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Problems on Geometric Structures
of Projective Embeddings
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Dept.of Math, Himeji Institute of Technology,
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Abstract

This is a survey of our research on geometric structures of projective embeddings
and includes the topics of our talks in several symposia (e.g. [23])from 1990 to 98.
We clarify our main problem, which is to construct a kind of geometric composition
series of projective embeddings. The concept of ”geometric composition series” is
an analogy in Algebraic Geometry with Jordan-Holder series in Group theory. We
present two of the candidates for the construction problem. We also give several
results and new tools for approaching this problem. As a byproduct of the tools, we
obtain a simplified proof for a criterion on arithmetic normality described in terms
of Differential Geometry.

Keywords: Petri’s Analysis, Second Fundamental Form, Syzygy, Arithmetic Nor-
mality, Infinitesimal Lifting, Geometric Shell, Geometric Composition Series, Lef-
schetz chain, dual Lefschetz chain, meta-Lefschetz Operators.

§0 Introduction.

In this article, we present several problems arising from the investigation on geometric
structures of projective embeddings. When we use the technical term ” geometric struc-
ture” of a projective embedding, it is our concern to see what kinds of intermediate
ambient varieties appear for the projective subvariety defined by the given embedding.
To clarify this point more precisely, let us consider a connected complex projective
manifold X of dimension n > 0 and an embedding j : X < P = PN(C). Then, by an
elementary fact on polynomial rings, we see that for any integer ¢ with n < g < N, there
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exists a projective subvarity W of dimension ¢ satisfying j(X) C W C P. In this case,
we say that the variety W is an intermediate ambient variety of the subvariety j(X).

On the other hand, if we suppose an additional condition on W, e.g. a variety W to
be smooth along j(X), namely j(X) C Reg(W), then we can not assure the existence of
a variety W satisfying the condition. For example, taking a Horrocks-Mumford abelian
surface A in P = P*(C) as the subvariety j(X), then there is no hypersurface W with
A C Reg(W), which is certified by the calculation of Pic(W).

Thus we have special interest on the existence problem of intermediate ambient vari-
eties with some additional conditions which can characterize the embedding. Then, we
face an important problem, namely what conditions should be posed as the additional
conditions? One of the candidates for the condition is presented in Definition 1.2. By
using the concept ”geometric shell”, we can state our very optimistic Working Hypothesis
1.7, which claims the existence of a projective embedding with a good decomposition
by geometric shells. As an approach to this working hypothesis, we summarize in §2
the results on Lefschetz operators and on meta-Lefschetz operators. We also present
Main Conjecture 2.6 and clarify the relation with the former working hypothesis. As a
preparation for attacking the conjectures, we newly introduce several key concepts for
the infinitesimal method in §3. They often help us to remove the difficulty of higher ob-
structions for making the correspondence between subsheaves of the normal bundle and
intermediate ambient varieties. In §4, we discuss arithmetic normality from two points
of view. The first view point concern our framework and strategy for studying geometric
structures of projective embeddings. From the second point of view, namely that of Dif-
ferential Geometry, we explain a criterion for arithmetic normality in terms of the second
fundamental form. Here we describe an outline of another proof for the criterion which
is simplified by the tools in §3. This will show the power of our new tools.

In this article, we consider only the objects defined over the complex number field
C. In case of handling graded objects, we consider only homomorphims of preserving
their grading otherwise mentioned. For example, ”minimal free resolution” always means
”graded minimal free resolution”. Sometimes we state our result by using a pair of a
variety and one of its embeddings instead of using the term ”subvariety”. That is only
to emphasize the fact that we can chose the embedding suitably with fixing the variety
itself in the real situation.

The author deeply thanks to Prof.O.A.Laudal and Prof.S.J.Kwak for their warmful
encouragement, to Prof.M.Hashimoto for showing me a nice fact, and to Prof.S.Tsuboi

and Prof.C.Miyazaki for their heavy efforts of organizing symposia where one could have
precious chances to meet the former two people.

31 Working Hypothesis.

In this section, we present a key concept for considering geometric structures of embed-
dings and show several problems, in particular our optimistic working hypothesis. We



127

hope that this may also bring us an insight for studying the syzygies of projective subva-
rieties. : 2 ~

Let us confirm our notation used in the sequel.

Notation 1.1 Let us take a complex projective scheme X of dimension n and one of its
embeddings j : X — P = PN(C). The sheaf of ideals defining j(X) in P and the conormal
sheaf are denoted by Ix and Ny, p = Ix/ I%, respectively. Taking a C-basis {Zy,... ,Zn}
of H°(P,0p(1)). Then we put

S = @ HP,0p(m)) = Clte, .., 7]
St = = @ HP,Op(m)) = (Zo,... ,Zn)Cllo, - , Zn]
Rx = W@OHO(X,OX(m))
Ix = mQQOHO(PaIX(m))
: Rx = Im|S — Rx|= S/Ix
gsyzk(m) = Tory(Rx,S/S)m

where the subscript (m) of Tor above means taking its degree m part as a graded S-
module. Obviously, the space gsyz%(m) represents minimal generators in degree m of the
q-th syzygy of Rx as an S-module.

As a preparation, we recall the following key concepts introduced in [27].

Definition 1.2 (PG-shell and G-shell) Let V' and W be closed subschemes of P =
PN (C) which satisfy V C W (In this case, the subscheme W is called simply an interme-
diate ambient scheme of V). If the natural map:

pta : Tors (R, S/S4) — Tor$ (Rv, S/S))

is injective for every q > 1, we say that W is a pregeometric shell (abv. PG-shell) of V.
Moreover, if W s a closed subvariety and the reqular locus Reg(W) of W contains V,
we say that W is a geometric shell (abv. G-shell) of V. For the subscheme V, P and V
itself are called trivial PG-shell (or trivial G-shell). -

Now let us see several elementary facts relating with ” PG-shell”.
Proposition 1.3 LetV and W be closed subschemes of P = PN (C) which satisfy V C W.

