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\S 1. INTRODUCTION

By a space, we mean a topological space. Matveev [7] defined a space $X$ to
be absolutely countably compact $(=acc)$ if for every open cover $\mathcal{U}$ of $X$ and every
dense subspace $D\subset X$ , there exists a finite subset $F\subset D$ such that $\mathrm{S}\mathrm{t}(F, \mathcal{U})=X$

and defined a space $X$ to be hereditarily absolutely countably compact ( $=$ hacc) if
all closed subspaces of $X$ are $\mathrm{a}\mathrm{c}\mathrm{c}$ . In [8], he also defined a space $X$ to have the
property $(a)$ (resp. property $(wa)$ ) if for every open cover $\mathcal{U}$ of $X$ and every dense
subspace $D$ of $X$ , there exists a discrete closed subspace (resp. discrete subspace)
$F\subset D$ such that $\mathrm{S}\mathrm{t}(F, \mathcal{U})=X$ . By the definitions, all compact spaces are hacc, all
hacc spaces are $\mathrm{a}\mathrm{c}\mathrm{c}$ , all acc spaces have the property $(a)$ and all spaces having the
property $(a)$ have the property $(wa)$ . Moreover, it is known [7] that all acc spaces
are countably compact (cf. also [4]). Thus, we have the following diagram:

compact $arrow$ hacc $arrow$ acc $-^{T_{2}}$ countably compact

$\downarrow$

property $(a)-$ property $(wa)$

In the above diagram, the converse of each arrow does not hold, in general (cf. [7],
[8] $)$ . For an infinite cardinality $\kappa$ , a space $X$ is called initially $\kappa$ -compact if every
open cover of $X$ with cardinality $\leq\kappa$ has a finite subcover. The main theorems
of this paper are Theorems 1, 2 and 3 below. We prove only Theorem 2 here and
leave the details of the proofs of Theorems 1 and 3 to elsewhere.

Theorem 1. Let $\kappa$ be an infinite cardinal. Let $X$ be an initially $\kappa$-compact $T_{3^{-}}$

space, $\mathrm{Y}$ a compact $T_{2}$ -space with $t(\mathrm{Y})\leq\kappa$ and $A$ a closed subspace of $X\cross Y$ .
Assume that $A\cap(X\cross\{y\})$ is $acc$ for each $y\in Y$ and the projection $\pi_{Y}$ : $X\cross \mathrm{Y}arrow \mathrm{Y}$

is a closed map. Then, the subspace $A$ is $acc$ .

Vaughan [12] proved that
(i) if $X$ is an acc $T_{3}$-space and $\mathrm{Y}$ is a sequential, compact $T_{2}$ -space, then $X\cross \mathrm{Y}$

is $\mathrm{a}\mathrm{c}\mathrm{c}$ , and
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(ii) if $X$ is an $\omega$-bounded, acc $T_{3}$ -space and $Y$ is a compact $T_{2}$-space with
$t(Y)\leq\omega$ , then $X\mathrm{x}Y$ is $\mathrm{a}\mathrm{c}\mathrm{c}$ .

Further, Bonanzinga [1] proved that
(iii) if $X$ is an hacc $T_{3}$-space and $Y$ is a sequential, compact $T_{2}$-space, then

$X\cross Y$ is hacc, and
(iv) if $X$ is an $\omega$-bounded, hacc $T_{3}$ -space and $Y$ is a compact $T_{2}$-space with

$t(Y)\leq\omega$ , then $X\mathrm{x}\mathrm{Y}$ is hacc.
In Section 2, we show that Vaughan’s theorems (i), (ii) and Bonanzinga’s theorems
(iii), (iv) are deduced from Theorem 1. Matveev [8] asked if there exists a Tychonoff
space which has not the property $(\mathrm{w}\mathrm{a})$ . In Section 3, we answer the question by
proving the following theorem:

Theorem 2. There $exi\mathit{8}tS$ a 0-dimen8ional, first countable, Tychonoff space without
the property $(wa)$ .

