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Introduction

We consider nonlinear wave equation:

Ut — Ugg + g(u) = f(z,t) in Q (1)
u(0,t) = u(m,t) =0, 0<t<m, ‘ (2)
u(z,0) = o(z),u(z,7) = p1(z),  0<z<m, (3)

“where Q = (0,7) x (0,7), g is an odd function, ¢o,¢1 € C3([0,7]) = {¢ €
C2([0,x]) 5 $(0) = §(r) = 0}, f € L®(Q).

The prime motive that we consider the problem (1)-(3) is the boundary
problems for ordinary differential equations of second-order in RY which
can be regarded as a finite-dimensional case of (1)-(3). Ekeland, Ghoussoub,
Tehrani [6] considered the following Bolza problem

L2 Vi(z)=0, 0<t<T
z(0) = z¢ and z(T') = z;

where V € CH(RY : R) is even and satisfies V(z) ~ |z|P, |z| large for
some p € (2,4). They showed that the above problem has infinitely many
solutions. The proof relies on the variational principle of Rabinowitz (’86)
that is, perturbation results. We apply this method to the problem (1)-(3).
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It is also known that there are infinitely many solutions for

Utt — Ugg T+ Ul“lp—? = f(z,t) in (0,7) xR }(4)
u(0,t) = u(m,t) =0, t € R, (5)
u(z,t) = u(z,t + 27), 0<z<mteR (6)

where p > 2 is a constant and f € L* is 2w-periodic in ¢. ([14], [15], [3]).
The duality method is used there.
We define weak solution of (1)-(3) as follows.

Definition 1 A function u € L}(Q) is a weak solution of (1)-(3) if g(u) €
LY(Q) and

/077/(*)’”{(71: — Z)(gtt - Ca:x) + (g(u) — f —_ Z:m:)(}dxdt -0

holds for all ( € CZ = {w € C*(Q); w = 0 on N}, where z = z(z,t) =
zp1(z) + (1 = Hgo(z).

Our main results are as follows:

Theorem 1 Suppose that g € C(R;R) has the following properties.
(1°) g is an odd function.

(2°) g is a strictly increasing function.

(3°) p € (2,1+v3),Ry >0 ; 0 < pG(u) := pfy g(v)dv < ug(u) for
all u, |u| > Ry |
(4°) 3C >0 ; |g(uw)| < C(JulP~! + 1) for all u
Then for any o, p1 € CE([0,7]), f € L®(Q), the problem (1)-(3) has an

unbounded sequence of weak solutions (ug)g=123..-

Furthermore,

Theorem 2 Suppose that g € C(R;R) has the following properties.
(1°) g is an odd function.
(2°) g is a strictly increasing function.

(3°) Fp € (2,2+V2),Ry > 0 ; 0 < pG(u) := p [ 9(v)dv < ug(u) for
all u

(4°) 3C >0 ; |g(uw)| < C(|lulP~t +1) for all u
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Then for any f € L>®(2), the problem (1)-(3) with pg, o1 = 0 has an
unbounded sequence of weak solutions (ug)kr=123...-

Remark 1 If Q= (0,L) x (0,T) and % € Q, then the same results hold.
Remark 2 If oo, p1 satisfies that there ezists a function z € W3®(Q) =
CHY(Q)) such that 2(0,t) = 2(m,t) =0, (0 <t < m), z(z,0) = @o(zx),
z(z,m) = pi(z), (0 <z < ), then the same results hold with @, 1

Remark 3 If a weak solution of (1)-(3) u belongs to C?*(QQ), then u is a
classical solution of (1)-(3).

In what follows, we reformulate the problem in a way such that duality
methods can be applied similar to known results. Moreover, We construct
an operator K = A~! from the suitable function space to C'(Q) which is the
key lemma.

