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1. INTRODUCTION

This expository paper is a slightly expanded version of a series of four talks that I
gave at the Research Institute for Mathematical Sciences at Kyoto University on July 28-
31, 1998 in the workshop $\langle$ (

$\mathrm{R}\mathrm{e}\mathrm{e}$ resolutions of the defining ideals of projective varieties,”
organized by Professor C. Miyazaki. The purpose of this paper is to describe some recent
work, almost entirely from [12], which gives a new approach to the theory of liaison (or
linkage) via Gorenstein ideals, which we will refer to as Gorenstein liaison or simply
$G$-liaison. We will discuss the new ideas, and we will show how they fit in nicely with
the theory of liaison via complete intersections, which we will call complete intersection
liaison or simply CI-liaison. We will be particularly interested in seeing how the new
approach fits in with Hartshorne’s approach [11] to CI-liaison using generalized divisors
on complete intersections. Indeed, the main common theme throughout this paper is
that Gorenstein liaison is also a theory about divisors, this time on arithmetically Cohen-
Macaulay schemes. A second common theme is to try to compare and contrast the theory
of CI-liaison with that of $\mathrm{G}$-liaison in various ways.

In Section 2 we give the necessary definitions for liaison, and many examples of Goren-
stein subschemes of $\mathrm{P}^{n}$ . We also give some background material and motivate the idea of
passing to higher codimension. We see that Gorenstein liaison is a natural generalization
of the well-understood codimension two case. Section 3 gives further background mate-
rial. In particular, since the common theme in this paper is that of divisors on schemes
which are not necessarily smooth, we discuss some of the pitfalls that must be avoided in
talking about divisors. Section 4 makes the connection between divisors and Gorenstein
liaison. We give a construction for arithmetically Gorenstein subschemes of $\mathrm{P}^{n}$ and give
some important consequences for liaison. We show that linearly equivalent divisors are
in the same even Gorenstein liaison class, and that adding hyperplane sections preserves
the even Gorenstein liaison class.

Section 5 describes two generalizations of the codimension two case given in [12]. One
is a generalization of Gaeta’s theorem, and it says basically that any determinantal sub-
scheme of $\mathrm{P}^{n}$ is in the Gorenstein liaison class of a complete intersection. The second is a
generalization of a theorem of Rao, and says basically that geometric liaison and algebraic
liaison generate the same equivalence relation.

Section 6 describes some results on curves on smooth arithmetically Cohen-Macaulay
surfaces, including the fact that on a smooth rational surface in $\mathrm{P}^{4}$ , all arithmetically
Cohen-Macaulay curves are in the Gorenstein liaison class of a complete intersection. In
contrast, we mention some complete intersection liaison invariants from [12], and we give
a corollary which shows that adding hyperplane sections does not preserve the complete
intersection liaison class. Finally, in Section 7 we give some further similarities and
differences between CI-liaison and $\mathrm{G}$-liaison, this time primarily from [18].
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I would like to stress that the paper [12] in fact does a great deal more than what we de-
scribe here, treating also invariants of complete intersection liaison and unobstructedness
of subschemes of projective space. Here we report almost exclusively on those aspects of
the paper which deal with Gorenstein liaison. For additional background, especially on
Gorenstein liaison, we refer the reader to [18] for a broad treatment of the theory, and to
[21] for some more advanced results.

I would like to thank my $\mathrm{c}\mathrm{o}$-authors of [12] for the enjoyable collaboration which led
to the material described in this paper and in my talks: they are J. Kleppe, $\mathrm{R}.\mathrm{M}$ . Mir\’o-

Roig, U. Nagel and C. Peterson. I would also like to express here my sincere thanks to C.
Miyazaki for inviting me to the workshop and for giving me the opportunity to discuss this
material, and also for his great hospitality during my stay. I am also very grateful to K.
Yoshida for the generous financial support which made my participation in the workshop
possible.

2. PRELIMINARIES AND MOTIVATION

We denote by $R$ the polynomial ring $k[x_{0}, \ldots, X_{n}]$ , where $k$ is an algebraically closed
field, and we denote by $\mathrm{P}^{n}$ the projective space Proj $(R)$ . For a sheaf $F$ on $\mathrm{P}^{n}$ , we write

$H_{*}^{i}( \mathcal{F}):=\bigoplus_{t\in \mathbb{Z}}H^{x}(^{\mathrm{p}^{n}}, F(t))$
.

This is a graded $R$-module. For a subscheme $V$ of $\mathrm{P}^{n}$ , we denote by $\mathcal{I}_{V}$ its ideal sheaf
and by $I_{V}$ its saturated homogeneous ideal; note that $I_{V}=H_{*}^{0}(\mathcal{I}_{V})$ . We recall that a
codimension $c$ subscheme $X$ of $\mathrm{P}^{n}$ is arithmetically Gorenstein if its saturated ideal has a
minimal free resolution of the form

$0arrow R(-t)arrow F_{c-1}arrow\cdotsarrow I_{X}arrow 0$.

In particular, $X$ is arithmetically Cohen-Macaulay. The socle degree of $X$ is the integer
$t-c$. If the $h$-vector of $X$ is $(1, c, h_{2}, \ldots, h_{T-\underline{\cdot)}}, c, 1)$ (which we recall must be symmetric
in order for $X$ to be arithmetically Gorenstein) then the socle degree is also $r$ .

Example 2.1. We first mention some interesting examples of arithmetically Gorenstein
schemes, and in particular some useful ways of constructing them.

(1) Any complete intersection, $X$ , of forms of degree $a_{1)}\ldots,$ $a_{c}$ is arithmetically Goren-
stein. In this case $t= \sum a_{i}$ . These are easy to produce, but for many purposes they
are (

$‘ \mathrm{t}\mathrm{o}\mathrm{o}$ big,” as we shall see.
(2) A set of five points in $\mathrm{P}^{3}$ in linear general position is arithmetically Gorenstein.

More generally, a set of $n+2$ points in $\mathrm{P}^{\mathrm{n}}$ in linear general position is arithmetically
Gorenstein. This follows from a result of [7], which says that a reduced zeroscheme
$Z$ is arithmetically Gorenstein if and only if its $h$-vector is symmetric and $Z$ satisfies
the Cayley-Bacharach property. (We recall that $Z$ satisfies the Cayley-Bacharach
property if all subsets of cardinality $|Z|-1$ have the same Hilbert function. So, for
instance, the simplest set of points not satisfying the Cayley-Bacharach property is
the following configuration of points in 1P2:

$\bullet$

$\bullet$ $\bullet$ $\bullet$
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since one subset of three points lies on aline, while the other subsets of three points do
not. This set of points has symmetric $h$-vector but.is not arithmetically Gorenstein.)
The result of [7] was generalized in [13] to the non-reduced case.

(3) A Buchsbaum-Rim sheaf is, by definition, the reflexive sheaf $B_{\varphi}$ obtained as the kernel
of a generically surjective morphism $\varphi$ : $\mathcal{F}arrow \mathcal{G}$ , where $F$ and $\mathcal{G}$ are free sheaves
of ranks $f$ and $g$ , respectively, and we assume that $\varphi$ has a degeneracy locus of the
expected codimension $f-g+1$ . Various properties of these sheaves were studied
in [20], [14] and [19]. In particular, it was shown in [19] that if the rank, $r$ , of $B_{\varphi}$ is
odd then the top dimensional part of the scheme defined by a regular section of $B_{\varphi}$

is arithmetically Gorenstein of codimension $r$ . See also the discussion on page 19.
(4) If $X$ is arithmetically Gorenstein of dimension $\geq 1$ and if $F$ is any homogeneous

polynomial not vanishing on any component of $X$ then $F$ cuts out a divisor on $X$

which, viewed as a subscheme of $\mathrm{P}^{n}$ , is again arithmetically Gorenstein. This fact
can be used in conjunction with the Buchsbaum-Rim construction above to construct
arithmetically Gorenstein schemes of even codimension.

(5) Below we will recall the notion of two codimension $c$ schemes, $V_{1}$ and $V_{2}$ , in $\mathrm{P}^{n}$ being
$geometr\dot{i}Cally$ linked by an arithmetically Gorenstein scheme $X$ . This means simply
that $I_{V_{1}}\cap I_{V_{2}}=I_{X}$ . If this is the case, it follows that the sum $I_{V_{1}}+I_{V_{2}}$ defines a
scheme which is arithmetically Gorenstein of codimension $c+1$ . This comes from
the exact sequence

$0arrow I_{X}arrow I_{V_{1^{\oplus}}}I_{V_{2}}arrow I_{V_{1}}+I_{V_{2}}arrow 0$

and a mapping cone.
(6) Below in Corollary 4.2 we will see a very useful construction, via linear systems, for

constructing Gorenstein ideals. This was, in a sense, the initial observation
$\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{h}\square$

generated the work contained in [12].
(7) In codimension two, the converse of (1) holds: any arithmetically Gorenstein scheme

is a complete intersection. In higher codimension, (2) shows that there are
$\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}-\square$

metically Gorenstein schemes which are not complete intersections.

We now come to the central definitions of this paper.

