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Abstract

This is a survey of our research on geometric structures of projective embeddings
and includes the topics of our talks in several symposia (e.g. $[23]$ ) $\mathrm{f}\mathrm{r}\mathrm{o}\mathrm{m}$ 1990 to 98.
We $\mathrm{c}\mathrm{l}\mathrm{a}\mathrm{r}\Phi$ our main problem, which is to construct a kind of geometric composition
series of projective embeddings. The concept of ”

$\mathrm{g}\infty \mathrm{m}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{C}$ composition series” is
an analogy in Algebraic Geometry with Jordan-H\"older series in Group theory. We
present two of the candidates for the construction problem. We also give several
results and new tools for approaching this problem. As a byproduct of the tools, we
obtain a simplified proof for a criterion on arithmetic normality described in terms
of Differential Geometry.

Keywords: Petri’s Analysis, Second Fundamental Form, Syzygy, Arithmetic Nor-
mality, Infinitesimal Lifting, Geometric Shell, Geometric Composition Series, Lef-
schetz chain, dual Lefschetz chain, meta-Lefschetz Operators.

\S 0 Introduction.
In this article, we present several problems arising from the investigation on geometric
structures of projective embeddings. When we use the technical term ”geometric struc-
ture” of a projective embedding, it is our concern to see what kinds of intermediate
ambient varieties appear for the projective subvariety defined by the given embedding.

To clarify this point more precisely, let us consider a connected complex projective
manifold $X$ of dimension $n>0$ and an embedding $j$ : $X^{\mathrm{c}}arrow P=\mathrm{P}^{N}(\mathbb{C})$ . Then, by an
elementary fact on polynomial rings, we see that for any integer $q$ with $n<q<N$ , there
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exists a projective subvarity $W$ of dimension $q_{\mathrm{S}\mathrm{a}\mathrm{t}\mathrm{i}}\mathrm{s}\Psi\dot{\mathrm{m}}\mathrm{g}j(X)\subset W\subset P$. In this case,
we say that the variety $W$ is an intermediate ambient variety of the subvariety $j(X)$ .

On the other hand, if we suppose an additional condition on $W$, e.g. a variety $W$ to
be smooth along $j(X)$ , namely $j(X)\subseteq Reg(W)$ , then we, can not assure the existence of
a variety $W$ satisfying the condition. For example, taking a Horrocks-Mumford abelian
surface $A$ in $P=\mathrm{P}^{4}(\mathbb{C})$ as the subvariety $j(X)$ , then there is no hypersurface $W$ with
$A\subseteq Reg(W)$ , which is certified by the calculation of Pic(W).

Thus we have special interest on the existence problem of intermediate ambient vari-
eties with some additional conditions which can characterize the embedding. Then, we
face an important problem, namely what conditions should be posed as the additional
conditions? One of the candidates for the condition is presented in Defimition 1.2. By
using the concept ”geometric shell”, we can state our very optimistic Working Hypothesis
1.7, which claims the existence of a projective embeAding with a good decomposition
by geometric shells. As an approach to this working hypothesis, we summarize in \S 2
the results on Lefschetz operators and on meta-Lefschetz operators. We also present
Main Conjecture 2.6 and $\mathrm{c}\mathrm{l}\mathrm{a}\mathrm{I}^{\cdot}\mathrm{i}\mathrm{f}\mathrm{i}\gamma$ the relation with the former working hypothesis. As a
preparation for attacking the conjectures, we newly introduce several key concepts for
the infimitesimal method in \S 3. They often help us to remove the difficulty of higher ob-
structions for making the correspondence between subsheaves of the normal bundle and
intermediate ambient varieties. In \S 4, we discuss arithmetic normality from two points
of view. The first view point concern our framework and strategy for studying geometric
structures of projective embeddings. From the second point of view, namely that of Dif-
ferential Geometry, we explain a criterion for arithmetic normality in terms of the second
fundamental form. Here we describe an outline of another proof for the criterion which
is simplified by the tools in \S 3. This will show the power of our new tools.

In this article, we consider only the objects defined over the complex number field
C. In case of handling grade($1$ objects, we consider only homomorphims of preservin$\mathrm{g}$

their grading otherwise mentioned. For example, ”minimal free resolution” always means
”graded ninimal free resolution” Sometimes we state our result by using a pair of a
variety and one of its embeddings instead of using the term ”subvariety”. That is only
to emphasize the fact that we can chose the embedding suitably with fixing the variety
itself in the real situation.