Proof of Theorem 1 and Theorem 2

Let p’ denote the conjugate number of p , that is

then p’ € (1,2). Moreover let

N = {p(t +z)—p(t—zx); p€ Llloc(R),p is 27-periodic and even function ,

/O%p('r)dr = 0},

27
N = {P(t +z)—p(t—z); p€ LIIOC(R),p is 2m-periodic ,/ p(r)dT = 0},
Jo

The operator A = 82 — 02 has infinitely many positive and negative eigen-
values and also posesses an infinite-dimensional kernel. The element of NV
belongs to the kernel of A. Hereafter we regard w € C? as an extension of
w to [0, 7] x R which satisfies ‘

w(z, —t) = —w(z,t),w(z,t + 27) = w(z, t).

Let D = (0,7) x (—m, 7). Here is a key lemma to the proof.
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Lemma 3 There exists a linear operator K: Vi = {'v € LY Q) ; [qvd =
0 for all ¢ € NﬂLOO}‘—> Vo = {’U € C([0,7] x R) ; v(z,t + 27) =

v(z,t),v(z, —t) = —v(z,t), for allt, [pvp =0 forall¢p € NN L°°} which
has the following properties.

/ (Kv)(AC) = / oC, for all v € Vi,( € C2 (7)
Q Q
IK]|co < Cllv||1, for allv € V4 | (8)
/(K’U1)’02 = / ’Ul(K’UQ), fOT‘ all v1,v2 €V (9)
Q Q
|Kolloa < Cllollg, @=1- é for allv € V4 N L8 (10)

Proof. Introduce function spaces Wi = {'v € LY(D); [pvp =0, forall ¢ €
NOLOO}, Wy = {v € C([0,m] xR) ; v(z,t+27) = v(z,t), for all t, [ v =
0, for all ¢ € NN L°°} and also define a linear operator K: W — Wy
satisfying AK = id as follows. For given v € W7,

Kv(z,t) = ¢(z,t) — (p(t + ) — p(t — z)) (11)

where 1) is constructed from a 2m-periodic extension of v to [0,7] x R by
using the fundamental solution of the wave operator ; that is

t+(é—x) -7
Y(z, 1) ———/ / dT+c (12)
s

with t+£
— 5 [Tae [ vte,myar (13

Note that c is a constant; here the fggt that v € W7 is used. Moreover
periodicity of v implies periodicity of Kv. Finally choosing

— o [ s -9~ ple s + ey de (14)

ensures that fD(Ev)¢ =0 for all ¢ € N N L*®. Hence (11)- (14) determine

the operator K from W; to W, as desired. Notmg that AKv = v for a
smooth function v, there holds

/(Ev)(Ag) :/ o, forall v € Wi,¢ € C2 (15)
D D
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and also

/ (Kvy)vg = / v1(Kvs) (16)
D D
for all v1,vy € W1. Moreover (11)-(14) and Holder’s inequality imply that

IKvlz00(p) < CllvllLypy | (17)

for all v € Wi. Also for v € Wi N L9, ¢ > 1, we have Kv € C%*(D), with
a=1-;>0and

“R:U”co,a('ﬁ) < CI|UHL<1(D)- (18)

For each v € Vi, let wv denote an odd extension of v to D. We can see
w € Wi as follows. Choose ¢(z,t) =p(t+z)—p(t—z) € NNL® pe Llloc’
p is 2m-periodic, [p(7)dr = 0. We may write p = p. + poa.e., pe is even,
p, is odd, pe and p, are 2w-periodic. Letting ¢o(z,t) = pe(t + ) — pe(t —
z), ¢e(z,t) = Po(t + ) — po(t — z) , we have @(z,t) = Pe(z,1) + do(z, 1),
bo(T, —t) = —¢o(x, 1), de(x, —t) = ¢e(z,t). Therefore,

[ = [ @+ [ @

Q
= 0, (19)
which yields the desired result. By the definition of K , we have
Kw(z,—t) = —Kw(z,t) forve W (20)

Since Kiv € Wo, this implies that Kuw e V5. Hence K. defines the desired
linear operator :V; — V5. Noting that the product of two odd functions is
“an even function, the properties (7)-(10) easily follow. O