Definition 2.2. We say that two subschemes $V_{1}$ and $V_{2}$ of $\mathrm{P}^{n}$ are Gorenstein linked, or
simply $G$-linked, by an arithmetically Gorenstein scheme $X$ if $I_{X}\subset I_{V_{1}}\cap I_{V_{2}}$ and if we have
$I_{X}$ : $I_{V_{1}}=I_{V_{2}}$ and $I_{X}$ : $I_{V_{2}}=I_{V_{1}}$ . We denote this by $V_{1}\sim XV_{2}$ . The equivalence relation
generated by $\mathrm{G}$-links is called Gorenstein liaison, or simply $G$-liaison. If $X$ is a complete
intersection, we say that $V_{1}$ and $V_{2}$ are complete intersection linked, or simply CI-linked.
The equivalence relation generated by CI-links is called complete intersection liaison, or
simply CI-liaison. A subscheme $V$ is said to be licci if it is in the (complete intersection)
LIaison Class of a Complete Intersection. Analogously, we say that a subscheme $V$ is
glicci if it is in the Gorenstein LIaison Class of a Complete Intersection. If $V_{1}$ is linked
to $V_{2}$ in two steps by complete intersection (resp. by arithmetically Gorenstein $\mathrm{s}\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{S}$)

$\square$

’

we say that they are CI-bilinked (resp. G-bilinked).

The notion of using complete intersections to link varieties has been used for a long
time, going back at least to work of Macaulay and Severi.

The following proposition has been known for some time, but maybe not well-known
for Gorenstein links, especially (iv). It gives some idea of what is preserved when you
link.
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Proposition 2.3.
(a) Assume $V_{1}\sim XV_{2}$ is a $G$-link, where

$0arrow R(-t)arrow\cdotsarrow I_{X}arrow 0$ .
(i) $\dim V_{1}=\dim V_{2}=\dim x=r$ (say), all unmixed.

(ii) If $r\geq 1$ and $V_{1}$ is locally CM then for $1\leq i\leq r$ we have
$(M^{r-i+1})(V2)\cong(M^{i})(V1)^{\mathrm{v}}(n+1-t)$

where $(M^{i})(V):=H_{*}^{i}(\mathcal{I}_{V})$ .
(iii) $\deg V_{1}+\deg V_{2}=\deg X$ .
(iv) If $\dim X=1,$ $\deg V_{i}=d_{\dot{x}}$ and $p_{a}(V_{i})=g_{i}$ then

$g_{2}-g_{1}= \frac{1}{2}(t-n-1)(d2-d_{1})$ .

(b) If $V$ is not necessarily unmixed, $I_{X}$ : $[I_{X} : I_{V}]$ is the ideal of the top dimensional part
of $V$ .

We remark that the algorithm described in (b) is very easy and fast on the standard
computer programs for commutative algebra.

It is very interesting that Proposition 2.3 holds for $\mathrm{G}$-liaison almost exactly as it does
for the well-known case of CI-liaison. A very natural question is the following:

Do CI-liaison and $\mathrm{G}$-liaison generate the same equivalence relation on codimen-
sion $c$ subschemes of $\mathrm{P}^{n}$ ?

In codimension two we see immediately that the answer is $‘(\mathrm{y}\mathrm{e}\mathrm{s},$

” since complete intersec-
tions and arithmetically Gorenstein schemes coincide. In higher codimension the answer
is $‘(\mathrm{n}\mathrm{o}.$

” Indeed, a simple counterexample is the following. Consider a set $Z$ of four points
in $\mathrm{P}^{3}$ in linear general position. By adding a sufficiently general fifth point, Example 2.1
(2) shows that $Z$ is glicci. On the other hand, it follows from a theorem of [15] that they
are not licci, since they have a pure resolution but are not Gorenstein.

The study of liaison in codimension two is a remarkably complete picture, and its
applications have been extremely numerous and varied. One naturally would like to carry
out a program in higher codimension. We have the following picture:

codimension 2 liaison
(with all its beautiful results)

$\int$ higher codimension $\backslash$

CI-liaison G-liaison

The purpose of this paper is to show how results of [12] suggest that $\mathrm{G}$-liaison is a very
natural direction to go.

3. REMARKS ON DIVISORS

Hartshorne [11] developed the theory of generalized divisors on (locally) Gorenstein
schemes, and from it he rigorously derived many of the main facts about CI-liaison by
thinking of subschemes of $\mathrm{P}^{n}$ as divisors on complete intersections. In this paper we
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would like to discuss how this approach gives a result about CI-liaison (the equivalence
of geometric and algebraic liaison), and how an analogous approach can be applied to
$\mathrm{G}$-liaison. In this section, however, we begin by discu.ssing what can and cannot be done
with divisors, and where we have to be careful.

$i$FYom now on, a $d\dot{i}v\dot{i}sor$ on a subscheme $S$ of $\mathrm{P}^{n}$ is a pure codimension 1 subscheme
of $S$ with no embedded components. Note that we usually talk about a divisor $C$ on a
subscheme $S$ of $\mathrm{P}^{n}$ . The notation suggests curves on surfaces, and this is one of our main
applications, but we do not intend that to be the case in general.

The most basic kind of divisor is the hypersurface section divisor:

Definition 3.1. Let $S\subset \mathrm{P}^{n}$ and let $F\in R$ be a homogeneous polynomial not vanishing
on any component of $S$ (i.e. $I_{S}$ : $F=Is$). Then $H_{F}$ is the divisor cut out on $S$ by F. $\square$

Remark 3.2.

(a) Viewing $H_{F}$ as a subscheme of $\mathrm{P}^{n}$ , its ideal $I_{H_{F}}$ is the $\mathrm{s}\mathrm{a}\mathrm{t}.\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}$ of $I_{S}+(F)$ , and
$\deg H_{F}=\deg F\cdot\deg S$ .

(b) If $S$ is arithmetically Cohen-Macaulay then $I_{S}+(F)$ is already saturated and $H_{F}$ is
also arithmetically Cohen-Macaulay.

(c) Note that we do not assume anything about $S$ . If $S$ is arithmetically Cohen-Macaulay
(no other assumptions) and $\deg F=t$ then we denote the set of all divisors cut

$\mathrm{o}\mathrm{u}\mathrm{t}\square$

by hypersurfaces of degree $t$ by $|tH|$ .

Now we turn to other divisors and to operations on divisors. Hartshorne extends
the theory of divisors to schemes $S$ having property $G_{1}$ and $S_{2}$ . We always assume
arithmetically Cohen-Macaulay, so in particular $S_{2}$ , but we now examine the $G_{1}$ condition.

Definition 3.3. A noetherian ring $A$ (resp. a noetherian scheme $X$ ) satisfies the condition
$G_{r},$

$‘\langle \mathrm{G}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{n}\mathrm{S}\mathrm{t}\mathrm{e}\mathrm{i}\mathrm{n}$ in codimension $\leq r$
” if every localization $A_{\mathfrak{p}}$ (resp. every local ring $\mathcal{O}_{x}$ )

of dimension $\leq r$ is a Gorenstein local ring. $\square$

Remark 3.4. Definition 3.3 means that the non locally Gorenstein locus has codimension
greater than $r$ . In particular, $G_{0}$ is (

$‘ \mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}$ Gorenstein.” See [11] for more details
$\mathrm{o}\mathrm{n}\square$

schemes satisfying the condition $G_{r}$ .

What does this notion give us, and what doesn’t it give us? We will see, for example,
that if $S$ is smooth we can talk about sums of divisors, while if $S$ satisfies only $G_{1}$ then
we cannot. However, there is much more that we can do with differences of divisors,
especially in the case where $C\subseteq C’$ and we want to define $C’-C$ as an effective divisor
of degree equal to $\deg C’-\deg c$ . Here is a simple example.

Example 3.5. Let $S_{1}$ be the union of three planes in $\mathrm{P}^{3}$ , all containing a line $C$ . Let $S_{2}$

be the union of two planes in $\mathrm{P}^{3}$ containing $C$ . Both $S_{1}$ and $S_{2}$ are hypersurfaces, hence
satisfy $G_{1}$ , and $C$ is a divisor on either $S_{1}$ or $S_{2}$ .
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$S_{1}=\mathrm{t}\mathrm{h}\mathrm{r}\mathrm{e}\mathrm{e}$ planes $S_{2}=\mathrm{t}\mathrm{w}\mathrm{o}$ planes

What should $C+C$ be? On $S_{1}$ there is no hope for a natural, degree-preserving sum.
On $S_{2}$ one can see that $C$ is self-linked (via the complete intersection $(S_{2},$ $L)$ ), so there is
almost some hope that $C+C$ might make sense; but different choices of $L$ give different
complete intersection subschemes, so it does not quite work. However, $H_{L}-C=C$ works
unambiguously on $S_{2}$ , where $H_{L}-C$ is defined by the ideal $(S_{2}, L):Ic$ . $\square$

Although the above example shows that in general sums do not make sense on arith-
metically Cohen-Macaulay schemes satisfying $G_{1}$ , we will see shortly with $‘(\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{c}$ double
$\mathrm{G}$-linkage” that in some special cases a sum does exist. We now consider differences. The
idea in general is to mimic the preceding example to define $C’$ –C. $S$ need not be a
complete intersection, or even arithmetically Gorenstein. It is enough that locally $C’$ is
Gorenstein along every component:

Definition 3.6. Let $S\subset \mathrm{P}^{n}$ be a subscheme, and let $C,$ $C’$ be divisors on $S$ . Assume that
$C\subseteq C’$ as schemes, and that $C’$ satisfies property $G_{0}$ . Then $C’-C$ is the effective divisor
on $S$ , of degree equal to $\deg C’-\deg C$ , whose defining ideal as a subscheme of $\mathrm{P}^{n}$ is
$I_{C’}$ : $I_{C}$ . In particular, suppose $S$ is arithmetically Cohen-Macaulay and satisfies property
$G_{1}$ . Let $C\subset S$ be a divisor and let $F\in I_{C}$ be a homogeneous polynomial such that
$I_{S}$ : $F=I_{S}$ . Then $H_{F}-C$ is the effective divisor defined by $I_{H_{F}}=(I_{S}+(F))$ : $I_{C}$ . $\square$

Example 3.7. We illustrate why we require $S$ to satisfy property $G_{1}$ in the last part of
Definition 3.6. Let $S$ be the union of three lines in $\mathrm{P}^{3}$ meeting at a point, P. $S$ satisfies
$G_{0}$ but not $G_{1}$ . Let $L$ be a general linear form vanishing at $P$ . Then the ideal $I_{S}+(L)$ is
the square of the ideal of $P$ in $\mathrm{P}^{2}$ , i.e. $H_{L}$ is a zeroscheme in $\mathrm{P}^{2}$ of degree 3 supported at
$P$ . On the other hand, $[I_{S}+(L)]$ : $I_{P}$ gives back $I_{P}$ . Hence $H_{L}-P=P$ , and the degree
is not preserved as we would like. $\square$

We now define certain linear systems on arithmetically Cohen-Macaulay schemes sat-
isfying $G_{1}$ . This notion agrees with that of Hartshorne [11]. It also suggests that there is
sometimes a chance for sums of divisors, and we will make this precise shortly.