Matveev [9] also asked if there exists a separable, countably compact, topological
group which is not $\mathrm{a}\mathrm{c}\mathrm{c}$ . Vaughan [11] asked the same question and showed that the
answer is positive if there is a separable, sequentially compact $T_{2}$-group which is not
compact. From this point of view, he also asked if there is a separable, sequentially
compact $T_{2}$-group which is not compact. The final theorem below, which is a joint
work with Ohta, answers the questions. Let $s$ denote the splitting number, i.e.,
$\epsilon=\min${ $\kappa$ : the power $2^{\kappa}$ is not sequentially compact} (cf. [2 Theorem 6.1]).

Theorem 3. (Ohta-Song). There exists a separable, countably compact $T_{2}$ -group
which is not $acc$ . If $2^{\omega}<2^{\omega_{1}}$ and $\omega_{1}<\epsilon$ , then there exists a separable, sequentially
compact $T_{2}$ -group which is not $acc$ .

It was shown in the proof [2 Theorem 5.4] that the assumption that $2^{\omega}<2^{\omega_{1}}$

and $\omega_{1}<\epsilon$ is consistent with ZFC. $\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}\cdot 3$ will be proved in Section 4.

Remark 1. Theorem 2 was proved independently by Just, Matveev and Szeptycki
[5]. Matveev kindly informed Ohta that a similar theorem to Theorem 3 above
was also proved independently by W. Pack in his Ph. $\mathrm{D}$ thesis at the University of
Oxford (1997).

For a set $A,$ $|A|$ denotes the cardinality of $A$ . As usual, a cardinal is the initial
ordinal and an ordinal is the set of smaller ordinals. Other terms and symbols will
be used as in [3].

\S 2. THEOREM 1 AND ITS COROLLARIES

Throughtout this section, $\kappa$ stands for an infinite cardinal. For a set $A$ , let
$[A]^{\leq\kappa}=\{B:B\subseteq A, |B|\leq\kappa\}$ and $[A]^{<\kappa}=\{B:B\subseteq A, |B|<\kappa\}$ . For a subset A
of a space $X$ , we define the $\kappa$-closure of $A$ in $X$ by $\kappa- \mathrm{c}1_{X}A=\cup\{\mathrm{c}1_{X}B : B\in[A]^{\leq\kappa}\}$

and say that $A$ is $\kappa$-closed in $X$ if $A=\kappa- \mathrm{c}\mathrm{l}\mathrm{x}A$ . By the definition, $\kappa- \mathrm{c}1xA$ is always
$\kappa$-closed in $X$ .
Lemma 4. Let $X$ be a space. Then, $t(X)\leq\kappa$ if and only if every $\kappa$ -closed set in
$X$ is closed.
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Lemma 5. Let $X$ and $\mathrm{Y}$ be spaces such that $\pi_{Y}$ : $X\cross Yarrow \mathrm{Y}$ is closed map.
Then, $\pi_{Y}(A)$ is $\kappa$ -closed in $Y$ for each $\kappa$ -closed set $A$ in $X\cross Y$.

Theorem 1 will be proved by using Lemmas 4 and 5. We now proceed to corol-
laries. The first one follows immediately from Theorem 1:

Corollary 6. Let $X$ be an initially $\kappa$ -compact, $acc$ (resp. hacc) $T_{3}$ -space and $Y$ a
compact $T_{2}$ -space with $t(Y)\leq\kappa$ . Assume that $\pi_{Y}$ : $X\cross Yarrow \mathrm{Y}$ is a closed map.
Then, $X\mathrm{x}Y$ is $acc$ (resp. hacc).

Since an acc space is countably compact (i.e., initially $\omega$-compact), the following
corollary is a special case of the preceding corollary.

Corollary 7. Let $X$ be an $acc$ (resp. hacc) $T_{3}$ -space and $\mathrm{Y}$ a compact $T_{2}$ -space
with $t(Y)\leq\omega$ . Assume $\pi_{Y}$ : $X\cross Yarrow \mathrm{Y}$ is a closed map. Then, $X\mathrm{x}\mathrm{Y}$ is $acc$

(resp. hacc).

It is known ( $\mathrm{c}\mathrm{f},$ $[3$ , Theorem 3.10.7]) that if $X$ is countably compact and $\mathrm{Y}$ is
sequential, then $\pi_{Y}$ : $X\cross Yarrow$ Yis closed. Hence, we have the following corol-
lary, which is Vaughan’s theorem (i) and Bonanzinga’s theorem (iii) stated in the
introduction:

Corollary 8. (Vaughan [12] and Bonanzinga [1]) Let $X$ be an $acc$ (resp. hacc)
$T_{3}$ -space and $Y$ a sequential, compact $T_{2}$ -space, Then, $X\cross Y$ is $acc$ (resp. hacc).