The author deeply thanks to Prof.O.A.Laudal and Prof.S.J.Kwak for their warmful
encouragement, to Prof.M.Hashimoto for showing me a nice fact, and to Prof.S.Tsuboi
and Prof.C.Miyazaki for their heavy efforts of organizing symposia where one could have
precious chances to meet the former two people.

\S 1 Working Hypothesis.
In this section, we present a key concept for considering geometric structures of embed-
dings and show several problems, in particular our optimistic working hypothesis. We
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hope that this may also bring us an insight for studying the syzygies of proj.xtive subva-
rieties.

Let us confirm our notation used in the sequel.

Notation 1.1 Let us take a complex projective scheme $X$ of dimension $n$ and one of its
embeddings $j$ : $X^{\mathrm{c}}arrow P=\mathrm{P}^{N}(\mathbb{C})$ . The sheaf of ideals defining $j(X)$ in $P$ and ffie conormal
sheaf are denoted by $I_{X}$ and $N_{\check{X}/P}=I_{X}/P_{X}$ , respectively. Tak\’ing a $\mathbb{C}$-basis $\{Z_{0}, \ldots, Z_{N}\}$

of $H^{0}(P, o_{P}(1..))$ . Then we put

$S$ $:=$ $m\geq 0\oplus H^{0}(P, OP(m))\cong \mathbb{C}[z_{0}, \ldots, Z_{N}]$

$S_{+}$ $:=$ $=\oplus H^{0}m>0(P, OP(m))\cong(Z_{0}, \ldots , Z_{N})\mathbb{C}[z_{0}, \ldots , Z_{N}]$

$\overline{R_{X}}$

$:=$ $\oplus H^{0}(x, oX(m))$
$m\geq 0$

$\mathrm{I}_{X}$ $:=$ $\bigoplus_{m\geq 0}H^{0}(P, Ix(m))$

$R_{X}$ $:=$ $Im[Sarrow\overline{R_{X}}]\cong s/\mathrm{I}_{X}$

$gsyz_{X}^{q}(m)$ $:=$ $Tor_{q}^{s_{(}}RX,$ $S/S_{+})_{(m)}$ ,

where ffie subscript $(m)$ of Tar above means taking its degree $m$ part as a graded S-
module. ObnioIJsly, ffie space $gsyz_{X}^{q}(m)$ represents minimal generators in degree $m$ of the
q-ffi syzygy of $R_{X}$ as an S-moduJe.

As a preparation, we recall the following key concepts introduced in [27].

Definition 1.2 ($\mathrm{P}\mathrm{G}rightarrow \mathrm{s}\mathrm{h}\mathrm{e}\mathrm{l}\mathrm{l}$ and $\mathrm{G}-$-shell) Let $V$ and $W$ be dosed subschemes of $P=$
$\mathrm{P}^{N}(\mathbb{C})$ which satisfy $V\subseteq W$ (In this $case_{f}$ the subscheme $W$ is cdled simply an interme-
diate ambient scheme of $V$). If the naturd map:

$\mu_{q}$ : $T\sigma r_{q}s(RW, S/S_{+})arrow\tau_{\mathit{0}\Gamma_{q}}S(R_{V}, S/S_{+})$

is injective for every $q\geq 1$ , we say that $W$ is $a$ pregeometric shell ( $\mathrm{a}\mathrm{b}\mathrm{v}$. $\mathrm{P}\mathrm{G}-$-shell) of $V$ .
Moreover, if $W$ is a closed subvariety and the regular locvs $Reg(W)$ of $W$ contains $V$ ,
we say that $W$ is $a$ geometric shell ( $\mathrm{a}\mathrm{b}\mathrm{v}$. $\mathrm{G}-$-shell) of V. For ffie subs.cheme $V,$ $P$ and $V$

itsdf are called trivial $\mathrm{P}\mathrm{G}-$-shell (or trivial G-shell).

Now let us see several elementary facts relating with ”PG-shell”.

Proposition 1.3 Let $V$ and $W$ be closed subschemes $ofP=\mathrm{P}^{N}(\mathbb{C})$ which satisfy $V\subseteq W$ .

(1.3.1) If $W$ is a hypersurface, then $W$ is a $PG$-shell of $V$ if and only if the equation
$H_{W}$ of $W$ is a maember of minimal generators of ffie homogeneous ided $\mathrm{I}_{V}$ of $V$ .
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(1.3.2) Assunoe that ffie subscheme $V$ is a complete intersection. Then the scheme $W$ is
a $PG$-shell of $V$ if and only if the subscheme $W$ is defined by a part of minimal
generators of $\mathrm{I}_{V}$ .