(1.3.1) If W is a hypersurface, then W is a PG-shell of V if and only if the equation
Hy of W is a member of minimal generators of the homogeneous ideal Iy of V.
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(1.3.2) Assume that the subscheme V is a complete intersection. Then the scheme W is
a PG-shell of V if and only if the subscheme W is defined by a part of minimal
generators of Iy,.

(1.3.3) Take a closed scheme Y such thatV CY C W. Assume that W is a PG-shell
of V. Then W 1is also a PG-shell of Y. In particular, the subscheme W is also
a PG-shell of the m-th infinitesimal neighborhood Y = (V/W)gmy of V in W,
where (V/W)(m) = (|V],Ow/I7).

(1.3.4) Fix the subscheme of codim(V,P) > 2. Then all non-trivial PG-shells of V
Jorm non empty algebraic family of finite components (N.B. The family of all
non-trivial G-shells of V may be empty even if V itself is a smooth variety).

(1.3.5) If W is a PG-shell of V, then we have an inequality on their Castelnuovo-
Mumford regularity: CMreg(V) > CMreg(W).

(1.3.6) If W is a PG-shell of V, then we have an inequality on their arithmetic depth:
arith.depth(V) < arith.depth(W). In particular, if the natural restriction map
H°(P,0p(m)) — H°(V,Oy(m)) is surjective for all integers m (i.e. Ry =
Ry ), then the natural restriction map H°(P,Op(m)) — H°(W,Ow(m)) is also
surjective for all integers m (i.e.Ry = Ry ).

(1.3.7) Assume that there exist r hypersurfaces Hy, ... H, in P which form Ow-regular
sequence and satisfy V = WNHN. . .NH,. If the restriction map H°(P,Op(m)) —
H%(V,0y(m)) is surjective for all integers m, then W is a PG-shell.

(1.3.8) Assume that the subscheme V is non-degenerate, namely no hyperplane contains
V. If W has a 2-linear resolution, i.e. the homogeneous coordinate ring Ry of
W has a minimal S-free resolution of the form : 0 «— Ry « S « Fi(—2) «
Fy(=3) « --- «— Fp(—p—1) « ---, where F,,(v) denotes ®S(v) : a direct sum
of several copies of S with degree v shift, then W is a PG-shell of V.

Proof. Directly from Definition 1.2, we see (1.3.1),(1.3.2) and (1.3.3). To get (1.3.4), using
the injectivity of Tor{, we notice that any PG-shell of V is defined by a part of minimal
generators of the ideal Iy,. Let us take a parametrizing space T of all the intermediate
ambient schemes of V' which are defined scheme-theoretically by parts of the minimal
generators of the ideal Iy. Obviously the parametrizing space T is identified with a set-
theoretic direct sum of Zariski open sets in several products of Grassmannian varieties.
Through flattening stratifications incliding vertices of the affine conés of the membes in
the family, we get an algebraic family of intermediate ambient schemes of V' with constant
Betti numbers, whose parametrizing space is named 7" again. We may assume that every
component in 7" includes a point for a PG-shell of V. This family includes all the PG-shells
of V. Looking at an induced chain homomorphism of (relatively) minimal free resolutions
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of Iy and of the family, we have only to extract the opensets of which corresponds to
the ”maximal” rank locus of every map in the chain homomorphism. For (1.3.5), use the
Eisenbud-Goto criterion on Castelnuovo-Mumford regularity in [3]. Similarly (1.3.6) is
obtained by applying the formula on depth and homological dimension. (1.3.7) is shown
in [27]. On the claim (1.3.8), see Lemmal in [2] from our point of view. '

The next fact is kindly told me by Prof.M.Hashimoto with answering my questions at
Kinosaki Symposium. It may help us to construct G-shells in the real situation.

Proposition 1.4 LetY and Z be arithmetically Cohen-Macaulay projective subschemes
of P =PV (C). Assume that X =Y N Z is of codimension a + b, where a = codim(Y, P)
and b = codim(Z, P). Then bothY and Z are PG-shells of X.

Proof. For Ry and Rz, take their minimal S-free resolutions: F, — Ry, G, — Rz, whose
length are a and b, respectively. If we can show that the complex F, ® G, is acyclic, then
triviality of the complex (F, ®G,) ® (5/S;) = (Fe®5/S5,) ®(Ge®S/S,) means that the
complex F, ®G, is a minimal S-free resolution of Rx 22 Ry ® Rz. Since the complexes IF,
and G, are naturally considered as subcomplexes and as direct summands of the complex
F.®G,, we see that the schemes Y and Z are PG-shells of X. The complex F,®G, has the
length a+ b, which coincides with ht(Iy +1z) = depth(Iy +1z,S). To see the acyclicity of
F, ®G,, we apply Buchsbaum-Eisenbud criterion for acyclicity on free complexes (cf. [1]).
Thus we have only to show that for any prime ideal p € Spec(S) with depth(p) < a + b,
(Fo ® G,); is acyclic. If ht(p) = depth(p) < a+b, then p 5 Iy + I, namely p 7 Iy or
p P 1z. For example, if p 2 Iy , then (FF,), — 0 is split exact and therefore (F, ® G,), is
acyclic. |

The following example shows that all the exceptional cases in the classical Petri’s
Analysis can be considered as the cases of G-shells appearing.

Example 1.5 (Quadric hulls in Petri’s Analysis) Let X = C be a non-hyperelliptic
smooth projective curve of genus g > 3, and j = @ : C — P =P97Y(C) its canonical
embedding. Taking the quadric hull W of j(C), namely the closed subscheme defined by
all equations of j(C) with degree 2. Then, the quadric hull W coincides with j(C) itself
or is a non-trivial G-shell of j(C).

