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ABSOLUTELY COUNTALY COMPACT
SPACES AND RELATED SPACES
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Faculty of Science, Shizuoka University

§1. INTRODUCTION

By a space, we mean a topological space. Matveev [7] defined a space X to
be absolutely countably compact (= acc) if for every open cover U of X and every
dense subspace D C X, there exists a finite subset ' C D such that St(F,U) = X
and defined a space X to be hereditarily absolutely countably compact (= hacc) if
all closed subspaces of X are acc. In [8], he also defined a space X to have the
property (a) (resp. property (wa)) if for every open cover U of X and every dense
subspace D of X, there exists a discrete closed subspace (resp. discrete subspace)
F C D such that St(F,U{) = X. By the definitions, all compact spaces are hacc, all
hacc spaces are acc, all acc spaces have the property (a) and all spaces having the
property (a) have the property (wa). Moreover, it is known [7] that all acc spaces
are countably compact (cf. also [4]). Thus, we have the following diagram:

compact ——— hacc —— acc Tk, countably compact

|

property (a) ———  property (wa)

In the above diagram, the converse of each arrow does not hold, in general (cf. [7],
[8]). For an infinite cardinality , a space X is called initially k-compact if every
open cover of X with cardinality < k has a finite subcover. The main theorems
of this paper are Theorems 1, 2 and 3 below. We prove only Theorem 2 here and
leave the details of the proofs of Theorems 1 and 3 to elsewhere.

Theorem 1. Let k be an infinite cardinal. Let X be an initially k-compact Ts-
space, Y a compact Ty-space with t(Y) < k and A a closed subspace of X X Y.
Assume that AN (X x{y}) is acc for eachy € Y and the projectionty : X XY —Y
1s a closed map. Then, the subspace A is acc.

Vaughan [12] proved that
(i) if X is an acc Ts-space and Y is a sequential, compact Ty-space, then X xY
is acc, and
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(ii) if X is an w-bounded, acc T3-space and Y is a compact T,-space with
t(Y) < w, then X x Y is acc.

Further, Bonanzinga [1] proved that

(iii) if X is an hacc T3-space and Y is a sequential, compact T,-space, then
X xY is hacc, and :

(iv) if X is an w-bounded, hacc T3-space and Y is a compact Th-space with
t(Y) < w, then X x Y is hacc.

In Section 2, we show that Vaughan’s theorems (i), (ii) and Bonanzinga’'s theorems
(iii), (iv) are deduced from Theorem 1. Matveev [8] asked if there exists a Tychonoff
space which has not the property (wa). In Section 3, we answer the question by
proving the following theorem:

Theorem 2. There exists a 0-dimensional, first countable, Tychonoff space without
the property (wa).

Matveev [9] also asked if there exists a separable, countably compact, topological
group which is not acc. Vaughan [11] asked the same question and showed that the
answer is positive if there is a separable, sequentially compact T,-group which is not
compact. From this point of view, he also asked if there is a separable, sequentially
compact Tp-group which is not compact. The final theorem below, which is a joint
work with Ohta, answers the questions. Let s denote the splitting number, i.e.,
s = min{x : the power 2* is not sequentially compact } (cf. [2 Theorem 6.1]).

Theorem 3. (Ohta-Song). There exists a separable, countably compact Ty-group
which is not acc. If 2 < 2! and wy < s, then there exists a separable, sequentially
compact Ts-group which is not acc.

It was shown in the proof [2 Theorem 5.4] that the assumption that 2¥ < 2«1
and w; < s is consistent with ZFC. Theorem' 3 will be proved in Section 4.

Remark 1. Theorem 2 was proved independently by Just, Matveev and Szeptycki
[5]. Matveev kindly informed Ohta that a similar theorem to Theorem 3 above
was also proved independently by W. Pack in his Ph. D thesis at the University of
Oxford (1997).

For a set A, |A| denotes the cardinality of A. As usual, a cardinal is the initial

ordinal and an ordinal is the set of smaller ordinals. Other terms and symbols will
be used as in [3].

