On the integral closures of certain ideals generated by regular sequences

千葉大自然科学研究科 西田 康二 (Koji Nishida)

1 Introduction

The purpose of this report is to introduce a notion of equimultiplicity for filtrations in local rings. We will apply it's theory for computation of the integral closures of certain ideals generated by regular sequences.

Throughout this report A is a d-dimensional local ring with the maximal ideal \mathfrak{m} and a family of ideals $\mathcal{F} = \{F_n\}_{n \in \mathbb{Z}}$ is a filtration in A, which means (i) $F_n \supseteq F_{n+1}$ for all $n \in \mathbb{Z}$, (ii) $F_0 = A$, $F_1 \neq A$ and (iii) $F_m F_n \subseteq F_{m+n}$ for all $m, n \in \mathbb{Z}$. We can define the following graded algebras associated to a filtration \mathcal{F} .

$$R(\mathcal{F}) = \sum_{n\geq 0} F_n t^n \subseteq A[t],$$

$$R'(\mathcal{F}) = \sum_{n\in \mathbb{Z}} F_n t^n \subseteq A[t, t^{-1}] \text{ and}$$

$$G(\mathcal{F}) = R'(\mathcal{F})/t^{-1}R'(\mathcal{F}) = \bigoplus_{n\geq 0} F_n/F_{n+1},$$

where t is an indeterminate. These algebras are respectively called the Rees algebra of \mathcal{F} , the extended Rees algebra of \mathcal{F} and the associated graded ring of \mathcal{F} . We always assume that $R(\mathcal{F})$ is Noetherian and dim $R(\mathcal{F}) = d + 1$.

2 The analytic spread of a filtration

We set $\ell(\mathcal{F}) = \dim A/\mathfrak{m} \otimes_A R(\mathcal{F})$ and call it the analytic spread of \mathcal{F} . It is easy to see that $\ell(\mathcal{F}) = \dim A/\mathfrak{m} \otimes_A G(\mathcal{F})$. We say that a system of elements a_1, \dots, a_r in A is a reduction of \mathcal{F} , if the following condition (*) is satisfied.

(*) There exist $m_i > 0$ for all $1 \le i \le r$ such that $a_i \in F_{m_i}$ and $F_n = \sum_{i=1}^r a_i F_{n-m_i}$ for all $n \gg 0$.

This condition is equivalent to saying that we have a module-finite extension

$$A[a_1t^{m_1}, \cdots, a_rt^{m_r}] \subseteq R(\mathcal{F})$$

of rings. If a_1, \dots, a_r is a reduction of \mathcal{F} , then obviously we have $\ell(\mathcal{F}) \leq r$. We say that a reduction a_1, \dots, a_r of \mathcal{F} is minimal, if $\ell(\mathcal{F}) = r$. We always have a minimal reduction for any filtration \mathcal{F} (It is not necessary to assume that the residue field is infinite).

By the definition of filtration, we have $\sqrt{F_n} = \sqrt{F_1}$ for all $n \geq 1$, and so $\operatorname{ht}_A F_n$ is constant for $n \geq 1$. We denote this number by $\operatorname{ht}_A \mathcal{F}$. Then the following inequality always holds:

$$\operatorname{ht}_A \mathcal{F} \leq \ell(\mathcal{F}) \leq \dim A.$$

We say that \mathcal{F} is equimultiple, if $\operatorname{ht}_A \mathcal{F} = \ell(\mathcal{F})$. If \mathcal{F} is equimultiple and a_1, \dots, a_r is a minimal reduction of \mathcal{F} , the number m_i in (*) must coincide to

$$\deg_{\mathcal{F}} a_i := \max\{n \mid a_i \in F_n\}$$

for all $1 \leq i \leq r$.

Example 2.1 Let \mathfrak{p} be a prime ideal in A such that $\dim A/\mathfrak{p} = 1$. Let $F_n = \mathfrak{p}^{(n)}$ for all $n \in \mathbb{Z}$, where $\mathfrak{p}^{(n)}$ denotes the n-th symbolic power of \mathfrak{p} . If $R(\mathcal{F})$ is Noetherian, then \mathcal{F} is equimultiple.