Definition 3.8. Let $S$ be arithmetically Cohen-Macaulay satisfying $G_{1}$ , and let $C,$ $Y\subset S$

be divisors. Then
(i) $Y$ is in the linear system $|C+tH|$ if there exists a divisor $D$ and homogeneous

polynomials $F\in I_{C}$ and $G\in I_{Y}$ with $\deg G=\deg F+t$ , such that $H_{F}-c=D=$
$H_{G}-Y$ .

(ii) If $t=0$ we say that $C$ and $Y$ are linearly equivalent. $\square$

Remark 3.9. Part (i) says $(I_{S}+(F))$ : $I_{C}=I_{D}=(I_{S}+(G))$ : $I_{Y}$ . $\square$
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As we saw above, in general the sum of two divisors does not make sense. We now
give one special case where it does, the so-called ((

$\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{c}$ double linkage.” We give the
construction from the literature and a new generalization from [12]. The reason for this
terminology will be explained in the next section.

Definition 3.10. Given $C\subset \mathrm{P}^{n}$ of codimension $r$ , choose $F_{2},$
$\ldots,$

$F_{r}\in I_{C}$ forming a
regular sequence, and consider the ideal

$I_{c^{J}}=F\cdot I_{c}+(F2, \ldots, Fr)$

where $F\in R$ is homogeneous and $(F, F_{2}, \ldots, F_{r})$ is also a regular sequence. $I_{C’}$ is a
saturated ideal, defining a scheme $C’$ which is called a basic double CI-link of

$C(\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{i}\backslash \mathrm{n}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}\coprod$

just “basic double link”).

Remark 3.11. Basic double CI-linkage, originally called simply $‘(\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{c}$ double linkage,”
was introduced in the paper [16] in the context of curves in $\mathrm{P}^{3}$ . Those authors pointed
out that it is a special case of “liaison addition” [25]. Its main use is as a key component
of the structure theorem for even liaison classes introduced in [16] and generalized in [3],
[17], [5], [22] and [21]. All of these papers used it in the context of codimension two. In
the generality of the above definition it was introduced in [4] and put into the context

$\mathrm{o}\mathrm{f}\square$

((
$\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{Z}\mathrm{e}\mathrm{d}$ liaison addition” in [10].

As sets, it can be shown (see [10]) that $C’$ is simply the union of $C$ and the complete
intersection, $X$ , defined by $I_{X}=(F, F_{2}, \ldots, F_{r})$ . Furthermore, $\deg C’=\deg C+\deg X$ .
This motivates the following Geometric Interpretation of Basic Double CI-linkage:

Let $C\subset \mathrm{P}^{n}$ have codimension $r\geq 2$ . Choose a complete intersection $S$ of
codimension $r-1$ containing $C$ , and view $C$ as a divisor on S. Then a basic

(3.1) double CI-link is just a divisor of the form $C’=C+H_{F}$ , where $I_{S}$ : $F=I_{S}$ .
The saturated ideal is given by $I_{C’}=F\cdot I_{C}+I_{S}$ , and we have $\deg C’=$
$\deg C+\deg F\cdot\deg S$ .

Note that $H_{F}$ is simply the complete intersection $X$ mentioned above. We now give a
generalization, which we will return to in the next section and explain the $\mathrm{n}\mathrm{a}..\mathrm{m}\mathrm{e}$ .

Lemma 3.12. (Basic Double $\mathrm{G}$-linkage) Let $C\subset \mathrm{P}^{n}$ be $equ\dot{i}d\dot{i}menS\dot{i}onal(\dot{i}.e$ . $I_{C}$

is unmixed) and have codimension $r\geq 2$ . Choose a scheme $S\subset \mathrm{P}^{n}$ such that $S$ is
arithmetically Cohen-Macaulay of codimension $r-1$ and $I_{S}\subset I_{C}$ . Let $F\in I_{C}$ be such
that $I_{S}$ : $F=I_{S}$ . Then the ideal $F\cdot I_{C}+I_{S}$ is saturated and unmixed, defining a projective
subscheme on $S$ which we $w\dot{i}llwr\dot{i}te$ as the divisor $C’=C+H_{F}$ . As a subscheme of $\mathrm{P}^{n}$ ,
$C’$ has codimension $r$ and satisfies $\deg C’=\deg C+\deg F\cdot\deg S$ .

Proof. The proof follows primarily from the exact sequence
$0arrow I_{S}(-d)arrow I_{S}\oplus I_{C}(-d)arrow I_{S}+F\cdot I_{C}arrow 0$

where the first map is given by $A[]arrow(AF, F)$ and the second map is given by
$(A, B)-\square$

A–FB. The details can be found in [12], Lemma 4.8.

Remark 3.13. In Section 6 we will be interested in divisors in the linear system $|C-H|$ ,
where $C$ is effective and $H$ is a hyperplane section. In that section we will assume that
$S$ is smooth, since that is all that we will need. Here we comment on the more general
situation. In view of Definition 3.6, one might expect that $C$ would have to satisfy at
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least property $G_{0}$ in order for $C-H$ to make sense. However, it seems that this is not
the case. More generally, assume that

$\bullet$ $S$ is arithmetically Cohen-Macaulay (no further assumption),
$\bullet$ $C$ is a divisor on $S$ (no further assumption), and
$\bullet$ there exists a hypersurface section $H_{F}$ of $S$ such that $H_{F}\subset C$ as schemes.

Then $C-H_{F}$ seems to make sense in a degree-preserving way. Since the proof is incom-
plete, we state it as a conjecture:

If $F$ is a homogeneous polynomial defining the hypersurface section $H_{F}$ , then
$C-H_{F}$ is the scheme with defining ideal $I_{C}$ : $(I_{S}+(F))$ , and $\deg(C-H_{F})=$
$\deg C-(\deg s)(\deg F)$ . In fact, $C$ is a basic double $G$-link of $C-H_{F}$ . That
$\dot{i}S$ ,

$I_{C}=F\cdot[I_{C} : (I_{S}+(F))]+I_{S}$ .

The idea is to use Lemma 3.12. In view of Example 3.7, it is surprising that $C$ can fail
to satisfy $G_{0}$ , and yet the very fact that it lies on $S$ and contains $H_{F}$ allows $C-H_{F}$ to
make sense. If the conjecture is correct, and if $S$ satisfies at least $G_{0}$ , then $C-H_{F}$ is
$\mathrm{G}$-bilinked to C. by Proposition 4.6 below. $\square$

4. GORENSTEIN IDEALS AND LIAISON

In this section we develop the theory of Gorenstein liaison via divisors. We first give a
construction, introduced in [12], which allows us to construct (arithmetically) Gorenstein
divisors on suitable arithmetically Cohen-Macaulay schemes. We state it first in algebraic
language, in which case it was essentially known.

Lemma 4.1 ([6]). Let $S\subset \mathrm{P}^{n}$ be an arithmetically Cohen-Macaulay subscheme satisfying
$G_{0}$ . Then there is a homogeneous Gorenstein ideal $J$ of $R_{f}$ with $\mathrm{c}\mathrm{o}\dim J=\mathrm{c}\mathrm{o}\dim s+1$ ,
such that $J$ contains $I_{S}$ and $K_{S}\cong J/I_{S}(t)$ for some $t\in$ Z.

Again, we have a geometric interpretation:

Corollary 4.2. Let $S\subset \mathrm{P}^{n}$ be an arithmetically Cohen-Macaulay subscheme satisfying
$G_{1}$ . Let $K$ be an effective subcanonical divisor on S. Note that

$K$ is an effective sub- $\Leftrightarrow$ $K$ is the scheme associated to a global sec-
canonical divisor tion of $\omega_{S}(t)$ for some $t$

$\Leftrightarrow$ $K$ is an element of the linear system
$|\overline{K}+tH|$ , where $\overline{K}$ is a canonical $d\dot{i}v\dot{i}sor$ .

Let $F\in(I_{K})_{d}$ such that $I_{S}$ : $F=I_{S}$ . Then the effective divisor $H_{F}-K$ , viewed as a
subscheme of $\mathrm{P}^{n}$ , is arithmetically Gorenstein. In fact, any divisor in the linear system
$|H_{F}-K|$ is arithmetically Gorenstein.