Proof. In fact, by classical Petri’s Analysis (cf. [15], [16]), we see the exceptional cases
explicitly, namely W is a Veronese surface in IP’(C) or a rational normal scroll. In both
cases, W is a surface of minimal degree. Then apply (5.2)Lemma in [17] (see also [4]), we
obtain that W has 2-linear resolutions, which implies that W is a G-shell of j(C). i
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Problem 1.6 To make a foundation for studying PG-shells or G-shells, let us list several
problems conjured up naturally in our mind.

(1.6.1) For a non-hyperelliptic curve C of genus g = g(C) > 3 and its canonical em-
bedding j = @k, : C — P = P97Y(C), classify all the PG-shells of j(C). (cf.
Green Conjecture [2])

(1.6.2) Describe the condition of ” PG-shell” in terms of ”generic initial ideals”.

(1.6.3) Assume that a projective suscheme W is a PG-shell of a projective subvariety
V C P =PN(C). Then the subscheme W is always reduced and irreducible ?
(N.B. When the subscheme W is a hypersurface, this is true.)

(1.6.4) Take smooth projective subvarieties V and W of positive dimension. Assume
that the subvariety V is arithmetically normal. If W is a G-shell of V, then does
the inequality on A-genus (cf. [6]): A(V,0p|v(1)) > A(W,Op|w(1)) hold in
general? (If the polarized manifold (V,Oply (1)) is a member of a ladder of the

polarized manifold (W,Op|w (1)), then W is a G-shell of V and this inequality 1s
true.)

(1.6.5) Take a smooth projective subvarity V, a vector bundle E on V, a section 0 €
I'(V, E) which is transverse to the zero section, and its zero locus X = Z(o).
Assume that V is a G-shell of X. Then is the bundle E always nef ?

(1.6.6) Take a smooth projective subvariety V C P = PN(C) of dimension n > 5.
Assume that V is not a hypersurface and has no non-trivial G-shell. Then
codim(V) > n/2? (Implied by Hartshorne’s C.I.conjecture. cf. [10] [31]) More-
over, for any positive integer M and a linear embedding P = PN (C) C Q =
PN+M(C), if the subvariety V has no non-trivial G-shell except (multiple) projec-
tive cones, then does the Kodaira dimension of V satisfy the inequality (V) <07

Now we present our working hypothesis in the most optimistic version, which suggests
the direction of our research aiming.

Working Hypothesis 1.7 Let X be a connected complezx projective manifold of dimen-
sion n > 0. Then there erists an embedding: j : X — P = PN(C), which satisfies the
following conditions.

(1.7.1) There is a set of G-shells {W, ’;:0 of 3(X) which satisy: j(X) = Wo C W) C
... C Wi C P and moreover W,_1 C Reg(W,) forp=1,... k.

(1.7.2) For each p = 1,... ,k, there is a "nef” vector bundles E, on W, and a sec-
tion o, € T'(Wp, E,) such that the zero locus Z(op) coinsides with Wp_1 and
rank(E,) = dim(W,) — dim(W,_,).
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(1.7.3) The subvariety Wy, has a birational morphism from a projective bundle over a
homogeneous space (in the sense of including abelian varieties).

The set Z = {(Wp, E,, o) ::1 of (X) and the integer k are called a geometric composition
series of the embedding j or of the subvariety j(X) and the length of the geometric
composition series =, respectively. For a given projective manifold X, if the embedding
jo has a geometric composition series =y whose length ky atlains the minimum among
the embeddings of X with geometric composition serieses, then we say that the geometric
composition series 5y 1s a absolutely minimal geometric composition series of X.

Remark 1.8 To avoid confusion or to cldrify what is in the author’s mind, one should
describe several points.

(1.8.1) For a vector bundle E on a projective variety V, we say that the bundle E is nef
if the tautological line bundle Ly = Op(g)v(1) is nef on the projective bundle
P(E) = P(E) over V associated to the bundle E, namely for any curve C in
P(E), the intersection number satisfies the inequality: (Lg.C) > 0.

(1.8.2) Frankly speaking, the author confess that we might have to weaken our working
hypothesis to some extent in the real situation. For example, we might have
to replace the conditions: (a) ”PG-shells” instead of ”G-shells” ; (b) ”reflexive
sheaves” in stead of "vector bundles” ; (c)”rather mild singular locus of W,”
instead of "Reg(Wp)” ; (d) "k(Wi) < 0” instaed of “a homogeneous space.”

Proposition 1.9 Let X be a connected complex projective manifold of dimension n > 2
and j : X — P = PN (C) an embedding. Then the following four conditions are equivalent.

(1.9.1) The subvariety j(X) is a complete intersection.

(1.9.2) There is a set of intermediate ambient varieties {W,},\ " of j(X) which satisfies
the conditions: (a)dim(Wy) =n+p; (b) j(X)=WoCcWrC...CWnpn=P
; (¢) Wp_1 C Reg(Wp) forp=1,... ,N—n.

(1.9.3) The embedding j has a geometric composition series = = {(Wp, Ep,ap)}ﬁ_j" of
length N — n with rank(E,) = 1. :