Next we define the functional by using the operator K. Let h be the
inverse function of g. By assumption, A is strictly increasing function con-
tinuous odd function. Also let H(u) = [y h(v)dv be the primitive of h
(H is the conjugate convex function of ). By assumption, there exists
ai,a9,a3,a4 > 0 such that

0 < arulf’ ! < |h(u)] + az < aslulf ! +aq (21)
for all © € R. Define

E={uel’(Q); /u¢=0f0r all g € N M IP},
: Q
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~

f = f + 22z,
then there is a constant C' > O such that

. ' Y (@'-1)/p
[ 1@+ H-H@I<C {/QH(UH)} 1l ()
forallu € E. For u € E let v
I(u) = -1—/(Ku)u+/ H(u+f)——/ 2u.
2 Ja Q 0
If v € F is the critical point of I,
0= / {(Kv)w +h(v + flw —'zw}
Q
for w € E. Here for { € C? substitute w = A € E,
0= / {ug + (h(v+ f) —z)(Ag)}.
Q
Then u = h(v + f) satisfies

0= [ {(sw - F)¢ + (w-2)a0)}

which yields that u is the desired weak solution. Hence the assertion of
the theorem is equivalent to the claim that the functional I possesses an
unbounded sequence of critical points in F.

Introduce a modified functional

J(u)=—21—/Q(Ku)u+/QH(U)+¢(u)/Q(H(u—l—f)—H(u)—zu)

where Y(u) = x(lll(u)‘1 fQ(——Ku)u), U(u) = a(IQ(u) + 1)1/2 with a =

62”3;,4 > 1 is a constant and x is a function in C*°(R; [0, 1]) which is equal

to 1 on (—o0,1], to 0 on [2,00) and such that x'(¢) € (-2,0) for t € (1,2).

Lemma 4 (i) There is a constant 8 > 0 such that
T (w) = J(=u)| < B(1J ()7 +1)
for anyu € E
(1) If z=0 (po = p1 =0), then there is a constant 3 > 0 such that
|J(w) = J(—u)| < B(|J ()| ~D/F +1)
for anyu € E
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Proof. (i) We can estimate
T (u) = ()] < $(u)A + $(~u)B
where
4 =" [ Hu+ - B -z, @
Q
B = / \H (—u+ ) — H(~u) + zu]. (24)
Q
If u € supp 7, then we obtain that
. 1
/QH(u v = I+ /Q(~Ku)u+/ﬂzu
< 2U(u) + /Qzu
< 2\Il(u)+%/QH(u+f)+C’
1 .
< CU(u)+ -Z-/QH(UH)
since fo(—Ku)u < 2¥(u). It follows that
[ B+ <cvw (25)

for u € supp ¢. Hence by (22),(25)

-~ ' 7 / l/p,
A < C/H(u+f)(p_1)/p +C{/ |u|P} +C
(9] Q
< C’/ H(u-i—f)l/pl
Q
< C / T (u)/? (26)
Q

for u € supp 1. Therefore (23),(26) implies that there is a universal constant
C > 0 such that

h(u)A

IN

Cp(w) (|1(w) 7 +1)
< Cp) [T + AV +p) AV 1] (@)
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for any u € E. (In the case u ¢ supp %, this inequality obviously holds).
Similarly

¥(-u)B

IN

Cop(~u) (|1(~u)["*” +1)
< Cy(—u) [|T@)[Y7 + BYY 4 yp(u) /7 AV7 1] (28)

Therefore by (27),(28) and Young’s inequality

Y(u)A +p(—u)B < C(|T(w)|'/7 +1).

(ii)) If z = 0, we can replace (26) by
A< C/ q;(u)(p’—l)/p'.
Q
Other estimates proceeds similarly. " a

Lemma 5 (i)There is a constant M > 0 such that J(u) > M and J'(u) =0
implies that I(u) = J(u) and I'(u) = 0.
(i1) J satisfies (P.-S.) on {u € E;J(u) > M}.