Proof (sketch). Let $Y\in|H_{F}-K|$ and let $d=\deg F$ . Then we have
$\mathcal{I}_{Y|S}(d)\cong o_{S}(dH-Y)\cong O_{s(K)\cong}\omega s(t)$

(cf. [11]). This leads to the following exact sequence, after taking cohomology:

(4.1) $0arrow I_{S}arrow I_{Y}arrow H_{*}^{0}(\omega_{S})(t-d)arrow \mathrm{O}$ .
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Since $S$ is arithmetically Cohen-Macaulay, the minimal free resolution of $R/I_{S}$ is dual to
that of the canonical module $H_{*}^{0}(\omega_{S})$ (up to twist). Then an application of the

$\mathrm{H}\mathrm{o}\mathrm{r}\mathrm{S}\mathrm{e}\mathrm{s}\mathrm{h}\mathrm{o}\mathrm{e}\coprod$

Lemma ([26] 2.2.8, p. 37) gives the result.

Note that the exact sequence (4.1) gives the connection between Corollary 4.2 and
Lemma 4.1.

Remark 4.3. It is rather amazing that any element of this linear system is arithmetically
Gorenstein. The graded Betti numbers are upper-semicontinuous, and there are examples
of linear systems of the form $|H_{F}-K|$ where the other graded Betti numbers jump, but
not the last one!! It is also possible to have linear systems (not of the form $|H_{F}-K|!$ )
where the general element is arithmetically Gorenstein but special elements are not, i.e.
this property is special to this kind of linear system, not to arithmetically

$\mathrm{G}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{i}\mathrm{n}\square$

divisors in general. See [12] Example 5.8.

With this preparation, we will now see how CI-liaison can be viewed as a theory of
divisors on complete intersections, and how it has been generalized to $\mathrm{G}$-liaison in [12].
The idea (from [11]) is as follows. If $S$ is a complete intersection then so is $H_{F}$ . Let
$C\subset \mathrm{P}^{n}$ be a subscheme and let $S$ be any complete intersection containing $C$ as a divisor.
Let $F\in I_{C}$ such that $I_{S}$ : $F=I_{S}$ . Then the divisor $H_{F}-C$ on $S$ , viewed as a subscheme
of $\mathrm{P}^{n}$ , is the scheme residual to $C$ in the complete intersection $H_{F}$ . In this way Hartshorne
$\mathrm{r}\mathrm{e}$-derives many of the basic facts about CI-liaison as a theory of divisors. In section 5
we will see that this sort of consideration can be used to generalize some other standard
results from the codimension two case. For now we give a more elementary result, which
is an immediate consequence of Definition 3.8.

Proposition 4.4. Let $S$ be a complete intersection and let $C$ and $Y$ be divisors on S. If
$\mathrm{Y}\in|C+tH|$ then $Y$ is CI-bilinked to $C$ .

Remark 4.5. As a result of the last result, it follows from (3.1), or from a direct compu-
tation using Definition 3.10, that if $C’$ is a basic double CI-link of $C$ then $C’$ is CI-bilinked
to $C$ . This was the reason that Lazarsfeld and Rao [16] originally chose the name

$((\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{i}\square \mathrm{C}$

double linkage.”

We now give the connection between basic double $\mathrm{G}$-linkage (Lemma 3.12) and G-
liaison.

Proposition 4.6. Let $C,$ $S,$ $F$ and $C’$ be as in Lemma 3.12; $\dot{i}.e$ . assume that
(i) $C\subset \mathrm{P}^{n}$ is equidimensional ($\dot{i}.e$ . $I_{C}$ is unmixed) of codimension $r\geq 2_{i}$

(ii) $S\subset \mathrm{P}^{n}$ is arithmetically Cohen-Macaulay of codimension $r-1$ with $I_{S}\subset I_{cj}$

(iii) $F\in I_{C}$ is such that $I_{S}$ : $F=I_{Sj}$

(iv) $I_{C}’=F\cdot I_{C}+Is$ .
Assume further that $S$ satisfies property $G_{0}$ . Then $C’$ is $G$-bilinked to $C$ .

Proof. In the paper [12] the links are given explicitly, and we refer the reader to that paper
for the details. We stress that $S$ is assumed to satisfy property $G_{0}$ , which is stronger than
what was needed for Lemma 3.12, but. weaker than the condition $G_{1}$ (or more) which

$\mathrm{w}\mathrm{e}\square$

need for many of our results.

We can extend Proposition 4.6, by changing the hypothesis $G_{0}$ to $G_{1}$ and allowing
linear equivalence. We first state the result in algebraic language:
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Proposition 4.7. Let $S\subset \mathrm{P}^{n}$ be an arithmetically Cohen-Macaulay subscheme of codi-
mension $c$ satisfying property $G_{1}$ . Let $C,$ $Y$ be generalized divisors on $S$ such that there
exist homogeneous $polyn\mathit{0}m\dot{i}alsF\in I_{C}$ and $G\in I_{Y}$ with $I_{S}$ : $F=I_{S},$ $I_{S}$ : $G=I_{S}$ and
$(I_{S}.+(F)):I_{c=}(I_{S}+(G)):I_{Y}=I_{D}$ (say). Then $C$ and $Y$ are G-bilinked.

The geometric version of this result is as follows:

Corollary 4.8. Let $C,$ $Y\subset S$ be divisors, where $S$ is arithmetically Cohen-Macaulay
satisfying $G_{1}$ . If $Y\in|C+tH|$ then $C$ and $Y$ are G-bilinked.

The analogous statement for CI-liaison, Proposition 4.4, was very easy because in that
case the ideals of the form $I_{S}+(F)$ are complete intersections and the ideal quotients are
links. In our current situation, if $S$ is not Gorenstein then neither is $I_{S}+(F)$ in general,
so there is something to prove here. The ideal quotients in Proposition 4.7 are not links.

We first give a simple proof of Corollary 4.8 for the case where $S$ is smooth, and we
will the.n see how the proof needs to be modified to allow smoothness to be weakened to
$G_{1}$ .

Proof of Corollary 4.8 $\dot{i}fS$ is smooth. Let $Y\in|C+tH|$ and let $K$ be subcanonical.
Let $F\in I_{K}$ not vanishing on any component of $S$ (i.e. $I_{S}$ : $F=I_{S}$). By Definition 3.8
there exist forms $B$ and $B’$ with $\deg B’-\deg B=t$ , and an effective divisor $D$ , such that
$H_{B}-C=D=H_{B’}-Y$ . By Corollary 4.2, $H_{FB}-K$ and $H_{FB^{\prime-}}K$ are G.orenstein, and
clearly they contain $C$ and $C’$ , respectively, as subschemes.

In fact, $H_{FB}-K-c=(H_{F}-K)+(H_{B}-C)=(H_{F}-K)+D$ . This says that $C$ is G-
linked to $D$ with a Gorenstein ((

$\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{l}$
” attached. Similarly, $H_{FB’}-K-Y=(H_{F}-K)+D$ .

This says that $C’$ is $\mathrm{G}$-linked to the same residual. Therefore $C$ and $Y$ are both G-linked
to $(H_{F}-K)+D$ , as a subscheme of $\mathrm{P}^{n}$ . $\square$

What happens in the non-smooth case? In the proof above, we were forced to use sums
of divisors. We have to be more careful in the more general case.

Proof of Proposition 4.7 (sketch).
Step I: One checks that $\deg D=\deg F\cdot\deg S-\deg C=\deg G\cdot\deg S-\deg Y$ .
Step II: Consider a minimal free resolution of $I_{S}$ :

$0arrow \mathrm{F}_{\mathrm{C}}arrow A\mathrm{F}_{\mathrm{C}}-1arrow\cdotsarrow I_{S}arrow 0$ .

Suppose $A$ is a $(t+r)\cross t$ matrix. $A^{t}$ is a presentation matrix for $K_{S}(n+1)$ . Let $B$

be a sufficiently general $t\cross 1$ matrix such that the concatenation $A’$ of $A^{t}$ and $B$ is
homogeneous. Let $I$ be the ideal of the annihilator of the module $M_{A^{l}}$ , where $M_{A^{J}}$ is the
cokernel of the map represented by $A’$ . Then the scheme $K$ defined by $I$ is a subcanonical
divisor of $S$ .

Step III: The submaximal minors of $A$ define the non locally Gorenstein locus of $S$ .
Using this fact, the $G_{1}$ property and Step II, one shows that a sufficiently general choice
of $B$ in Step II in fact gives a subcanonical divisor $K$ which has no component in common
with $D$ .

Step IV: The ideal $I$ of Step II is not necessarily saturated. Let $I_{K}$ be the saturation.
Let $A\in I_{K}$ be such that $I_{S}$ : $A=I_{S}$ and $I_{D}$ : $A=I_{D}$ . The ideal $I_{X}:=(I_{S}+(A))$ : $I_{K}$ is
Gorenstein with no component in common with $D$ , and so

$\deg[I_{D}\cap I_{X}]=\deg D+\deg X$ .
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Step V: One checks that $I_{S}+F\cdot I_{X}$ and $I_{S}+G\cdot I_{X}$ are Gorenstein of degrees
$\deg$ F. $\deg S+\deg X$

$\deg G\cdot\deg S+\deg X$

respectively.
Step VI: Let

$a=[I_{s+}F\cdot I_{\mathrm{x}]}$ : $I_{C}$

$\mathrm{b}=[I_{s}+G\cdot I_{\mathrm{x}]:I_{Y}}$

These are $\mathrm{G}$-links. Show both of these are contained in $I_{D}\cap I_{X}$ , and compute that they
have the same degree. All ideals in this proof are unmixed. Therefore $C\sim D\cup X\sim Y\coprod$

and we are done.