Recall that a space $X$ is $\kappa$-bounded if $\mathrm{c}1_{X}A$ is compact for each $A\in$ $[X]\leq\kappa$ .
It is known (cf. [10]) that all $\kappa$-bounded spaces are initially $\kappa$-compact. Further,
Kombarov [6] proved that if $X$ is $\kappa$-bounded and $t(Y)\leq\kappa$ , then $\pi_{Y}$ : $X\cross Yarrow Y$ is
closed. Hence, we have the following corollary, which generalizes Vaughan’s theorem
(ii) and Bonanzinga’s theorem (iv) stated in the introduction.

Corollary 9. Let $X$ be a $\kappa$ -bounded, $acc$ (resp. hacc) $T_{3}$ -space and $\mathrm{Y}$ a compact
$T_{2}$ -space with $t(Y)\leq\kappa$ , then $X\cross Y$ is $acc$ (resp. hacc).

\S 3. PROOF OF THEOREM 2

In this section, we give a proof of Theorem 2. We omit a simple proof of the
following lemma.

Lemma 10. Let $\mathbb{R}$ be the space of real numbers with the usual topology and $A$ a
discrete subspace of $\mathbb{R}$ . Then, $|A|\leq\omega$ and $\mathrm{c}1_{\mathbb{R}}A$ is nowhere dense in $\mathbb{R}$ .

Proof of Theorem 2. Let $A= \bigcup_{n\in N}A_{n}$ , where $A_{n}=\mathbb{Q}\cross\{1/n\}$ and let $A=\{S:S$
is a discrete subspace of $A$}. Then, we have:

Claim 1. $|A|=\mathrm{c}$ .

Proof. Since $|A|\leq\omega,$ $|A|\leq \mathrm{c}$ . Let $S=\{\langle n, 1\rangle : n\in N\}\subseteq A$ . Since every subset of
$S$ is discrete, $\{F:F\subseteq S\}\subseteq A$ . Hence, $|A|\geq|\{F:F\subseteq S\}|=\mathrm{c}$ . $\square$

Since $|A|=\mathrm{c}$ , we can enumerate the family $A$ as $\{S_{\alpha} : \alpha<\mathrm{c}\}$ . For each $\alpha<\mathrm{c}$

and each $n\in N$ , put $S_{\alpha,n}=\{q\in \mathbb{Q} : \langle q, 1/n\rangle\in S_{\alpha}\}$ .
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Claim 2. For each $\alpha<\mathrm{c},$ $| \mathbb{R}\backslash \bigcup_{n\in N^{\mathrm{C}}}1_{\mathbb{R}}S_{\alpha},n|=\mathrm{c}$ .

Proof. For each $\alpha<\mathrm{c}$ , let $X_{\alpha}= \mathbb{R}\backslash \bigcup_{n\in N^{\mathrm{C}}}1_{\mathbb{R}}S_{\alpha},n$ . Since $X_{\alpha}$ is a $G_{\delta}$ -set in $\mathbb{R},$ $X_{\alpha}$

is a complete metric space. To show that $X_{\alpha}$ is dense in itself, suppose that $X_{\alpha}$ has
an isolated point $x$ . Then, there exists $\epsilon>0$ such that $(x-\epsilon, x+\epsilon)\cap X_{\alpha}=\{x\}$ .
Let $I=(x, x+\epsilon)$ , Then, $I \subset \mathbb{R}\backslash X_{\alpha}\subset\bigcup_{n\in N^{\mathrm{C}}}1_{\mathbb{R}}S_{\alpha},n$ . Moreover, since $I$ is open in
$\mathbb{R},$ $\mathrm{c}1_{\mathbb{R}}S_{\alpha,n}\cap I\subseteq \mathrm{c}1_{\mathbb{R}}(s_{\alpha,n}\cap I)$ . Hence,

(6)
$I=(\cup \mathrm{c}1_{\mathbb{R}}S_{\alpha,n})\cap I=n\in Nn\in\cup(\mathrm{c}1_{\mathbb{R}}s_{\alpha,n}\mathrm{n}NI)\subseteq\cup \mathrm{c}1\mathbb{R}(S_{\alpha,n}\cap n\in NI)$

.