Proof. First we shall show that there is a constant M > 0 such that J(u) >
M and ||J'(u)]| < 1 implies that 1 (u) = 1. By the definition of v, this will
be the case if

/ (—Ku)u < T(w). (29)
Q

Since (29) is obvious if [(—Kwu)u < 0, we may asuume that [(—Ku)u > 0.
Note that

(w, J'(w)) = /Q(Ku)w/ﬂh(u)ww(u)/ﬂ{h(u+f)—z—h(u)}u
+(u,i,b'(u))/Q{H(u—l—f)—zu—H(u)}



Regrouping terms shows that ‘
w 7'w) = (=) [ A+ (@) = Tiw) | hw+ P
— (1 — Tx(u)) / (—Ku)u

Q
where
Ty(uw) = fyww»wﬂmumxéu«mmx
x/Q{H(u—i-f) ——zu—H(u)},
Tow) = Ti(u)+x (0(w) T 3(w) {2\112(u) +a2I(u) /Q zu} «

X / {H(u—{—f) —zu—H(u)},
)
We will show Ti(u), To(u) — 0 as M — oo. By the definition of T7,
) .\ @' =1)/p
mwl < ov)? [(xue|{ [ Barp) T+ [

< CU(uw)? /ﬂ (—Ku)u x

| X [{/QH(uij)}(p,—l)/pl + {/QH(u—}-f)}l/pl + 1] :

If u & supp 9, then T;(u) = 0 (i = 1,2). Otherwise, since
I 2 @+ 1= pw) [ (A f) - - Hw)
> M- C{/QH(u—i-f)}(pl—l)/p’ — C{AH(u+f)}l/p, ~-C

I(u) ,
M - CU(u)@ VP — cu(u)/P - C.

v 1V

This implies that

T(w) + CU(w)? VP 1 ()P > M- C,

73
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Here, letting M > 2C,

() > ;)—M. (30)

By Jo(—Ku)u < 2¥(u), (25) and (30)
Tiw)] < O @7 4+ 9w + ¥(w))

< CcM-@-n/
which goes to 0 as M — oo. Similarly we have
To(w)| < |Ti(w)| +CM- @17,

Therefore we may assume that for M sufficiently large, |Ti(u)| < 3 for
(1=1,2) and

1-Tp(w) 1_1/1 1\ _
pf(l—ﬂ(u))“525(5‘5>=”>°'

Noting that inf,cg(p'H (u) — uh(u)) > —oo by assumption (3°), (22), (21)

and the fact that |T;(u)| are sufficiently small, simple estimates show

1 /
7Ty

= (p%l‘-T%f@)) ~3) Jy K

1_"10(“) ' 1 '
+ (1_T1( ))/{ H(u+ f)—p H(u)}

I(u) —

p(l——T1 /{IH

i (115(2( ))/{PH(“f)“(“f)h(“f’}
1—T1 /h ff

— (1—T1 /pHu+f)

+ 17E(T1)( ))/uh(u-i—f)——/ﬂzu

> b/ Kuu——/Hu+f | (31)
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On the other hand, by the assumption ||J'(u)|| g+ < 1,

(u, J'(u))
p'(1—Ti(u))

Hence adding bI(u) = & [, (Ku)u+b [y H(u+ f) —b [ zu to (31) and using
(32), '

2 . b ~
< I @lely <2y <G [ Hu+H+c. ()

(1+0)I(w) > 2/ — Ku)u
+bLHm+ﬂ—4. (33)
Since by the assumption [, (~Ku)u > 0,
M <
< [H +¢u)j{2{ (u+ /)~ H(w)
< 2/9H(u+f)+0, (34)

we have

Hence (33) implies
(14+06)I(u) > g/(—Ku)u, for M large .
Q

Thus [o(—Ku)u < al(u) < U(u). This proves (29) and hence lemma 5(i).