Remark 4.9.
(i) Note that the scheme $X$ above plays the role of $H_{F}-K$ in the geometric proof.
(ii) One may ask why Proposition 4.7 required $S$ to satisfy property $G_{1}$ , while Proposi-

tion 4.6 required only $G_{0}$ . The main point, of course, is that Proposition 4.7 requires
us to let the divisors move in alinear system, while Proposition 4.6 refers to a specific
divisor whose linkage and degree properties can be checked directly. In particular,
the divisor $H_{F}-C$ , with ideal $[I_{S}+(F)]$ : $I_{C}$ , makes sense (e.g. you get the degree you
expect) for $G_{1}$ and arithmetically Cohen-Macaulay, but not $G_{0}$ . See also Example
3.7.

(iii) If $S$ is a complete intersection, one can check quickly that the links given in Propo-

sition 4.7 are CI-links, so the result coincides with Proposition 4.4.
(iv) If CI-liaison is a theory about divisors on complete intersections, one might expect

$\mathrm{G}$-liaison to be a theory about divisors on arithmetically Gorenstein schemes. It
is interesting that the “right” generalization is to arithmetically Cohen-Macaulay
schemes satisfying $G_{1}$ .

(v) If $S$ is not a complete intersection, usually $V$ and $Y$ are not in the same CI-liaison
class. See the results at the end of Section 6 for further details. This is a

$\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{y}\coprod$

important difference between CI-liaison and G-liaison.

Proposition 4.7 has the following immediate corollary.

Corollary 4.10. For divisors on an arithmetically Cohen-Macaulay subscheme, $S$ , of
$\mathrm{P}^{n}$ satisfying $G_{1}$ , the properties of being arithmetically Cohen-Macaulay or arithmetically
Buchsbaum are preserved under linear equivalence and adding hyperplane sections of $S$ .

Example 4.11. It is also natural to ask if the arithmetically Cohen-Macaulay condition
can be removed in Proposition 4.7. In fact, the projection of the Veronese in $\mathrm{P}^{5}$ to $\mathrm{P}^{4}$ ,

and the linear system $|\mathcal{O}_{S}(1)|$ provides a counterexample. The general element of the
linear system can be shown to be arithmetically Cohen-Macaulay, while the particular
elements which are actually hyperplane sections are arithmetically Buchsbaum but

$\mathrm{n}\mathrm{o}\mathrm{t}\square$

arithmetically Cohen-Macaulay. See [12] for details.

5. GENERALIZING Two STANDARD CODIMENSION Two RESULTS

In this section we discuss two well-known results in codimension two which have been
generalized in [12]. The first is often referred to as Gaeta’s theorem, because of the paper
[9]. However, a less complete result along the same direction was given by Apery [1],
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[2] and a modern proof was given by Peskine and Szpiro [23]. The result says that in
codimension two, a subscheme of $\mathbb{P}^{n}$ is licci if and only if it is arithmetically Cohen-
Macaulay. However, we will phrase it slightly differently so that our generalization can
be better understood. The second result that we will generalize is due to Rao, and it says
that under very reasonable conditions, algebraic liaison and geometric liaison form the
same equivalence relation in codimension two.

5.1. Gaeta’s theorem. We begin with some background.

Definition 5.1. A codimension $c+1$ subscheme, $V$ , of $\mathrm{P}^{n}$ is standard determinantal if $I_{V}$

is the ideal of maximal minors of a homogeneous $t\cross(t+c)$ matrix. (“ $\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{d}$
” means

the ideal of maximal minors has the expected codimension.) Note that a very special case
is when $V$ is a complete intersection $(t=1)$ . $\square$

We note that if $V$ is standard determinantal then the minimal free resolution for $I_{V}$

is given by the Eagon-Northcott complex. In particular, $V$ is arithmetically Cohen-
Macaulay. What is particularly important here is that in codimension two, the converse
holds: If $V$ is arithmetically Cohen-Macaulay of codimension two then it is standard
determinantal. In fact, if $I_{V}$ has a minimal free resolution

$0arrow \mathrm{F}_{1}arrow \mathrm{F}_{0}Aarrow I_{V}arrow 0$

then $I_{V}$ is the ideal of maximal minors of $A$ , which is a $(t+1)\cross t$ matrix. This is the
Hilbert-Burch theorem (cf. [8]), and $A$ is often called the Hilbert-Burch matrix of $V$ .

Returning to liaison, it is clear that if $V$ is licci then it is arithmetically Cohen-Macaulay,
and hence if we also have $\mathrm{c}\mathrm{o}\dim V=2$ , then $V$ is standard determinantal. The real content
of Gaeta’s theorem, then, is the converse:
Theorem 5.2 (Gaeta, Apery, Peskine-Szpiro). In codimension two, any standard deter-
minantal subscheme $V$ of $\mathrm{P}^{n}$ is licci.

Proof (sketch). Let $V$ be standard determinantal of codimension two, so $I_{V}$ is the ideal
of maximal minors of some $t\cross(t+1)$ homogeneous matrix, $A$ . Link $V\sim XW$ using
as the generators of $I_{X}$ two minimal generators of $I_{V}$ . Of course $W$ is again standard
determinantal, since it is arithmetically Cohen-Macaulay of codimension two. What Gaeta
showed is that the matrix, $A’$ , defining $I_{W}$ is obtained from $A$ by deleting two columns
and transposing:

$A=[\cross\cross\cross\cross\cross\cross$ $\mathrm{x}\mathrm{x}\mathrm{x}\cross\cross\cross$ $\mathrm{x}\cross \mathrm{x}\mathrm{x}\mathrm{x}\cross$
$\mathrm{x}\mathrm{x}\mathrm{x}\mathrm{x}\cross\cross$ $\mathrm{x}\mathrm{x}\cross\cross\cross\cross$

$\square \square \square \square \square \square$

$\square \coprod_{\square }\square \square \square ]$ $A’=[\cross\cross\cross\cross\cross$ $\cross\cross\cross\cross\cross$ $\mathrm{x}\mathrm{x}\cross\cross \mathrm{x}$
$\mathrm{x}\mathrm{x}\cross \mathrm{x}\cross$ $\cross\cross\cross\cross \mathrm{X}$

$\cross\cross\cross\cross\cross]$

(In this case, we can write $I_{X}=(F, G)$ where $F$ is the determinant of the matrix obtained
by removing the last column and $G$ is the determinant of the matrix obtained by removing
the penultimate column.) Continuing in this manner, one reaches in a finite number of
steps a 1 $\cross 2$ matrix, i.e. a complete intersection. $\square$
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Example 5.3. In codimension two, let $I=(F, G)$ be a complete intersection. Then $I^{k}$

is again arithmetically Cohen-Macaulay, given by the maximal minors of

$k\{$

One can check that the complete intersection $(F^{k}, G^{k})$ CI-links $I^{k}$ to $I^{k-1}$ by
$\mathrm{r}\mathrm{e}\mathrm{m}\mathrm{o}\mathrm{v}\mathrm{i}\mathrm{n}\coprod \mathrm{g}$

the first and last columns and transposing along the minor diagonal.

Theorem 5.2 (and its converse as well) is certainly false in higher codimension. For
instance, a general set, $Z$ , of four points in $\mathrm{P}^{3}$ can be shown to be standard determinantal,
but we saw on page 4 that $Z$ is not licci. On the other hand, we also saw that $Z$ is glicci,
since the addition of a general fifth point forms a Gorenstein zeroscheme. It was a very
pleasant surprise to discover that this phenomenon is true in a much broader setting:

Theorem 5.4. In arbitrary $cod_{im}enS\dot{i}on_{f}$ any standard determinantal subscheme, $V$ , of
$\mathrm{P}^{n}$ is glicci.

Proof (sketch). This is one of the main results of [12]. The proof is very technical, but
we will describe the main ideas.

We use the following notation: given a homogeneous matrix $A$ , we denote by $I(A)$ the
ideal of maximal minors of $A$ . Assume that $\mathrm{c}\mathrm{o}\dim V=c+1$ and that $I_{V}=I(A)$ for some
homogeneous $t\cross(t+c)$ matrix $A$ . We make the following definitions:

$\bullet$ Let $B$ be the matrix obtained by deleting a suitable column of A. $(^{((\mathrm{s}\mathrm{u}\mathrm{i}}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}$

” means
that $\mathrm{c}\mathrm{o}\dim I(B)=c$. First take general linear combinations of the rows and columns,
if necessary.) Define $S$ by $I_{S}=I(B)$ .

$\bullet$ Let $A’$ be the matrix obtained by deleting a suitable row of B. (“ $\mathrm{S}\mathrm{u}\mathrm{i}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}$
” means

that $\mathrm{c}\mathrm{o}\dim I(A’)=c+1$ . First take general linear combinations of the rows and
columns, if necessary.) Define $V’$ by $I_{V’}=I(A’)$ .

We have the following picture:

$A$ $=$ $\}t$ $I(A)=I_{V}$ , $\mathrm{c}\mathrm{o}\dim V=c+1$

$\backslash$

$B$ $=$ $t$ $I(B)=I_{S}$ , $\mathrm{c}\mathrm{o}\dim S=C$

$r$
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$\backslash$

$A’$ $=$ $t-1$ $I(A’)=I_{V’}$ , $\mathrm{c}\mathrm{o}\dim V’=c+1$ .

$r$

The goal will be to show that one can go from $I(A)$ to $I(A’)$ using two $\mathrm{G}$-links. Hence in
$2t-2$ steps one arrives at a complete intersection.