(1.9.4) The embedding j has a geometric composition series Zo = {(Wp, Ep, 0p)}5-1 of
length 1 which satisfies W, = P and E, = ®Y7"Op(ms).
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Proof. The essential part is to show the equivalence between (1.9.1) and (1.9.2). Assume
that (1.9.2). Starting from Wy_, and using that each W, is a Cartier divisor of W,
we show inductively that each W}, is a complete intersection and Pic(W,) = ZOy, (1)
for p > 1 by virtue of Corollary 3.2 in [11], which is still valid in the singular cases.
Thus we have (1.9.1). Contrary, now we assume (1.9.1). A little care is needed to apply
Bertini’s theorem and to see that W,_; C Reg(W,), which is rather a strong condition
than X C Reg(W,). Take hypersurfaces Dy, ..., D, of degree d,,... ,d,, respectively
such that r = N —n, j(X) = D;N...N D, and d; < ... < d,. Then consider the linear
system A, = H%(P, Ix(d,)) on P = W,. Since Ix(d,) is generated by global sections, the
base locus Bs(A,) coincides with X. Also by D, € A, satisfing X C Reg(D,), we find
that general members are smooth. Then we put W,_; to be a smooth member of A,.
Obviously j(X) = DiN...ND,_1NW,_;. As an induction hypothesis, we may assume
that we have smooth complete intersection subvarieties: Wy, Wi.1, ... , W, = P such that
dim(Wp) =n+p, J(X) =DiN...NDyNW, for p=k,... ,r. We may assume k > 2.
Then we consider a sublinear system Ay = H%(Wg, Ix/w, (dx)) C H°(Wi,Ow, (di)) on
the subvariety Wi. Since Iy, w, (dx) is generated by the sections Dy, ..., Dy, namely
(D1, ---, Di) : @5_,Ow, (dx — dy) — Ix/w,(di) is surjective, we have Bs(Ax) = X. By
the same argument as above, we obtain a smooth member W;,_; € A;. Then, using the

arithmetic normality of Wj, it is easy to see that Wj_; is also a complete intersection and
](X) =DiNn...NDr_1NWi_;. ]

§2 Conjectures.

In this section, we give some conjectures relating to Lefschetz operators. We expect that
these conjecures give an approach to get our previous working hypothesis.
First, let us recall the definition of Lefschetz operators (cf. [19]).

Definition 2.1 (Lefschetz operator) Let X be a complex projective scheme of dimen-
sionn >0, j: X — P = PV(C) an embedding, E an Ox-coherent sheaf, and N)\Q/P
the conormal sheaf of j(X) in P, where Ix denotes the sheaf of ideals defining j(X) in
P. By natural restriction: j* : HY(P,QL) — HY(X,Q%), we have a hyperplane class
h = j*(c1(Op(1))) € H'(X,QY), which induces a cohomological operator (depending on
the embedding j ):

Lx: H (X,0% ® E) - HFY(X, QL' QE)

For a section o € H(X, E), if the class I%(c) € H?(X, % ®E) is not zero and L% (o) is
zero, then we say that the section o has the penetration order p and denote it by pent(o) =
p. For an equation F € H°(P,Ix(m)) of j(X) with degree m, we define pent(F) =
pent([F]) by putting E = Ny p(m), where [F| denotes the section of H°(X, Nx/p(m))
induced by the natural restriction Ix — Ix/I% = Nx/p.
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We introduce meta-Lefschetz operators, which are difficult to control but give finer
information than Lefschetz operators.

Definition 2.2 (meta-Lefschetz operator [27], [26]) Let X be a complex projective
scheme of dimensionn > 0, j : X — P = PY(C) an embedding, Ny, xp = = Ix/I% the
conormal sheaf of j(X) in P, where Ix denotes the sheaf of ideals defining j(X) in P.
Then we take the de Rham complez 2}, of P :

d N1 d\2 d d\N .
0L 4, 2 JUURL Y. U

0-——-)Op

and the ideal order filtration (cf. [14]) FPQ3.:

vip _ d vip-lnl 4 | d_,
0 —> IX — IX QP 7 ... 7

J (ARYe  AUINEL I o S I ¢, 0 > 0.
Now we fix v and see Gr¥,, (%) = FP/FPH1:
0 — I/t & plpireol B,
— YT < Oblx,  —— 0,
where X(,) = (|X|,0p/1 1), Contrary to the fact that the exterior derivative d is not

Op-linear, the map d; is Op-linear and compatible with tensoring by Op(m). Thus we
have:

/I m) @ O — Qb|x,, (m)
and
HY(X, I I (m) @ 08 Y) —> HY(X(), Blx,, (m))
Next we consider a natural exact sequence (LFT):
0 — /I @0 (m) — Bp(m)lx,., — B(m)lx,, — 0,
which induces an obstruction map:
B : H* (X, Qp(m)x,,)) — H* (X, I3 I @ 0 (m)).

Then we can define a map:

LY = Brpr o dr  HY(X, I 15 (m) @ ) — H* (X, I/ I (m) @ 3,



134

which s called the v-th meta-Lefschetz operator with respect to the embedding j : X — P.
In case of v = 0, we denote it by Lx instead of Lg?) and call it simply meta-Lefschetz

operator if there is no danger of confusion. Moreover, for the meta-Lefschetz operator
Lx, we set

95525 (m) := Im[Lyx : H(X, Ny,p(m) @ Q% ') — H'(X, Ny p(m) ® O3)]

Fundamental properties on meta-Lefschetz operator are given as follows.

Theorem 2.3 ([26]) Let X be a complex projective variety of dimension n, j : X —
P = PN(C) an embedding, N/p = Ix/I% the conormal sheaf of j(X) in P, where Ix

denotes the sheaf of ideals defining j(X) in P. Take the meta-Lefschetz operator Lx with
respect to the embedding. Then the following properties hold.

(2.3.1) The meta-Lefschetz operator has naturality. In other words, for any closed sub-
scheme Y, the diagram:

—~

HP(X, Ny;p(m) ® Qb)) —2- HP (X, Ny p(m) ® OF)
mturall lndurd

HE?(Y, Ny,;p(m) ® Q}) —— HPF(Y, Ny p(m) @ o)
Ly

1s commutative.

(2.3.2) The diagram:

—~

HP(X, NY,p(m) @ Q%) —2> HF(X, NY, p(m) @ 047
naturall lnatural

HP(X, Nyp(m) ® Q%) —— HP*Y(X,Ny,p(m) ® Q%)

—m-Lx
1s commautative,where Lx denotes the Lefschetz operator.

(2.3.3) Assume that j(X) has arithmetic depth > 2, which includes the case that X is a
normal projective variely of dimension n > 0 and the embedding is arithmetically
normal, namely H°(P,Op(m)) — H°(X,0x(m)) is surjective for all integers
m. Then there is a natural one to one correspondence Yi(m) : gsyz%(m) —
g5yz%(m) as vector spaces. Here the space gsyz%(m) represents minimal gener-
ators in degree m of the q-th syzygy of Rx.