§2. THEOREM 1 AND ITS COROLLARIES

Throughtout this section, x stands for an infinite cardinal. For a set A, let
[A]** = {B: B C A,|B| <k} and [A]<* = {B: B C A,|B| < k}. For a subset A
of a space X, we define the -closure of A in X by s-clx A = U{clxB : B € [A]<"}
and say that A is k-closed in X if A = k-clx A. By the definition, k-clx A is always
k-closed in X.

Lemma 4. Let X be a space. Then, t(X) < & if and only if every x-closed set in
X 1is closed.



57

ABSOLUTELY COUNTABLE COMPACTNESS

Lemma 5. Let X and Y be spaces such that 7y : X XY — Y is closed map.
 Then, my (A) is k-closed in Y for each k-closed set A in X x Y.

Theorem 1 will be proved by using Lemmas 4 and 5. We now proceed to corol-
laries. The first one follows immediately from Theorem 1:

Corollary 6. Let X be an initially k-compact, acc (resp. hacc) Ts-space and Y a
compact Ty-space with t(Y) < k. Assume that 1y : X XY — Y 1is a closed map.
Then, X xY is acc (resp. hacc). :

Since an acc space is countably compact (i.e., initially w-compact), the following
corollary is a special case of the preceding corollary.

- Corollary 7. Let X be an acc (resp. hacc) Ts-space and Y a compact Ty-space
with t(Y) < w. Assume my : X XY — Y is a closed map. Then, X xY is acc
(resp. hacc).

It is known (cf, [3, Theorem 3.10.7]) that if X is countably compact and Y is
sequential, then 7y : X x Y — Yis closed. Hence, we have the following corol-
lary, which is Vaughan'’s theorem (i) and Bonanzinga’s theorem (iii) stated in the
introduction:

Corollary 8. (Vaughan [12] and Bonanzinga [1]) Let X be an acc (resp. hacc)
T3-space and Y a sequential, compact Ty-space, Then, X XY is acc (resp. hacc).

Recall that a space X is k-bounded if clx A is compact for each A € [X]<F.

It is known (cf. [10]) that all k-bounded spaces are initially x-compact. Further,
Kombarov [6] proved that if X is k-bounded and ¢(Y) < k, then 7y : X XY — Y is
closed. Hence, we have the following corollary, which generalizes Vaughan’s theorem
(ii) and Bonanzinga’s theorem (iv) stated in the introduction.

Corollary 9. Let X be a s-bounded, acc (resp. hacc) Tz-space and Y a compact
Ty-space with t(Y) < k, then X XY is acc (resp. hacc).
§ 3. PROOF OF THEOREM 2

In this section, we give a proof of Theorem 2. We omit a simple proof of the
following lemma.

Lemma 10. Let R be the space of real numbers with the usual topology and A a
discrete subspace of R. Then, |A] < w and clgA is nowhere dense in R.

Proof of Theorem 2. Let A = J,,cn An, where A, = Qx{1/n} andlet A={S: S
is a discrete subspace of A}. Then, we have:

Claim 1. |A] =c¢.

Proof. Since |[A| < w, |A] <c. Let S ={(n,1) : n € N} C A. Since every subset of
S is discrete, {F': F C S} C A. Hence, |A| > {F:FC S} =¢ O

Since |A| = ¢, we can enumerate the family A as {S, : @ < ¢}. For each a < ¢
and eachn € N,put S, , = {g€Q:(g,1/n) € S,}.
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Claim 2. For each a < ¢, |[R\ U, cn clrRSan| = ¢.

Proof. For each o < ¢, let Xo =R\ U, cn clgSa,n. Since X, is a Gs-set in R, X,
is a complete metric space. To show that X, is dense in itself, suppose that X, has
an isolated point x. Then, there exists € > 0 such that (z — e,z + ¢) N X, = {z}.
Let I = (z,z+¢), Then, I C R\ Xo C U, cn clrSa,n. Moreover, since I is open in
R, clgSan NI C clg(San NI). Hence,

(6) I'=(l] cdgSan)NT=|J (clrSannI) S | J clr(SanNI).

ncN neN ncN

By Lemma 10, each clg(Sqn N I) is nowhere dense in R. Thus, (6) contradicts
the Baire Category Theorem. Hence, X, is dense in itself. It is known ([3, 4.5.5])

‘that every dense in itself complete metric space includes a Cantor set. Hence,
| Xa|l=¢c. O

Claim 3. There exists a sequence {p,, : & < ¢} satisfying the following conditions:
(1) For each a < ¢, py € P.