Here is an intuitive (geometric) idea of what is going on:

View $V,$ $V’$ as divisors on S. $S$ does not necessarily satisfy $G_{1}$ , so we have to
be very careful. In any case, essentially we have that $V’\in|V+tH|$ for some $t$ .
Then Corollary 4.8 suggests that $V$ and $V’$ are G-bilinked.

Note that again, the liaison result is a result about divisors. Of course the failure to
guarantee that $S$ satisfies $G_{1}$ means that we have to work alittle harder. In fact, we show
that $V$ is $\mathrm{G}$-bilinked to $V’$ by explicitly giving the links. We need some more notation.

$\bullet$ Let $A_{1}$ be the submatrix of $A$ consisting of the first $t-1$ columns.
$\bullet$ Let $D$ be the determinant of the matrix consisting of the first $t-1$ and the last

column of $A$ .
We have the following picture:

$A$ $=$ $\cross \mathrm{x}\cross\cross\circ$ $\cross\cross \mathrm{X}\cross 0$
$\coprod\square \coprod_{\square }\square$ $]$ $|$

$t11$

The main steps of the proof are as follows:
(i) Let $J=I(A_{1})$ . For $i=1,$ $\ldots,$ $c-1$ we have that $I_{S}+J^{i}$ is perfect of codimension

$c+1$ .
(ii) $I_{S}+J^{c-1}$ is Gorenstein.
(iii) $I_{S}+D\cdot J^{c-1}$ is also Gorenstein of codimension $c+1$ , contained in $I_{V}$ .
(iv) For $\dot{i}=0,$

$\ldots,$
$c$ we have

$\deg(I_{S}+J^{\dot{x}})=\dot{i}\cdot[\deg D\cdot\deg S-\deg V]$ .

(v) Now we $\mathrm{G}$-link $I_{V}$ by $I_{s+}D\cdot JC-1$ . The residual is $I_{S}+J^{\mathrm{C}}$ . (One shows one inclusion
and computes degrees.)

(vi) Let $D’$ be the determinant of the matrix consisting of the first $t-1$ columns of $A’$ .
Repeat the steps using $I_{V’}$ instead of $I_{V}$ and $D’$ instead of $D$ , and show that the
residual is again $I_{S}+J^{c}$ . $\square$

Example 5.5. We give the analog to Example 5.3 for $\mathrm{G}$-liaison in arbitrary codimension.
In codimension $c+1$ , let $I=$ $(F_{1}, . . , , F_{c+1})$ be a complete intersection. $I^{k}$ is again standard

14



determinantal, $\mathrm{b}\mathrm{e}\mathrm{i}\mathrm{n}\not\subset$ the ideal of maximal minors of the matrix

$k\{$

Then $I^{k}$ is $\mathrm{G}$-bilinked to $I^{\kappa-1}$ : simply remove the last row and column. (Note that in
Example 5.3 the powers were directly linked, while here they are bilinked.) This is false
for CI-links. For example, consider $I=(x, y, z)$ , the ideal of a single point in $\mathrm{P}^{3}$ . Then

$\square I$

and $I^{2}$ are not in the same CI-liaison class.

Remark 5.6. As mentioned above, the way that Gaeta’s theorem is usually stated is
that if $V$ has codimension two, then $V$ is arithmetically Cohen-Macaulay if and only if $V$

is licci. In higher codimension, we know that
standard $\mathrm{d}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{l}\Rightarrow$ glicci $\Rightarrow$ arithmetically Cohen-Macaulay.

The first converse is certainly false. The second is almost certainly false, except
$\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{s}\mathrm{i}\mathrm{b}\mathrm{l}\mathrm{y}\square$

in codimension 3. See also Remark 7.7.

5.2. $Rao’ s$ theorem on algebraic and geometric liaison. Throughout this subsec-
tion, what we called CI-links in Definition 2.2 will be referred to as algebraic CI-links.
More precisely, we have

Definition 5.7.
(i) Two schemes $V_{1}$ and $V_{2}$ are algebraically CI-linked by a complete intersection $X$ ,

denoted $V_{1}\sim V_{2}x$ , if
$I_{X}\subset I_{V_{1}}\cap I_{V_{2}}$ , $I_{X}$ : $I_{V_{1}}=I_{V_{2}}$ and $I_{X}$ : $I_{V_{2}}=I_{V_{1}}$ .

(.ii) Assume that $V_{1}\sim XV_{2}$ , where $X$ is a complete intersection, and assume that $V_{1}$ and
$V_{2}$ have no common component. Then $V_{1}\cup V_{2}=X$ as schemes, and we say that

$V_{1}\square$

and $V_{2}$ are geometrically CI-linked.

Notice that if $V_{1}$ and $V_{2}$ are geometrically CI-linked then both are generic complete
intersections, since they have no component in common and their union is a complete
intersection. This leads to the following:

Question 5.8. Among generic complete intersections of codimension $c,$ do geometric CI-
links and algebraic CI-links generate the same equivalence $relat\dot{i}\mathit{0}n^{\mathit{9}}$

Unfortunately, this question is not well posed. The reason for this is that the expression
$\langle$ (

$\mathrm{a}\mathrm{m}\mathrm{o}\mathrm{n}\mathrm{g}$ generic complete intersections” is not well-defined. More precisely, let $V_{1}$ and $V_{2}$

be generic complete intersections. Suppose
$V_{1}\sim W_{1}\sim\cdots\sim W_{k2}\sim V$

are algebraic links. We want to know if there exist geometric links
$V_{1}\sim Y_{1}\sim\cdots\sim Y_{l}\sim V2$ .

The heart of the matter is the following:
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Problem: Do we require the $W_{i}$ to all be generic complete intersections 9

Conceivably there could be fewer equivalence classes if we do not make this restriction.
To give the known answers to Question 5.8, we introduce the following notation, adapted
from [24].

Definition 5.9.
(i) $H(c, n)$ is the set of subschemes of $\mathrm{P}^{n}$ which are of pure codimension $c$ (i.e. the

defining ideal is unmixed) and generic complete intersections.
(ii) $\tilde{H}(c, n)$ is the set of elements of $H(c, n)$ which are in addition locally Cohen-Macaulay.

Remark 5.10. Note that $H(n-1, n)=\tilde{H}(n-1, n)$ (i.e. for curves they are the same).
Also, note that the property of being locally Cohen-Macaulay is preserved under liaison.

$\square$

There are no known situations where Question 5.8 has a negative answer. We now
give the known affirmative answers to the question. First we have a result of Rao [24],
who assumed codimension two, locally Cohen-Macaulay and all $W_{i}$ are generic complete
intersections:

Theorem 5.11 ([24]). If $c=2$ and $\dot{i}f$ all $W_{i}$ are generic complete intersections then
algebraic and $geometr\dot{i}c$ CI-liaison generate the same equivalence relation on $\tilde{H}(2, n)$

Next, Schwartau [25] removed the assumption that the $W_{i}$ are all generic complete
intersections from Rao’s theorem, but only for curves in $\mathrm{P}^{3}$ (and so, by virtue of Remark
5.10, he also did not need to worry about the locally Cohen-Macaulay assumption).

Theorem 5.12 ([25]). If $c=2$ and $n=3$ and we do not assume that the $W_{i}$ are generic
complete intersections, then algebraic and geometric CI-liaison generate the same equiv-
alence relation on $H(2,3)=\tilde{H}(2,3)$ .

Theorem 5.11 was generalized in [12] to arbitrary codimension, and the assumption of
locally Cohen-Macaulay was removed:
Theorem 5.13. For any $c,$ $n,\dot{i}f$ all $W_{i}$ are generic complete intersections then algebraic
and geometric CI-liaison generate the same equivalence relations on $H(c, n)$ .

Theorem 5.11 and Theorem 5.12 were also generalized in [12] by passing to codimension
two in any $\mathrm{P}^{n}$ and removing the locally Cohen-Macaulay assumption:

Theorem 5.14. If $c=2$ and if we do not assume that the $W_{i}$ are generic complete inter-
$sect\dot{i}\mathit{0}nS$ , then algebraic and geometric CI-liaison generate the same equivalence relation
on $H(2,n)$ .

Remark 5.15.
(i) The analog of the above results for Gorenstein liaison is open. Similarly, the analog

of Theorem 5.14 for CI-liaison in higher codimension is open.
(ii) Theorem 5.13, for arbitrary codimension, is largely based on Hartshorne’s approach

with divisors. If $V_{1}\sim XV_{2}$ where $I_{X}=(F_{1}, \ldots, F_{C})$ , we let $S$ be the complete inter-
section defined by $I_{S}=(F_{2}, \ldots, F_{c})$ and view everything as divisors on $S$ .

(iii) Theorem 5.14, for codimension 2, uses ideas of Rao, Nagel and Nollet to reduce to
the case where each step in the sequence of links is a generic complete intersection,
and then we apply the first theorem. $\square$
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6. CURVES ON A SMOOTH ARITHMETICALLY $\mathrm{c}_{\mathrm{o}\mathrm{H}\mathrm{E}\mathrm{N}}- \mathrm{M}\mathrm{A}\mathrm{c}\mathrm{A}\mathrm{u}\mathrm{L}\mathrm{A}\mathrm{Y}$ SURFACE

In this section we continue the theme of studying liaison via divisors, and we focus on
the case of curves on a smooth arithmetically Cohen-Macaulay surface. Recall first the
following two general facts.

