.6). Now consider G a finite abelian p-group of p rank h, let $F(Z_1, Z_2)$ be a Lubin-Tate formal group of height h then $G \subset \Lambda(\mathfrak{m}^s)$ occurs as a subgroup of $\operatorname{Aut}_R R[[Z]]$.

1. Let $o(\sigma) = n$ and (n, p) = 1, then σ has a unique fix point which is rational, moreover it is linearizable *i.e.* there is a new parameter Z' such that $\sigma(Z') = \zeta^h Z'$ for ζ^h a primitive *n*-th root of unity. This classifies such automorphism up to conjugation.

2. More generally (see [G-M2] Prop.6.2.1) if σ is a finite order automorphism with only one fix point then it is linearizable.

3. Let (m, p) = 1 and consider the order *p*-automorphism build in the previous lecture $\sigma(Z) = \zeta Z (1 + Z^m)^{-1/m}$, then

$$F_{\sigma} = \{0, \theta^{i} (\zeta^{m} - 1)^{1/m} \mid 0 \le i < m\}$$

where θ is a primitive *m*-th root of 1. The Hurwitz datas are (1, -1/m, ..., -1/m) and the tree as considered in **c**. has only one projective line (*i.e.* the fix points are equidistant).

4. In [M] we build an example of order *p*-automorphism with equidistant fix points in order to lift some $(\mathbb{Z}/p\mathbb{Z})^n$ -realization as an automorphism group of k[[z]]. (See end of previous lecture.)

We prove

Theorem([M]). Let $a_1, a_2, \dots, a_n \in \mathbb{Z}_p^{ur}$ and

$$P(X) = \prod_{(\varepsilon_1, \cdots, \varepsilon_n) \in \{0, \cdots, p-1\}^n} \left[1 + \left(\sum_{1 \le i \le n} \varepsilon_i a_i \right)^p X \right]^{\varepsilon_1}$$

then there exists $u \in \mathbb{Z}_p^{\mathrm{ur}}$; $Q(X), R(X), S(X), T(X) \in \mathbb{Z}_p^{\mathrm{ur}}[X]$ and $m_n = p^{n-1}(p-1) - 1$ such that

$$P(X) = (1 + XQ(X))^{p} + u^{p}X^{m_{n}}(1 + XR(X)) + pX^{(m_{n}+1)/p}S(X) + p^{2}T(X).$$

Moreover there are infinitely many choices of a_i such that the p-cyclic cover of \mathbb{P}^1 defined by the equation $Y^p = P(X)$ has potentially good reduction at p relatively to the S-Gauss valuation for $S := \lambda^{-p/m_n} X$ and mod π induces an étale cover of \mathbb{P}^1 with conductor $m_n + 1$ at ∞ . In particular the morphism at the level of formal fibre at ∞ induces an order p-automorphism of the open disc with $m_n + 1$ fix points. Hurwitz datas are $\{1 (p^n \text{ times}), 2 (p^n \text{ times}), ..., p - 1 (p^n \text{ times})\}$ and the tree as considered in c. has only one projective line (i.e. the fix points are equidistant).

5. An example with more than 1 component. Let p = 2 and consider the elliptic curve $Y^2 = X(X-1)(X-\rho)$. For $|2|^4 < |\rho| < 1$,

$$|j(\rho)| = \left| \frac{2^8 (\rho^2 - \rho + 1)^3}{\rho^2 (\rho - 1)^2} \right| < 1$$

so the curve has potentially good reduction which is supersingular *i.e.* a 2-étale cover of \mathbb{A}^1 .

So it induces an order 2-automorphism of the open disc.

6. Order p automorphism witout inertia at π naturally also occur when considering endomorphisms of the so called Lubin-Tate formal groups (see [G-M 2] II.3.3.3). The number of fix points is a power of p and the Hurwitz datas are (1, 1, ..., 1). The geometry of tree is that of a tree of valence p.

Along the same line one can give order p^n automorphism without inertia at π and in this way we prove the cyclic *p*-groups have the Inverse Galois type property (see lecture I).