135

(2.3.4)  For an integer k satisfyingn — 1 > k > 1, assume that the projective subvariety
j(X) has arithmetic depth k+ 2, or equivalently H*(X,Ox(u)) = 0 for u € Z,
k> s>1, and H°(P,Op(m)) — H°(X,Ox(m)) is surjective for all integers m.
Then the k-uple of the meta-Lefschetz operator:

(Lx)* : H\(X, Nx;p(m) ® Q%) — H**!(X, Ny;p(m) ® 05

is tnjective on the subspace gsyz% (m) for all integeré m. Moreover, the map
dr : H*(X, Ny,p(m) ® QLFY — B X, Q5 @ Ox(m)) is ingective on the
subspace (Lx)*(gsyz% (m)).

Returning to Lefschetz operators and make a preparation for defining Lefschetz chains

and dual Lefschetz chain which play key roles in our conjectures.

Now we take the canonical map v!(m) : gsyzk(m) — gsyzx(m) in the Theorem2.3
above for ¢ = 1 and consider the commutative diagram:

YZH(Ix(m—1)) — H°(Ix(m)) e gsyzi(m) —— 0
N natwrall l'yl(m)%
H(NY(m)) ——  gsgix(m)  ——0
: T
Lxl lI‘nclusion

H(Ny(m) © Q%) —— H'(N¥(m) ® %hlx)
HY(NY(m) @ %),

where the first and the second rows are exact. Then we put:

Jp(m) = KerlHO(Lx(m)) — HO(N¥(m)) % HP (N(m) © 05)].
From a chain of C-vector spaces:
J_1(m) = Im[SZ,H(Ix(m—1))] C Jo(m) C Jy(m) C --- C Ju_1(m) C Ju(m) = H°(Ix(m)),

we chose a finite subset {F) s m, - - . , Fi(s),s,m} from Js(m) which forms a C-basis of J, (m)/Je_1(m;
and define closed subschemes W, C Pand W, C P by the equations {Fi sm, "+ , Fi(s),s;m[0 <

s < p, m € No} and by {Fism, - ,Fis),smln > s > p, m € N}, respectively for
p=0,,n. |
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Definition 2.4 (Lefschetz chain and dual Lefschetz chain) Under the circumstances,
we obtain two chains of closed subschemes P. The one is :

JX)=WaCW, i C---CWoCP

and s called a Lefschetz chain of j(X). The other one is :

iX)=Ws CW; C---CW;CP,

and is named a dual Lefschetz chain of j(X).

Before claim our conjectures, we present fundamental properties of Lefschetz chains
and dual Lefschetz chains.

Theorem 2.5 Let X be a complex projective manifold of dimensionn >0, j: X — P=
PV(C) an arithmetically normal embedding. Take a Lefschetz chain and a dual Lefschetz
chain of j(X) as above and fix them. The following properties holds.

(2.5.1) The submanifold j(X) is a complete intersection if and only if the Lefschetz chain
s of the form :

JIX) =W, CWp1=---=Wy=P.
The similar equivalence holds on the dual Lefschetz chain by replacing the fom.:
IX)=Wg=Wy=---=W, CP.

(2.5.2) Puts = dim(Im[L% : ®nH°(Ny(m)) — SnH*(N}(m) @ O%)]), then for the
Lefschetz chain, the exact sequence:

0 —— Im(Ny, ,lx) — Nx — )\é/w,._l — 0

always splits and Ny, | = ®&°Ox(—m;). Similarly for the dual Lefschetz chain,
the exact sequence:

0—>Nv\f,;

X—>N,‘§—>N)V(/W;->O

always splits and Ny, |x = & Ox (—my).
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(2.5.3) Assume that the Standard Conjecture holds on the projective manifold X. For
the Lefschetz chain, if W, # W,_1, then there is an integer m and a p-cycle ¢
such that P - £ > 0 and § - c¢;(NY(m)) =pum.eq 0, where h = ¢;(0Ox(1)). Also for
the dual Lefschetz chain, if W, # Wy, eactly the same holds.

Outline of Proof. For (2.5.1) and (2.5.2), we have only to apply Serre duality. The
claim (2.5.3) is obtained by using the result of [20] with a slight modification. To remove
the condition ”transverse to the zero section”, we use Hironaka resolution for making the
divisor normal crossing and study localized top Chern class instead of the zero locus of
the section. See [30] for a precise argument. 1

Now we can describe our main conjectures as follows.

Main Conjecture 2.6 Let X be a complez projective manifold of dimension n > 0,
j: X < P = PV(C) an arithmetically normal embedding. Take a Lefschetz chain
{Wplp—o and a dual Lefschetz chain {W;}» suitably. Then we expect the following
properties hold by the suitable choice of the chains.

(26.1) Each W, and W} are PG-shell of j(X).
(26.2) Each Wy, and W are reduced along j(X).
(26.3) Each Wy, and W, are irreducible.

(2.6.4) Each restricted conormal sheaf Nv\{,p /w,_11x s @ vector bundle on X and is ex-
tendable to W,_, as a vector bundle. Similarly, each restricted conormal sheaf
N‘){,; /W£+1l x 15 a vector bundle and is extendable to W, ,, as a vector bundle.