(1.3.3) Take a dosed scheme $\mathrm{Y}$ such that $V\subseteq \mathrm{Y}\subseteq W$ . Assume that $W$ is a PG-shdl
of V. Then $W$ is also a $PG$-shell of Y. In particvlar, the subschemae $W$ is also
a $PG$-shdl of the m-ffi infinitesimal neighborhood $\mathrm{Y}=(V/W)_{(m)}$ of $V$ in $W$,
where $(V/W)_{(m)}=(|V|, O_{W}/I_{V}^{m+1})$ .

(1.3.4) Fix ffie subscheme of $\omega dim(V, P)\geq 2$ . Then all non-trinid $PG$-shells of $V$

form non empty algebraic famdy of finite components (N.B. The famdy of all
non-trinid $G$-shells of $V$ may be empty even if $V$ itself is a smooffi variety).

(1.3.5) If $W$ is a $PG$-shdl of $V$ , ffien we have an inequality on their Castelnuovo-
Mumford regularity: CMreg$(V)\geq CMreg(W)$ .

(1.3.6) If $W$ is a $PG$-shell of $V$ , fhen we have an inequality on their $a\dot{n}H\iota\pi wtic$ depffi:
arith.depth$(V)\leq arith.depth(W)$ . In particular, if the natural restriction map
$H^{0}(P, O_{P}(m))arrow H^{0}(V, O_{V}(m))$ is surjective for all integers $m(i.e.$ $R_{V}=$

$\overline{R_{V}})_{f}$ ffien the naturd restriction map $H^{0}(P, O_{P}(m))arrow H^{0}(W, o_{W}(m))$ is $dso$

surjective for all integers $m(i.e.R_{W}=\overline{R_{W}})$ .

(1.3.7) Assumae that there exist $r$ hypersurfaces $H_{1},$ $\ldots H_{r}$ in $P$ which form $O_{W}$ -regvlar
sequence and satisfy $V=W\cap H_{\mathrm{l}}\mathrm{n}\ldots\cap H_{r}$ . If the restriction map $H^{0}(P, O_{P}(m))arrow$

$H^{0}(V, O_{V}(m))$ is surjective for all integers $m$ , then $W$ is a PG-shdl.

(1.3.8) Assume that the subscheme $V$ is non-degenerate, namely no hyperplane contains
V. If $W$ has a 2-linear resolution, $i.e$ . ffie $hom\{veneouS$ coordinate ring $R_{W}$ of
$W$ has a minimal $S$-fiee resolution of the form : $0arrow R_{W}arrow Sarrow F_{1}(-2)arrow$

$F_{2}(-3)$ $-...arrow F_{p}(-p-1)arrow\cdots$ , where $F_{u}(v)denoteS\oplus S(v)$ : a direct sum
of several copies of $S$ uriffi degree $v$ shifl, ffien $W$ is a $PG$-shell of $V$ .

Proof. Directly from Definition 1.2, we see $(1.3.1),(1.3.2)$ and (1.3.3). To get (1.3.4), using
the injectivity of $T\sigma r_{1}s$ , we notice that any $\mathrm{P}\mathrm{G}$-shen of $V$ is defined by a part of minimal
generators of the ideal $\mathrm{I}_{V}$ . Let us take a parametrizing space $T$ of all the intermediate
ambient schemes of $V$ which are defined scheme-theoretically by parts of the mininal
generators of the ideal $\mathrm{I}_{V}$ . Obviously the parametrizing space $T$ is $\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{f}\mathrm{i}\in A$ with a set-
theoretic direct sum of Zariski open sets in several products of Grassmanmian varieties.
Through flattening stratifications incliding vertices of the affine $\mathrm{c}\mathrm{o}\mathrm{n}\dot{\mathrm{e}}\mathrm{s}$ of the membes in
the family, we get an algebraic family of intermediate ambient schemes of $V$ with constant
Betti numbers, whose parametrizing space is named $T$ again. We may assume that every
component in $T$ includes a point for a $\mathrm{P}\mathrm{G}$-shell of $V$ . This family includes all the PG-shells
of $V$ . Looking at an induced chain homomorphism of (relatively) minimal free resolutions
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of $\mathrm{I}_{V}$ and of the faInily, we have only to extract the opensets of which corresponds to
the ”maximal” rank locus of every map in the chain homomorphism. For (1.3.5), use the
Eisenbud-Goto criterion on $\mathrm{C}\mathrm{a}S\mathrm{t}\mathrm{e}\mathrm{l}\mathrm{n}\mathrm{u}\mathrm{o}\mathrm{v}\mathrm{c}\succ \mathrm{M}\mathrm{u}\mathrm{m}\mathrm{f}\mathrm{o}\Gamma \mathrm{d}$ regularity in [3]. Similarly (1.3.6) is
obtained by applying the formula on depth and homological dimension. (1.3.7) is shown
in [27]. On the claim (1.3.8), see Lemmal in [2] from our point of view.