II. Order *p*-automorphisms

Let σ be an order *p*-automorphism with $F_{\sigma} \neq \emptyset$. Consider the morphism $f : \mathcal{D}^{o} \longrightarrow \mathcal{D}^{o}/\langle \sigma \rangle$. From the unicity of \mathcal{D}^{o} it follows that σ is the identity on each irreducible component of \mathcal{D}^{o}_{s} and so $f_{s} : \mathcal{D}^{o}_{s} \longrightarrow (\mathcal{D}^{o}/\langle \sigma \rangle)_{s}$ is an homeomorphism.

The first qualitative result is

Theorem([G-M2]). The fix points in F_{σ} specialize in the terminal components.

Proof. Say $Z_i = 0 \in F_{\sigma}$ is a fix point. Let $D^c(0, \rho)$ be the closed disc inside $D^o_{(K)}$ centered in 0 and ray $v(\rho)$. Let v_{ρ} be the Gauss-valuation relative to $\frac{Z}{\rho}$, it defines a p-cyclic valued field extension $\operatorname{Fr}R[[Z]]/\operatorname{Fr}R[[Z]]^{\langle \sigma \rangle}$ which is residually purely inseparable, moreover the valuation ring is monogenic generated by $\frac{Z}{\rho}$. Let $d(v(\rho))$ be the degree of the different in this valued extension. Then

$$d(v(\rho)) = (p-1)v_{\rho}(\frac{\sigma(Z)}{Z} - 1)$$

if $\sigma(Z) = \zeta Z (1 + a_1 Z + \cdots)$; then

$$d(v(\rho)) = (p-1) \inf_{n \ge 0} \{ v(\zeta - 1), v(a_n) + nv(\rho) \} \le v(p)$$

and

$$\frac{\sigma(Z)}{Z} - 1 = \prod_{\substack{Z_j \neq 0 \\ Z_j \in F_{\sigma}}} (Z - Z_j) U(Z)$$

where U(Z) is an unit.

We get the graph of $d(v(\rho))$.

 $s_1 = ext{gradient} = (p-1)m$ $ho_{\ell_i} = ext{inf}_{Z_j \in F_\sigma} v(Z_i - Z_j)$ Now consider an other fixed point Z_j . We remark that for $v(\rho) \leq v(Z_i - Z_j)$ one has

$$v_{
ho}(rac{\sigma(Z)-Z}{Z})=v_{
ho}(rac{\sigma(Z-Z_j)-(Z-Z_j)}{Z-Z_j}),$$

so the graphs of different centered in Z_i on Z_j coincide for $v(\rho) \leq v(Z_i - Z_j)$.

As the value of the different in ρ_{l_i} is v(p), it follows that $\rho_{l_i} = \rho_{l_j}$ for Z_j in the first neighborhood of Z_i , *i.e.* the points in the first neighborhood of Z_i are equidistant.

Now in order to get information the trick is to look at equations induced by σ and to compare formulas for the different with the previous one.

Theorem[G-M2]). Let $X^p = \prod_{i,j} (T - T_{ij})^{n_{ij}} u$ (where u is a unit, $(n_{ij}, p) = 1$) be a μ_p -torsor of the punctured closed disc $D^c - \{T_{ij}\}$. We assume that $V(\pi) \subset$ (Branch locus). Two cases can occur.

1-st case. \bar{u} is not a p-power then it is defined up to multiplication by a p-power. Moreover the equation gives an étale equation outside the branch locus which mod π gives the equation of the reduction component which is smooth outside the specialization of branch points. Moreover $v(\text{different}) = v(\rho)$ and $\omega = d\bar{u}$ is defined up to multiplication by p-powers.

2-nd case. \bar{u} is a p-power then after a transformation one gets a new equation $X^p = 1 + \pi^{p^t} u$ where \bar{u} is not a p-power; the irreducuble polynomial of $\frac{X-1}{\pi^t}$ gives the integral model and in reduction this model gives the equation of the reduction component which is smooth outside the specialization of branch points and the different $v(diff) = v(\rho) - (p-1)t < v(p)$ and $\omega = d\bar{u}$ is uniquely defined.