For the proof of lemma 5(ii), let (u,) be (P.-S.) sequence for J such that
M < J(up). Since for large n, J(up) = I(uy) and J'(uy) = I'(uy), (u,) is
also (P.-S.) sequence for I. Hence, it suffices to show that I satisfies (P.-S.).
Let (up) be (P.-S.) sequence for I. We may write

(un, I'(uy)) /wnun (35)
where wy, € L?,  |lwy|, — 0. Hence

C + 0(1)“’un”p’ > I(ug) — %(un,fl(un»

- /Q{H(uwf)——%h(uﬁf)un}—-;—/Qzun.
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Since this implies that

/
cllunlly —C

(1—17 - %) /Q(un + f)h(un + f)

.1 5 3
/Q {H(un ) = ghlun+ ) + f)}
C + Cllun|lp,

R VAN VAN

(un) is bounded in LP. Extracting a subsequence if necessary, we may
assume that u, — ug € E (weak in E). Noting that the oerator K : £ — E*
is compact,

[ {wn+ D = (o + H} (n — wo)

= /Q{'wn——Kun—f—z——h(uO-l—f)}(Un“UO)
- 0.

Hence a subsequence of (uy) satisfies
(h(un + f) = h(uo + f))(un —ug) = 0 a.e. in Q,

(h(un + f) — h(uo + ))(un —uo) < li(z,t) ae. in Q
where {; € L. By monotonicity of h and (21),

un(z,t) = uo(z,t) a.e. in Q,
lun(z,t)| <la(z,t) a.e. in Q

where I € L?". Thus by the Lebesgue convergence theorem, u, — ug strong
in E. The proof is completed. O

Now we can show J has an unbounded sequence of critical values. Note
that K defines a compact self-adjoint operator in {v € L%(Q); [qvd =
0 for all ¢ € NN L?} = span{siniz -sinjt;i = 1,2,...,5 = 1,2,...,i # j}.
Its eigenvalues are o(K) = {Fi—j-g;i,j =1,2,...,% # j} = {Fux; k =
1,2,...} where puj are positive eigenvalues such that

M12H22N32‘~-->0‘

Let e = %sin iz - sinjt be the eigenfunction corresponding to the nega-

tive eigenvalue —pup = ,72—:1—]—2 and fr = %sinz’:c - sin jt be the eigenfunction
corresponding to the positive eigenvalue py = p—i? Let

Ey = span{ey,...ex}



(Ex)% = {u+ teg1;u € Ey,t > 0}

7

Since L2-norm and L? -norm are equivalent in Ej, There is a constant C > 0

depending on Ej such that
Jw) < —gmlulld +Cllully + Cllull +C
< —smlul? +C(lulf +1)
< —gullull + C(lul +1)
for all u € E}. Hence choose Ry > 0 such that
w € B lully > Ry = J(u) <0,
Since Ej, C Eg41, we may assume that Ry < Rp41 for all k. Let

T, = {h € C(E;E);hisodd, Yj <k
u € Ej, |lully > Rj = h(u) = u}

' = {h € C(E;E);h is odd, max{J(u),J(—u)} < 0= h(u) =u}

Note that I' C I'y+1 C I'g. Define

by = inf J(h
k= inf fé%)k (h(u))

by = inf sup J(h(u))

ka*———inf sup J(h(u
L (h(u))

(36)

Obviously ka* > b; > b, holds. Recall the following variational principle of

Rabinowitz [11] which is the key to the perturbation method.

Proposition 1 Suppose J € C'(E) satisfies (P.-S.) condition on {u €
E: J(u) > M} for some M € [0,+00). Let W C E be a finite dimen-

sional subspace of E, w* € E\W and let W* = W & span{w*}; also let

Wi ={w+tw";weW,t>0}

denote the “upper half-space” in W*. Suppose
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(1) ’R>0; "wueW :|ull 2R=J(u) <0,
(2) 3R*>R; "ue W* :|lul| >R*= J(u) <0,
and let | |
I'={heC(V,V); h is odd ,max{J(u), J(—u)} <0 = h(u) = u}
Then, if

Y= =1 >
p* = inf uSEI:/II/?; J(h(u)) > B = inf sup J(h(u)) 2 M,

the functional J possesses a critical value > (B*.