Proof. Because $R(\mathcal{F})$ is Noetherian, there exists a positive integer k such that $\mathfrak{p}^{(kn)} = [\mathfrak{p}^{(k)}]^n$ for all $n \in \mathbb{Z}$. This means the k-th Veronesean subring $R(\mathcal{F})^{(k)} = \sum_{n \geq 0} \mathfrak{p}^{(kn)} t^{kn}$ is isomorphic to $R(\mathfrak{p}^{(k)})$ and depth $A/[\mathfrak{p}^{(k)}]^n = 1$ for all $n \geq 1$. Then the extension

$$R(\mathfrak{p}^{(k)}) \subseteq R(\mathcal{F})$$

is module-finite and $\ell(\mathfrak{p}^{(k)}) = d-1$ by Burch's inequality. Let a_1, \dots, a_{d-1} be a minimal reduction of $\mathfrak{p}^{(k)}$. Then the extension

$$A[a_1t^k, \cdots, a_{d-1}t^k] \subseteq R(\mathcal{F})^{(k)}$$

is module-fininite, and so

$$A[a_1,\cdots,a_{d-1}]\subseteq \mathrm{R}(\mathcal{F})$$

is also module-finite.

Example 2.2 Let J be an ideal in A generated by a subsystem of parameters a_1, \dots, a_s for A. Let \mathcal{F} be a filtration such that $J^n \subseteq F_n \subseteq \overline{J^n}$ for all $n \in \mathbb{Z}$. If $R(\mathcal{F})$ is Noetherian, then \mathcal{F} is equimultiple and a_1, \dots, a_s is a minimal reduction of \mathcal{F} .

Proof. Obviously, $\operatorname{ht}_A \mathcal{F} = s$. As $J^n \subseteq F_n$ for all $n \in \mathbb{Z}$, $R(\mathcal{F})$ contains $A[a_1t, \dots, a_st]$. Moreover, as $F_n \subseteq \overline{J^n}$ for all $n \in \mathbb{Z}$, $R(\mathcal{F})$ is integral over $A[a_1t, \dots, a_st]$. Because $R(\mathcal{F})$ is Noetherian, we see that the extension

$$A[a_1t,\cdots,a_st]\subseteq \mathrm{R}(\mathcal{F})$$

is module-finite.

For a prime ideal \mathfrak{p} in A containing F_1 , we set $\mathcal{F}_{\mathfrak{p}} = \{F_n A_{\mathfrak{p}}\}_{n \in \mathbb{Z}}$, which is a filtration in $A_{\mathfrak{p}}$. Obviously, $\ell(\mathcal{F}_{\mathfrak{p}}) \leq \ell(\mathcal{F})$ for any prime ideal \mathfrak{p} in A containing F_1 .

3 Cohen-Macaulay property of the graded rings associated to equimultiple filtrations

Theorem 3.1 Let A be a quasi-unmixed local ring. If \mathcal{F} is equimultiple, then we have

$$a(G(\mathcal{F})) = \max\{a(G(\mathcal{F}_{\mathfrak{p}})) \mid \mathfrak{p} \in \operatorname{Assh}_A A/F_1\}$$

Theorem 3.2 Let A be a Cohen-Macaulay ring. Let \mathcal{F} be an equimultiple filtration. We set $s = \operatorname{ht}_A \mathcal{F}$. Then the following conditions are equivalent:

- (1) $G(\mathcal{F})$ is a Cohen-Macaulay ring.
- (2) $G(\mathcal{F}_{\mathfrak{p}})$ is Cohen-Macaulay for all $\mathfrak{p} \in \operatorname{Assh}_A A/F_1$ and there exists a minimal reduction a_1, \dots, a_s of \mathcal{F} such that $A/(a_1, \dots, a_s) + F_n$ is Cohen-Macaulay for all $1 \leq n \leq \operatorname{a}(G(\mathcal{F})) + \sum_{i=1}^s \deg_{\mathcal{F}} a_i$.