The next fact is kindly told me by Prof.M.Hashimoto with answering my questions at
Kinosaki Symposium. It may help us to construct $\mathrm{G}_{\frac{-}{}\mathrm{S}}\mathrm{h}\mathrm{e}\mathrm{l}\mathrm{l}\mathrm{S}$ in the real situation.

Proposition 1.4 Let $Y$ and $Z$ be arithmeticdly Cohen-Macavlay projective subschemoes
of $P=\mathrm{P}^{N}(\mathbb{C})$ . Assume that $X=Y\ulcorner 1Z$ is of codimension $a+b$, where $a=\omega dim(\mathrm{Y}, P)$

and $b=codim(Z, P)$ . Then both $Y$ and $Z$ are $PG$-shells of $X$ .

Proof. For $R_{\mathrm{Y}}$ and $R_{Z}$ , take their minimal $S$-free resolutions: F. $arrow R_{\mathrm{Y}}$ , G. $arrow R_{Z}$ , whose
length are $a$ and $b$ , respectively. If we can show that the complex F. $\otimes \mathrm{G}$. is acyclic, then
triviality of the complex (F. $\otimes \mathrm{G}.$ ) $\otimes(S/S_{+})\cong(\mathrm{F}.\otimes S/S_{+})\otimes(\mathrm{G}.\otimes S/S_{+})$ means that the
complex F. $\otimes \mathrm{G}$. is a minimal $S$-free resolution of $R_{X}.\cong R_{\mathrm{Y}}\otimes R_{Z}$ . Since the complexes F.
and G. are naturally considered as subcomplexes and as direct summands of the complex
F. $\otimes \mathrm{G}.$ , we see that the schemes $\mathrm{Y}$ and $Z$ are $\mathrm{P}\mathrm{G}-$-shells of $X$ . The complex F. $\otimes \mathrm{G}$. has the
length $a+b$, which coincides with $ht(\mathrm{I}_{\mathrm{Y}}+\mathrm{I}_{Z})=depth(\mathrm{I}_{\mathrm{Y}}+\mathrm{I}Z, S)$ . To see the acyclicity of
F. $\otimes \mathrm{G}.$ , we apply Buchsbaum-Eisenbud criterion for acyclicity on free complexes (cf. [1]).
Thus we have only to show that for any prime ideal $\mathfrak{p}\in Spec(s)$ with depth$(\mathrm{p})<a+b$,
$(\mathrm{F}. \otimes \mathrm{G}.)_{\mathfrak{p}}$ is acyclic. If $ht(\mathfrak{p})=depth(\mathfrak{p})<a+b$, then $\mathfrak{p}\not\supset \mathrm{I}_{\mathrm{Y}}+\mathrm{I}_{Z}$ , namely $\mathfrak{p}\not\supset \mathrm{I}_{\mathrm{Y}}$ or

$\mathfrak{p}\not\supset \mathrm{I}_{Z}$ . For example, if $\mathfrak{p}\not\supset \mathrm{I}_{\mathrm{Y}}$ , then $(\mathrm{F}.)_{\mathfrak{p}}arrow 0$ is split exact and therefore $(\mathrm{F}. \otimes \mathrm{G}.)_{\mathfrak{p}}$ is
acyclic.

The following $\mathrm{e}\mathrm{X}\mathrm{a}\mathrm{r}\mathrm{p}_{\sim \mathrm{P}^{\mathrm{l}\mathrm{e}}}$ shows that all the exceptional cases in the classical Petri’s
Analysis can be considered as the cases of $\mathrm{G}\frac{-}{}\mathrm{s}\mathrm{h}\mathrm{e}\mathrm{l}\mathrm{l}\mathrm{S}$ appearing.