(2.6.5) Fix the manifold X of dimension n > 2. Chose suitably the embedding j, Lef-
schetz chain {W,}7_,, and a dual Lefschetz chain {W, }p—o- Then a refinement of
the Lefschetz chain or of the dual Lefschetz chain realizes the Working Hypothesis
1.7 (cf. Problem 2.9). ‘

Proposition 2.7 Let X be a connected complex projective manifold of dimension n > 2
and j : X — P =PV(C) an arithmetically normal embedding. Assume that j(X) is non-
degenerate, namely no hyperplane in P contains j(X). For an equation F € H°(P, Ix(m))
of j(X), take the class [F] € H(X, Ny, p(m)) induced by the equation F. Then we have:
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(2.7.1)  If m = 2, then the class (Lx)?([F]) € H*(X, Ny, p(2) ® () is not zero. More
generally, take a non-zero class 7 € gsyz%(q + 1) € H'(X, Ny,p(g+ 1) ® Q)
which naturally corresponds to an element of minimal generators of q-th syzygy
module of Rx in degree q+ 1, then Lx(7) € H*(X, Nxplg+1)® Q%) is not
zero.

(2.7.2) Ifm =3 and the class (Lx)*([F]) € H*(X, N¥,p(3) ® 0}) is zero, then q(X) =
_hl(OX) > 0.

Proof. Apply Lemma 1.5 in [27]. See also [26].

Remark 2.8 Proposition 2.7 shows that the meta-Lefschetz operator has really finer in-
formation on the syzygies of the coordinate ring than the Lefschetz operator does. For
ezample, take X = P*(C) (n > 2), an embedding j=v-th Veronesean embedding (v >
3) and any equation F of j(X) in degree 2, then il is easy lo see that (Lx)2([F]) €
H*(X,Ny/p(2) ® Q%) is zero.

The following problem is natural to be considered. We expect that proving this prob-
lem brings us a new idea for necessary refinments of Lefschetz chains and dual Lefschetz

chains and helps us to solve our previous conjectures. For partial results on this problem,
see [26].

Problem 2.9 (Preservation of Filtration) Let X be a connected complex projective
manifold of dimensionn > 1 and j : X — P =PV (C) an embedding. Consider the exact
sequence: 0 — Ny p — Ob|x — Q% — 0, which induces a canonical decreasing fillration
Fp: O}|x = FQ D F} D...D F] D FJ = {0} such that F?/FPH 2 Q5 PQAPNy p. Then
a natural decreasing filtration on H>*(m) = H*(X, Ny p(m) ® Q}) is induced by pulting
FPHY(m) = Im[H*(X, Nx,p(m) ® Ff) — H"“(m)]. Then does il always hold that the
meta-Lefschetz operator keeps the filtration, namely Lx(FPH"*(m)) C FPH* 5+ (m) ?

§3 Infinitesimal Methods.

In this section, we introduce our simple tools which consist of two key concepts. These
are mysteriously powerful for controling higher obstructions appearing in the study of
infinitesimal neighborhoods. These are important to consider the correspondence between
subbundles of the normal bundle and intermediate ambient varieties.

Definition 3.1 (Differntial Splitting) On a complex algbraic scheme W, we consider
an Oy -linear exact sequence of Oy -coherent sheaves:

0 , G -5 F -, E > 0.
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We say that this sequence splits differentially of order < p if there exists a (holomorphic
C-linear) differential operator Vg : E — F of order < p such that 30V = Idg, namely,
the operator Vg gives a splitting in the category of abelian sheaves. It is easy to see thal
this condition is equivalent to the condition that the existence of two differential operators
Va:F -G and Vg : E — F of order < p which satisfy : foVg=Idg ; Vaoa = Idg

;and aoV,+VgofB = Idp. When the scheme W is smooth and the sheaf E is of locally
f'ree the condition of splitting differentially of some order is equivalent to the condition in
terms of Dy,-modules that the sequence:

0 — G®Dy —*— F®Dw —— E®@Dy —— 0,

splits in the category of right Dy -modules, where Dy, denotes the sheaf of holomorphic
linear differential operators on W. ' '

As showed in [24], there are many examples where differential splittings are observed.
One of the typical examples is given as follows. '

Example 3.2 Let V be a complex algebraic scheme, E a vector bundle on V|, f : G =
Grass(E,r) — V the Grassmann bundle which parametrizes quotient r-bundles of E.
Consider the universal sequence on G':

0 , § 22, ;g P, Q > 0.

Then this universal sequence splits differentially of order = 1 (Obviously it never splits
Og-linearly). .

Definition 3.3 (H?-G.L.C.) Let W be a noetherian scheme, X a closed subscheme of
W which is defined by a sheaf of ideals Ix, E a coherent Oy -module.

(3.3.1)  For each non-negative integer j1, we set the p-th infinitesimal neighborhood X,
of X in W to be (| X|,Ow/I%") and the restricted sheaf E, of E to X(,) to be
E/ If,‘(“E as usual. Let v be a non-negative integer. We say that the HP-global
lifting criterion of the coherent sheaf E holds at the (infinitesimal) lifting level A
along (X(,), X) if the equality:

Im[H?(W, E) — H?(X(), Ew)]
= Im[H?( X412, Epyn) — HY (X, Eg)l

holds in the space of HP(X(y), E()). This condition is abbreviated as "H?-G.L.C.
of E holds at level \ along (X, X)”.
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(3.3.2) It is called that the H?-global lifting criterion of the coherent sheaf E holds uni-
formly at the (infinitesimal) lifting level A along X if for any positive integer v,
H?-G.L.C. of E holds at level \ along (X(,), X). This condition is also abbrevi-
ated as "H?P-G.L.C. of E holds uniformly at lifting level X along X”.

Let us show one of the results in [25] as the simplest example for showing the power-
fulness of our previous two key concepts.

Theorem 3.4 (Quotient Type) Let W be a complez algebraic scheme. For an exact
sequence of Oy -coherent sheaves:

OHG—O—)FE-)E—)O

connected by Oy, -linear homomorphisms o and 3, assume that this sequence splits differ-
entially of order \. If the HP-lifting criterion on the sheaf F' holds at the level p along
(X@), X), then the HP-lifting criterion on the sheaf E holds at the level \ + p along
(X, X).

Proof. It is enough to show that for any class ¢ € H?(X(,), E,)) which is an image of a
class of HP(X(, 1), E(+2)), the class ¢ can be lifted to HP(W, E).