We then apply the Theorem to the closed discs which correspond to the irreducible components in \mathcal{D}_s^o .

The result is as follows: For simplification sake we assume that P_{α} is an internal component meeting only one other internal component.

End components E_i correspond to the first case above (μ_p -type degeneration), there is $\overline{u_i}$ such that $X^p = \overline{u_i}$ defines a smooth curve outside Z_{ij} and ∞ so $support(d\overline{u_i}) \subset \{t_{ij}, \infty\}$, moreover

$$\operatorname{ord}_{t_{ij}}\omega_i \equiv h_{ij} - 1 \mod p$$

and

$$\operatorname{ord}_{\infty_i=t_{\alpha_i}}\omega_i=m_i-1.$$

Internal component correspond to the second case (α_p -type degeneration). Let $\omega_{\alpha} = d\bar{u}_{\alpha}$ be the corresponding differential then $ord_{t_{\alpha_i}}\omega_{\alpha} = -(m_i + 1)$ (this is a crucial part, the trick consists in comparing the gradient of the different obtained on one side from the graph $d(v(\rho))$ and on the other side by deforming the ray of the closed disc in second part of the theorem above).

It follows that

$$\operatorname{ord}_{\infty}\omega_{\alpha} = -2 + \sum_{i} m_{i} + 1.$$

A first noticeable application is

Theorem([G-M2]). Let σ an order p-automorphism and assume $|F_{\sigma}| = m + 1 \ge 2$ and m < p, then the points in F_{σ} are equidistant i.e. D_s^o has only one irreducible component.

Proof. If we had more than one component then concider a path of maximal length in the tree it ends as in the example above. Now we remark that the function $\bar{u_{\alpha}}$ defines a finite cover $\mathbb{P}^1 \longrightarrow \mathbb{P}^1$ which is étale outside ∞ and 0 (it is ramified above ∞ in t_{α_i} with order $m_i < p$ so tamely ramified and above 0 in ∞ with order $-1 + \sum (m_i + 1) \leq$ -1 + m + 1 < p), so we get a tame cover of $\mathbb{P}^1 - \{0, \infty\}$ so it is as in characteristic 0 totally ramified and cyclic so $\bar{u_{\alpha}}$ has only one pole; this contradicts the minimality of D^o .

Moreover the coordinates of the specialization of the points in F_{σ} satisfy the following equations;

$$\begin{cases} h_0 + \dots + h_m = 0 \\ h_0 t_0 + \dots + h_m t_m = 0 \\ \dots \\ h_0 t_0^{m-1} + \dots + h_m t_m^{m-1} = 0 \end{cases}$$

and

In particular for fixed t_0, t_1 there are only a finite number of solutions; this is the first step to prove:

 $\prod (t_i - t_j) \neq 0.$

Theorem([G-M2]). Assume $1 \le m + 1 \le p$ then there are only a finite number of conjugacy classes of order p-automorphism without inertia at π with m + 1 fix points.

A representative system occurs when considering the *p*-cyclic cover of \mathbb{P}^1 (which has potentially good reduction an *é*tale cover of \mathbb{A}^1 with conductor m + 1 at ∞)

$$Y^n = \prod (1 - T_i X)^{h_i}$$

where T_i are solutions in \mathbb{Z}_p^{ur} of the system of equations

$$\begin{cases} h_0 T_0 + \dots + h_m T_m = 0 \\ \dots \\ h_0 T_0^{m-1} + \dots + h_m T_m^{m-1} = 0. \end{cases}$$

IV. References

- [G-M 1] B. Green, M. Matignon, *Liftings of Galois Covers of Smooth Curves*, Compositio Math., **113** (1998), 239-274.
- [G-M 2] B. Green, M. Matignon, Order p automorphisms of the open disc of a p-adic field, Journal of AMS, to appear.
- [H] M. Hazewinkel, *Formal Groups and Applications*, Pure and Applied Mathematics **78**, Academic Press, 1978.
- [M] M. Matignon, *p*-groupes abéliens de type (p, ..., p) et disques ouverts *p*-adiques, Prépublication 83 (1998), Laboratoire de Mathématiques pures de Bordeaux.