Example 1.5 (Quadric hulls in Petri’s Analysis) Let $X=C$ be a non-hyperdliptic
smooth projective curve of genvs $g\geq 3$ , and $j=\Phi_{|K_{C}|}$ : $Carrow P=\mathrm{P}^{g-1}(\mathbb{C})$ its canonical
embedding. Taking the quadric hull $W$ of $j(C)$ , namely $\hslash e$ closed subscheme defined by
$dl$ equations of $j(C)$ with degree 2. Then, ffie quadric hull $W$ coincides with $j(C)$ itself
or is a non-trivial $G$-shell of $j(C)$ .

Proof. In fact, by classical Petri’s Analysis (cf. [15], [16]), we see the exceptional cases
explicitly, namely $W$ is a Veronese surface in $\mathrm{P}^{5}(\mathbb{C})$ or a rational normal scroll. In both
cases, $W$ is a surface of minimal degree. Then apply $(5.2)\mathrm{L}\mathrm{e}-\mathrm{m}\mathrm{m}\mathrm{a}$ in [17] (see also [4]), we
obtain that $W$ has 2-linear resolutions, which $\mathrm{i}\mathrm{m}_{\mathrm{P}^{\mathrm{l}\mathrm{i}\mathfrak{B}}}$ that $W$ is a $\mathrm{G}-$-shell of $j(C)$ . 1
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Problem 1.6 To make a foundation for studying $PG$-shdls or $G$-shells, let us list severd
problems conjured up naturdly in our mind.

(1.6.1) For a non-hyperelliptic curve $C$ of genus $g=g(C)\geq 3$ and its canonical $em-$

bedding $j=\Phi_{|K_{C}|}$ : $Carrow P=\mathrm{P}^{g-1}(\mathbb{C})$ , dassify all the $PG$-shells of $j(C)$ . (cf.
Green Conjecture [2] $)$

(1.6.2) Describe the condition of ”$PG$-shell” in tems of ’$fgeneriC$ initial $ideds^{f}’$ .

(1.6.3) Assumae that a projective suscheme $W$ is a $PG$-shell of a projective subvar\’iety
$V\subset P=\mathrm{P}^{N}(\mathbb{C})$ . Then ffie subscheme $W$ is always reduced and irreducible $.p$

(N.B. When the subscheme $W$ is a hypersurface, this is true.)

(1.6.4) Take smooth projective $subvariet_{\dot{i}}eSV$ and $W$ of positive dimension. Assume
that the subvariety $V$ is arithmeticdly no$7md$. If $W$ is a $G$-shell of $V$, then does
the inequality on $\Delta$-genvs (cf. [6]): $\Delta(V, O_{P}|V(1))\geq\Delta(W, O_{P}|_{W}(1))$ hold in
general? (If $lhe$ polarized manifold (V, $O_{P}|_{V}(1)$ ) is a moember of a ladder of the
polarized manifold $(W, O_{P}|_{W}(1))$ , then $W\dot{u}$ a $G$-shell of $V$ and this inequality \’is

true.)

(1.6.5) Take a smooth projective subvarity $V$ , a vector bundle $E$ on $V$ , a section $\sigma\in$

$\Gamma(V, E)$ which is transverse to ffie zero section, and its zero locus $X=Z(\sigma)$ .

Assumae that $V$ is a $G$-shell of X. Then is the bundle $E$ always $nef$ ?

(1.6.6) Take a smooth projective subvariety $V\subset P=\mathrm{P}^{N}(\mathbb{C})$ of dimension $n\geq 5$ .

Assume ffiat $V$ is not a hypersurface and has no non-trivid $G$-shell. Then
codim$(V)\geq n/2$ ? (Implied by Hartshome’s C.I.conjecture. cf. [10] [31]) More-
over, for any positive integer $M$ and a linear embedding $P=\mathrm{P}^{N}(\mathbb{C})\subset Q=$

$\mathrm{P}^{N+M}(\mathbb{C})$ , if the subvariety $V$ has no non-trivial $G$-shell except (mvltiple) projec-
tive cones, then does the Kodaira dimens\’ion of $V$ satisfy the inequality $\kappa(V)\leq 0$ ?

Now we present our working hypothesis in the most optimistic version, which suggests
the direction of our research aiming.

Working Hypothesis 1.7 Let $X$ be a connected complex projective manifold of dimen-
sion $n>0$ . Then there exists an embedding: $j:Xarrow P=\mathrm{P}^{N}(\mathbb{C})$ , which satisfies the
following conditions.