Let us consider six natural Op-linear homomorphisms: e : E — E,), € : Egjpq) —
E(,,), r. F— E(z\+p+l/)a f_F - F(,,), f . F(}H—V) - F(,,), and s: F — F(IH—V): which
satisfy e =€or and f = fos. Since the differential operator V : E — F' is of C-linear
and of order ), it induces a homomorphism of abelian sheaves V : Exipiv) — Fluty)
which satisfies s 0 V = V or. Then, using carefully the commutativities of the maps
already checked, we see that:

EOTOVOTIBOTOSOV:BOJ”OV:eo,BoV:eoIdE:EoT,

where 3 : Fyy — E,) denotes the natural Ow-linear homomorphism induced by £ :
F — E. Considering all the homomorphisms given above as the homomorphisms in the
category of abelian sheaves, the surjectivity of the homomorphism r (at each stalk) implies
that:

BofoV ==t
Now, by assumption, we can take a class ¢ € HP(X(x1p42)> E(rtptv)) Whose image by the

map € coincides with the given class ¢ of HP(X(,), E()). Then, takiig H? of the sheaves
introdeced in the above, we have the following (a partially non-commutative) diagram:
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HP(F) £ ' - HP(E)
Id Id
HP(F) ~ v HP(E)

f HP(F (/t+V)) v H? (E(A+M+V))

“al
ol

H?(F )

H?(E,),

By the assumption that H?-G.L.C. of the sheaf I holds at the level i along (X(,), X), the
class f o V(3)), which is the image of V() € HP?(F,,.)) by the map f, can be lifted to a
class o € HP(W, F), namely f(o) = f o V(1). Then, putting v to be B(o), we see that:

e() = eo (o) = Bo f(o) = B(f o V(¥)) = 2(®) = ¢,

which is the desired conclusion. , I

Corollary 3.5 Let V C P = PN(C) be a closed subscheme and m > myq non-negaive
integers. Assume that the restriction map HO(P,Op(my)) — HO(V, Oy (my)) is surjective.
Then H°-G.L.C. of Op(m) holds at level m — my along (X©), X). In other words, any
section o € H°(V,Oy(m)) can be lifted to H°(P,Op(m)) if and only if the section can be
lifted to H°(Vim—ne), OV gy (M)

Proof. By the assumption, H°-G.L.C. of Op(my) holds at level 0 along (X(0), X). We
use induction on m by starting from the case m = mg. Take a positive integer m > my.
We have only to apply Theorem 3.4 to the Euler sequence:

0 — QL(m) — @®O0p(m —1) —— Op(m) —— 0,

which splits differentially of order 1 for positive integer m. (N.B. In case of m = 0, this
sequence never splits even in the sense of differential splitting.) '
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84 Arithmetic Normality.

In this section, we discuss arithmetic normality from the two points of view. The
first one is a viwpoint for clarifying our framework and strategy of studying the geomet-
ric structures of projective embeddings. The second one is a viewpoint from Differential

Geometry, which presents a crtiterion for arithmetic normality in terms of Differential
Geometry.

For the first viewpoint, let us review weighted objects such as ” weighted projections”,
which relates to ” arithmetic normality” as a usual ” projection” does to ”linear normality”.

Definition 4.1 (Weighted Projection) For N + L + 1-variables with weighted de-
gree wt.deg(Zy) = s, > 1 (p = 0,...,N) ; wtdeg(Wg) = wgq (¢ = 1,...,L), take
a weighted polynomial ring T = ClZy,... ,Zn,W1,... , W] and its polynomial subring
S = C[Zo,...,Zn|. By applying ”"Proj” operation, we get a rational map belween the
weighted projective spaces:

PTOJ(T) :IP(S()?"' y SN, W1, - - . 7wL) e PTOJ(S) = IP(S(),... ;SN)7
which is called a weighted projection along the center Z = {W) = ... = Wi = 0}.

Definition 4.2 (Weighted Linear Degeneration) Consider a weighted polynomial ring
S = ClZy,...,Zn] with wt.deg(Z,) = s, and a closed subscheme X C Proj(S) =
P(sq,. .- ,sn) = P. If there is a weighted linear homogeneous polynomial F' € S, which is
degree 1 without weight in at least one variable, e.q. F = Zo+ F1(Z1,...Zn), and if X s
a closed subscheme of the subscheme Proj(S/(F)) C P, then we say that the subscheme

X degenerates weighted linearly. (In this case, the subscheme X can be isomorphically
projected through a suitable weighted projection.)

Lemma 4.3 Let X be a complex projective scheme of dimensionn >0 and j: X — P =
PY(C) = P(1,...,1) an embedding to a projective N-space (in a usual sense). Then there
is a weighted projective space : Q = P(1V*! w;,... ,wy) and an embedding : 7: X — Q

which make the commautative diagram:
LT
v

X —P
J

and satisfy the surjectivity on the natural map: H°(Q,Oq(m)) — H®(X,0x(m)) for
every non-negative inlegers m.
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Since several people asked me a proof for this lemma, it may be a little worth writing
down its proof here.

Proof. The idea is very simple and is only to add enough variables with suitable weighted
degree. The argument goes as follows. Let us put the vector space V to be Im|[H®(P,Op(1)) —
H(X,0x(1))] and the section o; € V to be the image of Z; € H°(P,Op(1)) for t =
0,1,..., N, where N = dim(H°(P,0p(1)))—1 and {Z;}Y, form a C-basis of H*(P, Op(1)).
Since the line bundle Ox(1) = j*Op(1) is ample, there are only finitely many posi-
tive integers m such that dimCoker|[V ® H°(X,Ox(m — 1)) — H%(X,0x(m))] =
cm # 0. Set {m(1),... ,m(v)} = {m € Nlcnw # 0} and L = cmq) + cmz) + -+ +
Cm(u), Where 1 < m(1) < --- < m(u). Now we take the sections 7y,...,7; such that
Tem@y++ome—1y+12 """ 3 Temayt-temeey € H 9(X, Ox(m(s))) induce the C-basis of Coker[V ®
H°(X,0x(m(s) — 1)) — H®(X,0x(m(s)))] for s = 1,... ,u. Take variables W} with
deg(W},) = wy, corresponding to the section 1w € H°(X, Ox(wy)) for k= 1,... , L, namely
w = m(s) if cmay + -+ Cme—1) + 1 < k < ey + -+ + (). Now we have two es-
sentially surjective ring homomorphisms : T = C[Zy,... ,Zyn,Wi,... , W] — Rx =
®mH(X,0x(m)) and S = C[Zy, ... ,Zn| = Rx = ®mH(X,0x(m)) by sending Z; to

o: and Wy to 7, which make a commutative diagram:

/

Ry — S.