1. (Corollary 4.8) The even $\mathrm{G}$-liaison class of a divisor $C$ on an arithmetically Cohen-
Macaulay subscheme $S$ satisfying $G_{1}$ is preserved under linear equivalence and adding
hyperplane sections. Hence any element of the linear system $|C+tH|$ is in the same
even $\mathrm{G}$-liaison class as $C$ , where $H$ is the hyperplane section divisor. Note tha..t $t$

can be negative, as long as $S$ is smooth; see Remark 3.13.
2. (Proposition 2.3) The deficiency modules are preserved under even $\mathrm{G}$-liaison (up to

shift).
Fact 1, in particular, motivates the following definition.

Definition 6.1. Let $S$ be a smooth subscheme of $\mathrm{P}^{n}$ . We will say that an effective
$\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{S}\mathrm{o}_{\square }\mathrm{r}$

$C$ on $S$ is minimal if there is no effective divisor in the linear system $|C-H|$ .
Proposition 6.2. Let $S$ be a smooth, arithmetically Cohen-Macaulay surface in $\mathrm{P}^{n}$ and
let $M$ be a graded $R$-module offinite length. Then there exist only finitely many G-liaison
classes of curves $C\subset S$ with deficiency module $M(C)\cong M$ (up to twist).

Proof (sketch). One can check that Pic $S$ is finitely generated, since $H^{1}(\mathcal{O}_{S})=0$ . Say
Pic $S=\langle L_{1}, \ldots, L_{r}\rangle$ . We make the following definitions:

$\bullet$ Let $H\in$ Pic $S$ be the class of the hyperplane sections, and write $H= \sum_{i=1}^{r}h_{i}L_{i}$ ;
$\bullet$ Let $K\in \mathrm{P}\mathrm{i}\mathrm{c}S$ be the class of canonical divisors, and writeK $= \sum_{i=1}^{r}kiL_{i}$ ;
$\bullet$ Let $C\in \mathrm{P}\mathrm{i}\mathrm{c}S$ be the class of a minimal curve on $S$ with $M(C)=M$ (up to shift),

and write $C– \nu H+\sum_{i=1?}^{r}CL_{i;}$

$\bullet$ Let $n_{t}=\dim M(c)_{t}$ .
The idea of the proof is to show that there exist upper and lower $\mathrm{b}_{\mathrm{o}\mathrm{u}\mathrm{n}}..\mathrm{d}_{\mathrm{S}}$ for $C_{i},\dot{i}=1,$

$\ldots,r\square$
’

in terms of the $h_{i}$ , the $k_{i}$ , the $n_{t}$ and various invariants of the $L_{i}$ .
One of the original motivating questions of [12] was whether something special happens

with $\mathrm{G}$-liaison in codimension three, analogous to what happens in codimension two with
complete intersections. For instance, we wondered if it is true that in codimension three,
any arithmetically Cohen-Macaulay subscheme of $\mathrm{P}^{n}$ is glicci (see also Remark 5.6 and
Question 4.2). The following result is a partial answer to this question.

Theorem 6.3. Let $S$ be a smooth, rational arithmetically Cohen-Macaulay surface in $\mathbb{P}^{4}$ .
Then all arithmetically Cohen-Macaulay curves on $S$ are glicci.

Proof (sketch). We first classify the smooth rational arithmetically Cohen-Macaulay sur-
faces in $\mathrm{P}^{4}$ ; there are four of them: the cubic scroll, the Del Pezzo surface, the Castelnuovo
surface and the Bordiga surface. For each smooth rational surface $S$ , we classify the mini-
mal arithmetically Cohen-Macaulay curves on $S$ , since we completely know Pic $S$ . Finally,
we show that each minimal arithmetically Cohen-Macaulay curve is glicci by direct

$\mathrm{e}\mathrm{x}-\coprod$

amination.
In contrast, in the case of CI-liaison we have a quite different story. A number of quite

deep results are given in [12], both to describe some invariants of CI-liaison and to apply
them to very general situations. Rather than describe these results in detail, we give a
simple example of their application.
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Example 6.4. Let $S$ be the Castelnuovo surface in $\mathbb{P}^{4}$ , realized as the blow-up of $\mathrm{P}^{2}$ at
8 general points. Note that Pic $S\cong \mathbb{Z}^{\oplus 9},$ $H=(4;2,1^{7})$ (i.e. $S$ is embedded via the linear
system of quartics double at one of the points and passing through the remaining 7 points)
$\mathrm{a}\mathrm{n}\mathrm{d}-K=(3;1^{8})$ . Let $C$ be a curve in the linear system $($ 1; 1, $0^{7})$ (note that $C$ is a conic).
Let $C_{v}\in|C+vH|$ . Then $C_{v}$ and $C_{v’}$ are not licci and belong to different CI-liaison classes
provided $v>v’\geq 2$ . More generally, if $C\subset S$ is arithmetically Cohen-Macaulay then

$\mathrm{s}\mathrm{o}\square$

is $C+H$ , but “usually” they are in different CI-liaison classes.

The idea behind this example is to study certain invariants of CI-liaison, and show that
for different values of $v$ the invariants change. Some of the invariants are described as
follows, but again we refer the reader to [12] for the details.

Theorem 6.5. Let $X,$ $X’\subset \mathrm{P}^{N}$ be arithmetically Cohen-Macaulay schemes algebraically
linked by a complete intersection $Y\subset \mathrm{P}^{N}$ of dimension $n$ . If $n>0$ then we have an
$R$ -module isomorphism

$H_{*}^{\dot{x}}(N_{X})\cong H_{*}i(Nx’)$ for $1\leq\dot{i}\leq n-1$

where $N_{X}=\mathcal{H}om_{\mathrm{o}_{\mathrm{J}}}\mathrm{P}(\mathcal{I}X, \mathcal{O}_{x})$ is the normal sheaf.
Theorem 6.6. Let $X,$ $X’\subset \mathrm{P}^{N}$ be arithmetically Cohen-Macaulay local complete in-
tersections of dimension $n$ belonging to the same CI-liaison class, let $A=R/I_{X}$ and
$A’=R/I_{X’}$ be the coordinate $rings_{f}$ and let $K_{A}$ and $K_{A’}$ be the corresponding canonical
modules. Then we have an isomorphism of graded R-modules

$H_{\mathrm{m}}^{j}(K_{A}\otimes_{R}I_{X})\cong H_{\mathrm{m}}j(K_{A}’\otimes_{R}I_{x\prime})$

provided $0<j\leq n$ , For $j=0$ this is an isomorphism as graded k-modules.

7. COMPARISONS BETWEEN $\mathrm{C}\mathrm{I}-\mathrm{L}\mathrm{I}\mathrm{A}\mathrm{I}\mathrm{S}\mathrm{o}\mathrm{N}$ AND $\mathrm{G}$-LIAISON

In this section we would like to compare and contrast the two theories. In contrast to
the preceding material (mostly from [12]), in this section the material is from [18], except
as quoted.

7.1. F\’inding “good” links. One of the main applications of liaison is to construct
subschemes of $\mathrm{P}^{n}$ with desired properties. To do this, one starts with a known scheme,
and tries to find links which yield the desired scheme. A basic problem, then, is the
following:

Problem 7.1. Given a scheme $V$ , how do you find ‘tgood” $G$-links; $i.e$ . how do you find
a $\iota:_{gd’}\mathit{0}\mathit{0}$

’ Gorenstein ideal $I_{X}\subset I_{V}$ of the same height? Here “good” often means “small.”

We will discuss some approaches, and illustrate them using the following example.

Example 7.2. Let $Z$ be a set of four points in $\mathrm{P}^{3}$ in linear general position. We saw on
page 4 that $Z$ is $\mathrm{G}$-linked to a single point, hence is glicci. This is the smallest possible
$\mathrm{G}$-link for $Z$ . We also saw that $Z$ is not licci. $\square$

Here are some approaches to the above problem.

1. Complete intersections. Given $V$ , it is easy to find a regular sequence in $I_{V}$ , for
example on a computer. The problem is that they tend to be too big. For instance,
with regard to Example 7.2, the smallest complete intersection containing $Z$ is gen-
erated by three quadrics, and hence has $\mathrm{d}\mathrm{e}_{\mathrm{o}}\sigma \mathrm{r}\mathrm{e}\mathrm{e}8$ . The residual is again a set of four
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points. This reflects the fact that $Z$ is not licci, hence $Z$ has the least degree of any
scheme in its CI-liaison class.

2. Buchsbaum-Rim sheaves of odd rank. These are certain reflexive sheaves, $B$ , on $\mathbb{P}^{n}$

of rank $\leq n$ . The definition can be found in Example 2.1 (3), and they were studied
extensively in the papers [20], [14] and [19]. They are locally free if and only if the
rank is $=n$ . As mentioned in in Example 2.1 (3), the top dimensional part of a
regular section of such a sheaf is arithmetically Gorenstein. Using this, it is easy to
get non complete intersection Gorenstein ideals $I_{X}\subset I_{V}$ on a computer (cf. [19]),
and we even know the resolutions. In general, it is hard to control these sections
to get Gorenstein ideals with prescribed properties. Nevertheless, considering again
Example 7.2, we can take $B=\Omega_{\mathrm{P}^{3}}(3)$ to be the twisted cotangent bundle on $\mathrm{P}^{3}$ ,
and we can find a section which defines a Gorenstein ideal $I_{X}\subset I_{Z}$ of degree 5,
as desired (cf. [20]). The problem, in general, is to find the “right” Buchsbaum-
Rim sheaf (given $V$) to take sections of. If you choose a “general” one, usually the
sections are still too big. It would be nice to find an algorithm for finding the “right”
Buchsbaum-Rim sheaf from the syzygy matrix of $V$ .