(2) For any o, < ¢, if o # (3, then po # pg-
(3) For each o < ¢, pa ¢ U,en ClrRSan.-

Proof. By transfinite induction, we define a sequence {p, : a < ¢} as follows: There
is po € P such that po & ,cn clS,n by Claim 2. Let 0 < < ¢ and assume that
ps has been defined for all 8 < a. By Claim 2, [R\ |, ¢y clrSa,n| = ¢. Hence, we
can choose a point p, € (P\U,,cn clrSa,n) \{ps : B < a}. Now, we have completed
the induction. Then, the sequence {p, : a < ¢} satisfies the conditions (1) (2) and
(3). O

Claim 4. For each o < ¢, there ezists a sequence {eon : 1 € N} in Q satisfying the
following conditions:

(1) For eachn € N, (po — €ansPa + €an) N San = 0.

(2) For eachn € N, €q.n > €ant1-

(3) limp— o0 €a,n = 0.

Proof. Let oo < ¢. For n = 1, since py & clgSa,1, there exists a rational €47 > 0
such that (po — €a,1:Pa + €a,1) N Sa1 = 0. Let n > 1 and assume that we have
defined {eq,m : m < n} satisfying that €41 > €42 > -+ > €qn-1. Since p, ¢
clgSan, there exists a rational €, ,, such that (po —€f, ) Pa + €4 5) N San = 0. Put
€amn = n ' minfeq n_1,€, ,}. Now, we have completed the induction. Then, the
sequence {€q4,n, : 1 € N} satisfies (1) (2) and (3). O

Define X = AUB, where B = {(pq,0) : a < ¢}, Topologize X as follows: A basic
neighborhood of a point in A is a neighborhood induced from the usual topology

on the plane. For each o < ¢, a basic neighborhood base {U,(pa,0) : n € w} of
(pa,0) € B is defined by

Un(Pa;0) = {(Pa, 0)} U ((J{((Pa = £ass Pa + €as) N Q) x {1/}}).
>n
for each n € N. Then, X is a first countable Ty-space. For each a < ¢ and each
n € N. Un(pa,0) is open and closed in X, because p, £e4,; ¢ Q for each i € w. It
follows that X is 0-dimensional, and hence, a Tychonoff space.
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Claim 5. The space X has not the property (wa).

Proof. Let U = {A} U {U1(pa,0) : @ < ¢}. Then, U is an open cover of X and A
is a dense subspace of X. For each discrete subset F' of A, there exists o < ¢ such
that F' = S,. Since U1(pa,0) NSy = 0, (pa,0) & St(F,U). This shows that X does
not have the property (wa). O

§4. PROOF OF THEOREM 3

We omit the proofs of the following lemmas and only show how Theorem 3 can
be deduced from the lemmas.

Lemma 11. Let X be a space and Y a space having at least one pair of disjoint
nonempty closed subsets. Assume that X X Y® is acc for an infinite cardinal k.
Then, X 1is initially k-compact.

We consider 2 = {0,1} the discrete group of integers modulo 2. Then, 2~ is a
topological group under pairwise addition. The following lemma seems to be well
known (see {10, 3.5] for the first statement), but we include it here for the sake of
completeness.

Lemma 12. There exists a separable, countably compact, non-compact subgroup
G1 of 2°. If 2¥ < 2% and w; < s, then there erists a separable, sequentially
compact, non-compact subgroup G of 2¢1.

Proof of Theorem 3. Let G be the group in Lemma 12. Then, G x2° is a separable,
countably compact T5-group. Since G is not compact and w(G;) < ¢, Gy is not
initially c-compact. Hence, it follows from Lemma 11 that G; x 2° is not acc. Next,
assume that 2% < 2“1 and w; < s, and let Gy be the group in Lemma 12. Since
wy < 6, 2! is sequentially compact. Hence, G5 x 2“! is a separable, sequentially
compact T5-group which is not compact. Since w(G3) = wy, G2 X 2“ is not acc by
Lemma 11. 0O
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