T

inclusion

Taking their ”Proj”, we obtain the result. (N.B. For simplicity, we constructed the ring
T rather roughly and it may have dispensable variables.) 1

Here we would like to make a discussion on a framework and a strategy for our research.
Generally the weighted projective space @ has singularities and the sheaf Og(m) is not a
line bundle but only a reflexive sheaf. On the other hand, Lemma 4.3 above shows that
any projective embedding is a composition of a weighted projection and an embedding into
a weighted projective space which is very similar to an arithmetically normal embedding.

Hence, to study the geometric structures of projective embedding, we can divide the
problem into the three problem: (a) investigate the arithmetically normal embeddings ;
(b) generalize the results of (a) into the case of weighted projective spaces (e.g. Working
Hypothesis in weighted version); (c) study the effects of weighted projections on the
intermediate ambient varieties and on weighted G-shells (” weighted G-shell” is similarly
defined by using TorY (—,T/T,) instead of Torg(—,S/S,))-

Relating to the problem (c) above, we should notice the fact that even if we have a good
intermediate ambient variety W with 3(X) C W C Q, the variety W may collapse by the



144

weighted projection but the variety X itself is projected isomorphically. Thus we believe
that the arithmetic normality is a natural condition as the fundamental assumption for
our research in the first step, because we can ignore the difficulty arising from weighted
projections.

The arithmetic normality is equivalent to H%-G.L.C. of Op(m) holding at level 0
along (X(q), X) as we used it in the proof of Corollary 3.5. Since the bundle Op(m) is
a building brock for coherent sheaves, the assumption of arithmetic normality makes the
higher obstruction control much more easier than without it. We might be going a bit

too far, but the difficulty of higher obstruction can be sometimes explained by relating
with weighted projections.

Now we proceed to the second viewpoint on arithmetic normality, namely that from
Differential Geometry. Let us recall the concepts of complex differential geometry. Take
a connected complex projective submanifold X C P = PN(C) of dimension n > 0. By
inducing a metric on X from the Fubini-Study metric on P, we consider X to be a Kahler
manifold. Consider the exact sequence of induced Hermitian vector bundles:

0 — Nxp — Qplx > QL > 0.

Then we have Hermitian connections V : A°(Q}|x) — A'(%|x) and V, : A°(NY) —
A!(NY), which induce a C®-section A = V|yv — Vg € A (Hom(Ny, QL)) of (1,0)-
form with values in Hom(Ny,, ). Instead of Ny, considering Q% to be a C*®-subbundle
of Op|x, we have a C*-section B € A®Y(Hom(Qk, NY)) of (0,1)-form with values in
Hom(Q, NY).

The following properties are well-known (cf. [8],[9],[12],[13]).
Proposition 4.4 (Second Fundamental Forms) Under the circumstances,

(4.4.1) B is an adjoint of —A. In other words, for £ € A°(NY) and n € A°(Q), the
equality h(A&,n) + h(£§,Bn) = O holds, where h(—,—) denotes the Hermitian
melric on Qb|x.

(4.4.2) Since B is 0-closed, it defines a class [B] € H'(X,0x ® Ny), which coincides
with the infinitesimal ring extension class of

0 — Ny — Op/I% » Ox - 0.

The class o71(X) = [B] ts called the second fundamental form of type (0,1) for
X.
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(44.3) A€ H(Sym*(Qx) ® NY). This class A is called the holomorphic second funda-
mental form of X and coincides with the differential of the Gauss map induced

by the embedding. Also a linear system is defined by considering it at general
point of X ([9],[13]).

Now we take a smooth irreducible divisor D on X. Then we have an exact sequence :

0 - ©p > Ox|p —— Np;x — 0,
and a natural induced homomorphism : rp : H'(X,0x ® Ny) — H*(Np;x ® Nx|p).

Using these notation, we can describe a criterion for arithmetic normality, which was
first obtained in [28] by applying the view point of weighted projection. Here we explain
an outline of another proof simplified by using the tools introduced in §3.

Theorem 4.5 (Hoobler-Speiser-Usa) Let X C P = PV(C) be a connected complex
projective submanifold of dimension n > 2. Assume that ¢(X) = h1(Ox) = 0. Then the
Jollowing two conditions are equivalent.

(4.5.1) X is arithmetically normal.

(4.5.2) For any integer m and any generic smooth member D € |Ox(m)|, rp(o(X)) =
0.

Outline of Proof. Showing arithmetic normality is the essential part. We apply induc-
tion on m. Take a section 7p € H°(X,Ox(m)) defining the divisor D. It is enough to
see that the section 7p lifts to H°(P,Op(m)). Using q(X) = 0 and rp(or(X)) = 0 in
H'(NY|p(m)), a direct computation on the exact sequence:

0= H'(Ny) —2> H'(Ny(m)) —— H(Nx|p(m))

tells that the obstruction class: BS}T(TD) € H'(X, Ny(m)) vanishes, which means that

the section 7p lifts to H%(X(y), Ox,,(m)). Then apply Corollary 3.5. For precise calucu-

lation on Berp(Tp), see [29]. I
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