When this is the case, for any minimal reduction b_1, \dots, b_s of \mathcal{F} , $A/(b_1, \dots, b_s) + F_n$ is Cohen-Macaulay for all $n \geq 1$ and

$$R(\mathcal{F}) = A[\{b_i t^{\deg_{\mathcal{F}} b_i}\}_{1 \le i \le s}, \{F_n t^n\}_{1 \le n \le a(G(\mathcal{F})) + \sum_{i=1}^s \deg_{\mathcal{F}} b_i}].$$

Corollary 3.3 Let A be a Cohen-Macaulay ring. Let I be an equimultiple ideal. Then the following conditions are nequivalent:

- (1) G(I) is a Cohen-Macaulay ring.
- (2) $G(I_{\mathfrak{p}})$ is Cohen-Macaulay for all $\mathfrak{p} \in \operatorname{Assh}_A A/I$ and there exists a minimal reduction J of I such that $A/J + I^n$ is Cohen-Macaulay for all $1 \le n \le r_J(I)$.

4 Integral closures of certain ideals

Applying the results in section 3, we can prove the following assertions.

Example 4.1 Let A = k[[X, Y, Z]] be the formal power series ring over a field k. Suppose that the ideal generated by the maximal minors of the matrix

$$\begin{pmatrix} X^{\alpha} & Y^{\beta'} & Z^{\gamma'} \\ Y^{\beta} & Z^{\gamma} & X^{\alpha'} \end{pmatrix}$$

is a prime ideal, where $\alpha, \beta, \gamma, \alpha', \beta'$ and γ' are all positive integers. We put $a = Z^{\gamma+\gamma'} - X^{\alpha'}Y^{\beta'}$, $b = X^{\alpha+\alpha'} - Y^{\beta}Z^{\gamma'}$ and $c = Y^{\beta+\beta'} - X^{\alpha}Z^{\gamma}$. Let J = (a,b)A. Then we have

$$\overline{J^n} = J^{n-1} \cdot (a, b, \{X^i Z^j c \mid i, j \ge 0 \text{ and } i/\alpha' + j/\gamma' \ge 1\})A$$

for all $n \geq 1$ and $\overline{R(J)}$ is a Cohen-Macaulay ring.

Example 4.2 Let A = k[[X, Y, Z, W]] be the formal power series ring over a field k. Let α, β and γ be positive integers such that $0 < \alpha \le \beta \le \gamma$. We set

$$a = X^{\alpha + \ell} - Y^{\beta}W, b = Y^{\beta + m} - Z^{\gamma}W, c = Z^{\gamma + 1} - X^{\alpha}W \text{ and } d = W^3 - X^{\ell}Y^mZ,$$

where $\ell = \gamma + \beta - 2\alpha + 1$ and $m = 2\gamma - \beta - \alpha + 1$. It is easy to see that a, b, c is a regular sequence in A. Let J = (a, b, c)A. Then we have

$$\begin{array}{rcl} \overline{J} &=& J+\big(\{X^iY^jZ^kd\mid i/\alpha+j/\beta+k/\gamma\geq 1\}\big)A\,,\\ \overline{J^2} &=& \overline{J}^2+\big(X^iY^jZ^kd^2\mid i/2\alpha+j/2\beta+k/2\gamma\geq 1\}\big)A \text{ and }\\ \overline{J^n} &=& \overline{J}^{n-2}\cdot\overline{J^2} \text{ for } n\geq 3. \end{array}$$

Moreover $\overline{R(J)}$ is a Cohen-Macaulay ring.

参考文献

- [1] L. Burch, Codimension and analytic spread, Proc. Camb. Philos. Soc. **72** (1972), 369 373.
- [2] S. Goto and K. Nishida, The Cohen-Macaulay and Gorenstein Rees algebras associated to filtrations, Mem. Amer. Math. Soc. **526** (1994).
- [3] M. Herrmann, S. Ikeda and U. Orbanz, *Equimultiplicity and blowing up*, Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo, 1988.
- [4] J. Herzog, Generators and relations of abelian semigroups and semigroup rings, Manuscripta Math. 3 (1970), 175 – 193.

- [5] C. Huneke, Complete ideals in two-dimensional regular local rings, Math. Sci. Res. Inst. Publ. 15 (1989), 325 337.
- [6] J. Lipman and B. Teissier, Pseudo-rational local rings and a theorem of Briancon-Skoda about integral closure of ideals, Michigan Math. J. 28 (1981), 97 – 116. K. Nishida, Equimultiple filtrations in Cohen-Macaulay rings, Preprint.
- [7] O. Zariski and P. Samuel, Commutative algebra, II, van Nostrand, New York, 1960.