3. A linear systems approach. This is the approach of [12] described in this paper.
We first look for an arithmetically Cohen-Macaulay scheme $S$ satisfying $G_{1}$ and
containing $V$ as a divisor. Then we look at the linear systems $|V\pm tH|$ . With
respect to Example 7.2, let $S$ be a twisted cubic curve containing Z. $S$ is smooth
and rational, and its canonical divisor has degree $-2$ . Rom Riemann-Roch and
Corollary 4.2, any divisor of degree $3t+2$ is Gorenstein, so in particular we can
$\mathrm{G}$-link $Z$ down to one point $(t=1)$ . Of course the problem with this approach in
general is to find a suitable $S$ .

7.2. The behavior of liaison under hyperplane sections. An important tool in
algebraic geometry is the process of taking hyperplane sections. One can study a scheme
$V$ by knowing properties of its general hyperplane section, or one can deduce properties
of the hyperplane section from what one knows about $V$ . It is natural to ask how liaison
behaves with respect to this process. First, it is well-known that both CI-links and G-links
are preserved under hyperplane sections:

Proposition 7.3. Let $V_{1}\sim XV_{2}$ in $\mathrm{P}^{n}$ , where $2\leq \mathrm{c}\mathrm{o}\dim x\leq n$ and $X$ is Gorenstein. Let
$H$ be a general hyperplane. Then $V_{1}\cap H^{\underline{X\cap H}}V2\cap H$ as subschemes of $\mathrm{P}^{n}$ (or of $H$).

In fact this works equally well for hypersurface sections.

What about the converse? It turns out that CI-links lift, under a very weak hypothesis
(e.g. arithmetically Cohen-Macaulay subschemes satisfy it):

Proposition 7.4. Let $V\subset \mathrm{P}^{n}$ be a subscheme of codimension $\geq 2$ satisfying $H_{*}^{1}(\mathcal{I}_{V})=0$ .
Let $H$ be a general hyperplane. Let $\overline{V}=V\cap H$ . Let $\overline{X}$ be a complete intersection
in $H=\mathrm{P}^{n-1}$ linking $\overline{V}$ to some subscheme $\overline{W}\subset \mathrm{P}^{n-1}$ . Then there exists a complete
intersection $X\subset \mathrm{P}^{n}$ containing $V$ and a subscheme $W\subset \mathrm{P}^{n}$ such that $X$ links $V$ to $W_{f}$

$\overline{X}=X\cap H$ and $\overline{W}=W\cap H$ .

Remark 7.5. Without the condition $H_{*}^{1}(\mathcal{I}_{V})=0$ (or something similar), Proposition 7.4
is false. For example, let $V$ be a set of two skew lines in $\mathrm{P}^{3}$ , so $\overline{V}$ is a set of two points in
$\mathrm{P}^{2}$ . Take $\overline{X}$ to be a complete intersection of type $(1, 3)$ linking $\overline{V}$ to a single point.

$\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{n}\coprod$

clearly $\overline{X}$ does not lift to $V$ , since $V$ does not lie on any plane.
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In contrast, it is rather unfortunate that $\mathrm{G}$-links do not lift in general. We have the
following example.

Example 7.6. Let $V\subset \mathrm{P}^{4}$ be a rational normal curve and let $H$ be a general hyperplane.
Then $V\cap H$ is a set of 4 points in linear general position in $\mathrm{P}^{3}$ . It turns out that “most”
arithmetically Gorenstein zeroschemes of degree 5 containing $V\cap H$ (i.e. “most” choices
of a fifth point, $P$ ) do not lift to a Gorenstein curve $C$ of degree 5 containing $V$ . The
reason is that if such a curve $C$ exists, it must be the union of $V$ and a line which is a
secant line to $V$ . This line meets $H$ in the point $P$ . Hence $P$ lies on the secant variety to
V. But this secant variety is 3-dimensional, so “most” choices of $P$ do not lie on it. $\square$

7.3. Extending the codimension two theory. One of the inspirations for studying
liaison in higher codimension (CI or G) is the beauty and importance of the theory in
codimension two, and the hope that those results have analogs in higher codimension. In
this subsection we give some remarks about the prospect of extending some of the main
results in codimension two.

Remark 7.7. We saw in Proposition 2.3 that we have the invariance of the deficiency
modules in any codimension (assuming dimension $\geq 1$ ), for both CI- and $\mathrm{G}$-liaison. In
higher codimension we have several invariants for CI-liaison, especially among arithmeti-
cally Cohen-Macaulay subschemes. We certainly expect fewer for $\mathrm{G}$-liaison. We have
briefly discussed this here, and we refer the reader to [12] for more details.

Rao’s theorems give necessary and sufficient conditions for two codimension 2 schemes
to be in the same (even) liaison class, in terms of the known invariants (in particular,
stable equivalence classes of vector bundles). This is quite open in higher codimension.
We need to find more invariants and show that they are sufficient.

It is very likely that $\mathrm{G}$-liaison behaves rather nicely in codimension three. Here is a
first step:

Is it true that a codimension three subscheme $V$ of $\mathrm{P}^{n}$ is glicci $\dot{i}f$ and only $\dot{i}f$

it is arithmetically Cohen-Macaulay 9

Note that the hard direction $\mathrm{i}\mathrm{s}\Leftarrow$ . We proved it for the case where $V$ is $(‘ \mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{d}$

determinantal” instead of arithmetically Cohen-Macaulay (Theorem 5.4), but in any codi-
mension. We also proved it in the special case of curves on a smooth rational surface in
$\mathrm{P}^{4}$ (Theorem 6.3). No counterexample is known in higher codimension, but it seems

$\mathrm{l}\mathrm{e}\mathrm{s}\mathrm{s}\square$

likely in codimension $\geq 4$ .

Remark 7.8. Another important codimension two result is the Lazarsfeld-Rao $(\mathrm{L}\mathrm{R})$

Property. This gives a common structure to all even liaison classes in codimension two
(see also Remark 3.11 for some history of this problem). It says that an even liaison class

$\mathcal{L}$ always possesses a set of ((
$\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{l}$

” elements, and that
(i) The minimal elements are contained in a flat family of subschemes of $\mathrm{P}^{n}$ , hence

in particular all have the same degree and arithmetic genus (and in fact Hilbert
function). In the locally Cohen-Macaulay case, their deficiency modules have the
same shift. Among all elements of $\mathcal{L}$ , the minimal elements are characterized as
those elements with the smallest degree and arithmetic genus, and in the locally
Cohen-Macaulay case they are also characterized by having the shift of the deficiency
module in the leftmost possible position.
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(ii) Any element of $\mathcal{L}$ can be obtained from a minimal one by a sequence of basic dou-
ble links (cf. Definition 3.10 and the Geometric Interpretation (3.1)) followed by a
deformation.

Is there a chance that there is an LR Property in higher codimension? My guess is that
ultimately there will be an LR Property for CI-liaison, but not for $\mathrm{G}$-liaison (at least not
nearly as strong a property). Here are some thoughts and observations.

First, a key ingredient in the LR Property (for the locally Cohen-Macaulay case) is
to partition $\mathcal{L}$ according to the shift of the deficiency modules, and to take the minimal
elements to be those corresponding to the leftmost shift. In codimension two, this forces
the conclusion that the minimal elements also have the same degree and arithmetic genus,
which is minimal among elements of $\mathcal{L}$ . This idea of partitioning and considering the
leftmost shift still works for both CI-liaison and $\mathrm{G}$-liaison in arbitrary codimension $<n$ .
For CI-liaison, the question of whether the degrees and arithmetic genera of the elements
corresponding to the leftmost shift are uniquely determined and minimal is still open. For
$\mathrm{G}$-liaison it is false (see below).

Now, given a subscheme $V\subset \mathrm{P}^{n}$ , the LR Property requires us to be able to apply basic
double linkage to $V$ . This is no problem for CI-liaison in arbitrary codimension. We have
a version for $\mathrm{G}$-liaison (Lemma 3.12 and Proposition 4.6), but it is not clear if it will be
enough.

Perhaps the main reasons for skepticism can be seen in the following example. Let $X$

be the curve in $\mathrm{P}^{4}$ given in the following picture:

(The lines are chosen generally, subject to the condition that they form the configuration
shown.) One checks that $X$ is Gorenstein, so it $\mathrm{G}$-links two skew lines to the disjoint
union of a line and a plane curve of degree 2. One also checks that both of these curves
have a deficiency module which is 1-dimensional, occurring in degree $0$ . What should the
minimal elements of the corresponding even $\mathrm{G}$-liaison class be? At the least, we will lose
the fact that the minimal elements lie in a flat family and hence have the same degree
and arithmetic genus. (One could object that these two curves are not evenly linked,

$\mathrm{b}\mathrm{u}\mathrm{t}\square$in fact two skew lines are directly linked to a different set of two skew lines.)
Remark 7.9. Liaison has been very useful in producing examples of smooth subschemes
of $\mathrm{P}^{n}$ with desired properties. Peskine and Szpiro [23] proved a result which gave condi-
tions guaranteeing that the residual scheme in a given CI-link will be smooth. In order for
$\mathrm{G}$-liaison to be equally useful, it will be necessary to find similar results for $\mathrm{G}$-liaison. $\square$

Remark 7.10. As mentioned above, it is possible that there may be stronger (or easier)
results for $\mathrm{G}$-liaison in codimension 3. This is worth exploring.

It should also be observed that unobstructedness is more often preserved under CI-
liaison than $\mathrm{G}$-liaison, so CI-liaison may be more useful for studying questions of

$\mathrm{u}\mathrm{n}\mathrm{o}\mathrm{b}-\square$structedness. We refer the reader to [12] for details.
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