By Lemma 10, each $\mathrm{c}1_{\mathbb{R}}(s_{\alpha,n}\cap I)$ is nowhere dense in $\mathbb{R}$ . Thus, (6) contradicts
the Baire Category Theorem. Hence, $X_{\alpha}$ is dense in itself. It is known ([3, 4.5.5])
that every dense in itself complete metric space includes a Cantor set. Hence,
$|X_{\alpha}|=\mathrm{c}$ . $\square$

Claim 3. There exists a sequence $\{p_{\alpha} : \alpha<\mathrm{c}\}$ satisfying the following conditions:
(1) For each $\alpha<\mathrm{c},$ $p_{\alpha}\in \mathrm{P}$ .
(2) For any $\alpha,$ $\beta<\mathrm{c}$ , if $\alpha\neq\beta$ , then $p_{\alpha}\neq p_{\beta}$ .
(3) For each $\alpha<\mathrm{c},$ $p_{\alpha} \not\in\bigcup_{n\in N^{\mathrm{C}}}1_{\mathbb{R}}S_{\alpha},n$ .

Proof. By transfinite induction, we define a sequence $\{p_{\alpha} : \alpha<\mathrm{c}\}$ as follows: There
is $p_{0}\in \mathrm{P}$ such that $p_{0} \not\in\bigcup_{n\in N}$ cl$S_{0,n}$ by Claim 2. Let $0<\alpha<\mathrm{c}$ and assume that
$p_{\beta}$ has been defined for all $\beta<\alpha$ . By Claim 2, $| \mathbb{R}\backslash \bigcup_{n\in N^{\mathrm{C}1_{\mathbb{R}}s}}\alpha,n|=\mathrm{c}$ . Hence, we
can choose a point $p_{\alpha}\in(\mathrm{p}\backslash \cup n\in N^{\mathrm{C}1_{\mathbb{R}}s}\alpha,n)\backslash \{p_{\beta} : \beta<\alpha\}$ . Now, we have completed
the induction. Then, the sequence $\{p_{\alpha} : \alpha<\mathrm{c}\}$ satisfies the conditions (1) (2) and
(3). $\square$

Claim 4. For each $\alpha<\mathrm{c}$ , there exists a sequence $\{\epsilon_{\alpha,n} : n\in N\}$ in $\mathbb{Q}$ satisfying the
following conditions:

(1) For each $n\in N,$ $(p_{\alpha}-\epsilon\alpha,n’ p_{\alpha}+\epsilon_{\alpha,n})\cap S_{\alpha,n}=\emptyset$ .
(2) For each $n\in N,$ $\epsilon_{\alpha,n}\geq\epsilon_{\alpha,n+1}$ .
(3) $\lim_{narrow\infty}\epsilon_{\alpha,n}=0$ .

Proof. Let $\alpha<\mathrm{c}$ . For $n=1$ , since $p_{\alpha}\not\in \mathrm{c}1_{\mathbb{R}}S_{\alpha,1}$ , there exists a rational $\epsilon_{\alpha,1}>0$

such that $(p_{\alpha}-\epsilon_{\alpha,1},p_{\alpha}+\epsilon_{\alpha,1})\cap S_{\alpha,1}=\emptyset$ . Let $n>1$ and assume that we have
defined $\{\epsilon_{\alpha,m} : m<n\}$ satisfying that $\epsilon_{\alpha,1}>\epsilon_{\alpha,2}>\cdots>\epsilon_{\alpha,n-1}$ . Since $p_{\alpha}\not\in$

$\mathrm{c}1_{\mathbb{R}}S_{\alpha,n}$ , there exists a rational $\epsilon_{\alpha,n}’$ such that $(p_{\alpha}-\epsilon_{\alpha,n}’,p_{\alpha}+\epsilon_{\alpha,n}’)\cap S_{\alpha,n}=\emptyset$ . Put
$\epsilon_{\alpha,n}=n^{-1}\min\{\epsilon_{\alpha},n-1, \epsilon_{\alpha,n}\}/$ . Now, we luave completed the induction. Then, the
sequence $\{\epsilon_{\alpha,n} : n\in N\}$ satisfies (1) (2) and (3). $\square$