Lemma 6 For any 6 > 0, there are constants a > 0 and k1 € N such that

~ 20'-1) 5
by > by > ak 2-»

for all k > k.

Proof. Letting Wy = span {e;, fi; j > k,i > 1}, Sy = {u € E; ||lu|ly = 1},
we have h € Ty , r > 0 for any h € T, r > 0. (See [12] intersection lemma
11.6.4). On the other hand, considering lattice points of (7, j) plane, there is
a constant y > 0 such that

1{(5,j)) ENxN; 0< 52 —i? < M} < yMlogM

for all M > 1. Hence by the definition of ug, for any 6 > O there is a
constant C = C(d) depending on d such that

pr < k110 (37)

for k € N. if u € L2 N Wy, then since ey, fx are orthonormal basis in L2 we

may write
o0 o0

u = Z c;e; + Z dzfz
1=k 1

1

By Holder’s inequality (% + 2 = 1) and Housdorff-Young’s inequality

2
p
)

[(Kup < 3 mlal?
Q i=k
00 1/r oo 2/p
< <ZM§> (Zlcilp>
1=k 1=k

00 1/r
< C (Z u?) lull,
1=k
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By the density argument,
| (Ku)u < aljull?

for all u € Wi, where ap = C (32 Mg)l/’”. By (37), for any § > 0 there is
a constant C' = C(6) > 0 depending on § such that

00 1/r
C (Z i(—l—f—tf)r)
ot

IN

ak

IA
Q
&
o
-
3
ot
+
(=%

for all k € N. This implies that for any § > 0 there is a constant kg € N

such that .
_20'-1) 4
ap <k

for all k£ > kg. Since for u € Wy N S,

J(u) > L ( —Ku) u+/H {/{)H(u-{-f)}(p,_l)/p,

2

—C||U||1—
> ; (—Ku)u+ = /H -C
> =5 [ (Kupu+Clulf -
> —-%akr +Crf - C

we obtain

b. > su inf  J(u
‘k - 7->I(;’U,€Wkﬁsr ( )

1 ,
> sup (“5%7"2 + CirP — C’g)

r>0
P\ ~2/e—p) (ax) P/
(g
2(1’ 1) -5
> ak > = ()

for k > kg. The proof is complete. O
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Conclusmn (i)Let z # 0. Suppose that there is a constant k3 € N such
that by = bx for all k > ko. By lemma 4(i), by < b + B(|bg|/?’ + 1) for
k > ko. Hense for k > k3 = max{k;, k2}, there holds

b1 < bk + Cbk v

with an uniform constant C. By iteration technique,

—~ ~ o ~ (1-p') /7
beart < by ] <1+Cb )

k=kj3
N ka+l—1
< bk3exp( Y log <1+Cb ( "’””))
k=k3 .
ka41~1
< bk3 exp (C Z (1 P)/P)
k=ks

Since p’ € (1 + ?,2) by assumption p € (2,1 + v/3), there is a constant

0 > 0 such that Ly /2 — 1)
= —d) < -
g p' ( 2-p )
Therefore by lemma 6, we can uniformly estimate

o0
beg+1 < bryexp (C >k >

k=ks

< (<o

for all l € N, Wthh contradicts lemma 6. Hence there are infinitely many

k such that bk > bk By proposition 1, J has a sequence of critical values

which diverges to +oc0. (note that lemma 5(ii)). By lemma 5(i), so does I.
(ii) Let z = 0. Suppose that there is a constant k3 € N such that

b," = by for all k > ky. By lemma 4(ii), bpr1 < bg + B(|be|® D7 +1).
Hense since for k > k3 = max{ki, k2} '

bers < be(1 + CB ),
there holds

ks+I1—-1 ~_1/
bk3+l < bk3 exp | C Z

k=k3
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for | € N. But since p’ € (v/2,2) by p € (2,2 + \/_) there is a constant

d > 0 such that L )
p e
- (2-) <
P\ 2-p
which yields the desired contradiction similarly. ' a
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