Define $X=A\cup B$ , where $B=\{\langle p_{\alpha}, 0\rangle : \alpha<\mathrm{c}\}$ , Topologize $X$ as follows: A basic
neighborhood of a point in $A$ is a neighborhood induced from the usual topology
on the plane. For each $\alpha<\mathrm{c}$ , a basic neighborhood base $\{U_{n}\langle p_{\alpha}, \mathrm{o}\rangle : n\in\omega\}$ of
$\langle p_{\alpha}, 0\rangle\in B$ is defined by

$U_{n} \langle p_{\alpha}, 0\rangle=\{\langle p_{\alpha}, \mathrm{o}\rangle\}\cup(\bigcup_{i\geq n}\{((p\alpha-\epsilon\alpha,i,p\alpha+\epsilon\alpha,i)\cap \mathbb{Q})\cross\{1/i\}\})$
.

for each $n\in N$ . Then, $X$ is a first countable $T_{2}$-space. For each $\alpha<\mathrm{c}$ and each
$n\in N$ . $U_{n}\langle p_{\alpha}, 0\rangle$ is open and closed in $X$ , because $p_{\alpha}\pm\epsilon_{\alpha,i}\not\in \mathbb{Q}$ for each $i\in\omega$ . It
follows that $X$ is $0$-dimensional, and hence, a Tychonoff space.
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Claim 5. The space $X$ has not the property $(\mathrm{w}\mathrm{a})$ .

Proof. Let $\mathcal{U}=\{A\}\cup\{U_{1}\langle p_{\alpha}, 0\rangle : \alpha<\mathrm{c}\}$ . Then, $\mathcal{U}$ is an open cover of $X$ and $A$

is a dense subspace of $X$ . For each discrete subset $F$ of $A$ , there exists $\alpha<\mathrm{c}$ such
that $F=S_{\alpha}$ . Since $U_{1}(p_{\alpha},$ $\mathrm{O}\rangle$ $\cap S_{\alpha}=\emptyset,$ $\langle p_{\alpha}, 0\rangle\not\in \mathrm{S}\mathrm{t}(F, \mathcal{U})$ . This shows that $X$ does
not have the property $(\mathrm{w}\mathrm{a})$ . $\square$

\S 4. PROOF OF THEOREM 3

We omit the proofs of the following lemmas and only show how Theorem 3 can
be deduced from the lemmas.

Lemma 11. Let $X$ be a space and $\mathrm{Y}$ a space having at least one pair of disjoint
nonempty closed subsets. Assume that $X\cross Y^{\kappa}$ is $acc$ for an infinite cardinal $\kappa$ .
Then, $X$ is initially $\kappa$ -compact.

We consider $2=\{0,1\}$ the discrete group of integers modulo 2. Then, $2^{\kappa}$ is a
topological group under pairwise addition. The following lemma seems to be well
known (see [10, 3.5] for the first statement), but we include it here for the sake of
completeness.

Lemma 12. There exists a separable, countably compact, non-compact subgroup
$G_{1}$ of $2^{\mathrm{c}}$ . If $2^{\omega}<2^{\omega_{1}}$ and $\omega_{1}<5$ , then there exists a separable, sequentially.
compact, non-compact subgroup $G_{2}$ of $2^{\omega_{1}}$ .

Proof of Theorem 3. Let $G_{1}$ be the group in Lemma 12. Then, $G_{1}\cross 2^{\mathrm{c}}$ is a separable,
countably compact $T_{2}$-group. Since $G_{1}$ is not compact and $w(G_{1})\leq \mathrm{c},$ $G_{1}$ is not
initially $\mathrm{c}$-compact. Hence, it follows from Lemma 11 that $G_{1}\cross 2^{\mathrm{c}}$ is not $\mathrm{a}\mathrm{c}\mathrm{c}$ . Next,
assume that $2^{\omega}<2^{\omega_{1}}$ and $\omega_{1}<g$ , and let $G_{2}$ be the group in Lemma 12. Since
$\omega_{1}<\epsilon,$

$2^{\omega_{1}}$ is sequentially compact. Hence, $G_{2}\mathrm{x}2^{\omega_{1}}$ is a separable, sequentially
compact $T_{2}$-group which is not compact. Since $w(G_{2})=\omega_{1},$ $G_{2}\mathrm{x}2^{\omega}$ is not acc by
Lemma 11. $\square$
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