(1.7.1) There is a set of $G$-shells $\{W_{p}\}_{p=0}^{k}$ of $j(X)$ which satisy: $j(X)=W_{0}\subset W_{1}\subset$

$...\subset W_{k}\subseteq P$ and moreover $W_{p-1}\subset Reg(W_{p})$ for $p=1,$ $\ldots$ , $k$ .

(1.7.2) For each $p=1,$ $\ldots,$
$k$ , there \’is a’2$nef^{f}$ vector bundles $E_{p}$ on $W_{p}$ and a sec-

tion $\sigma_{p}\in\Gamma(W_{p}, E)\mathrm{P}$ such that the zero locus $Z(\sigma_{p})$ coinsides with $W_{\mathrm{p}-1}$ and
rank$(E_{p})=dim(W_{\mathrm{P}})-dim(W_{\mathrm{p}-}1)$ .
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(1.7.3) The subvariety $W_{k}$ has a birational morphism from a projective bundle over a
$h_{om(v}eneoI\prime S$ space (in ffie sense of induding abdian varieties).

The $set_{\cup}^{-}-=\{(W_{p},E_{\mathrm{p}}, \sigma_{p})\}_{p1}k=ofj(x)$ and ffie integer $k$ are cdled a geometric composition
series of the embedding $j$ or of ffie subvariety $j(X)$ and the length of ffie geometric
composition $series^{-}--$ , respectively. For a given projective manifold $X$ , if ffie embedding

$j_{0}$ has a geometric composition series—0 whose length $k_{0}$ attains ffie minimum among
the embeddings of $X$ urith geometric composition serieses, ffien we say ffiat ffie geometric
$com\mu)Sitionseries---0$ is a absolutely ninimal geometric composition series of $X$ .

Remark 1.8 To avoid confusion or to darify.. what $\acute{\iota}s$ in the author’s mind, one should
describe several points.

(1.8.1) For a vector bundle $E$ on a projective variety $V$ , we say that ffie bundle $E$ is nef
if $\theta\iota e$ tautological iine bundle $L_{E}=O_{P(E)}/V(1)$ is $nef$ on ffie projective bundle
$P(E)=\mathrm{P}(E)$ over $V$ associated to the bundle $E$ , namely for any curve $C$ in
$P(E)$ , the intersection number satisfies ffie inequdity: $(L_{E}.C)\geq 0$ .

(1.8.2) Frankly speaking, the author confess ffiat we might have to weiken our working
hypothesis to some extent in the red situation. For $example_{?}$ we might have
to replace the conditions: (a) ”$PG$-shdls” instead of ” $G-shells^{f}’$ ; (b) ”reflexive
$sheaveS^{f}$’ in stead of ”vector $bundles^{f}$’ ; $(\mathrm{c})$

”$rather$ mild singudar locus of $W_{p}$
”

instead of ’$fReg(W_{p})^{J}$
’ ; (d) ”

$\kappa(W_{k})\leq 0^{f}$
’ instaed of ”a homogeneous space.”

Proposition 1.9 Let $X$ be a connected complex projective manifold of dimension $n\geq 2$

and $j$ : $Xarrow P=\mathrm{P}^{N}(\mathbb{C})$ an embedding. Then the following four conditions are equivalent.

(1.9.1) The subvariety $j(X)$ is a complete intersection.

(1.9.2) There is a set of inte$m\iota ediate$ ambient varieties $\{W_{p}\}_{P^{=0^{n}}}^{N-}ofj(X)$ which satisfies
the conditions: $(\mathrm{a})dim(W_{p})=n+pj(\mathrm{b})j(X_{\mathit{1}}^{\backslash }=W_{0}\subset W_{1}\subset\ldots\subset W_{N-n}=P$

;(c) $W_{p-1}\subset Reg(W_{p})$ for $p=1,$ $\ldots,$ $N-n$ .

(1.9.3) The embedding $j$ has a geometric composition series $\Xi=\{(WEp’ p’ p\sigma)\}_{P}N-n=1$ of
length $N-n$ with rank$(E_{p})=1$ .

(1.9.4) The embedding $j$ has a geometric composition series $\overline{\mathrm{k}-\prec}$

) $=\{(W_{P}, E_{\mathrm{P}’ p}\sigma)\}_{p=}11$ of
length 1 which satisfies $W_{1}=P$ and $E_{1}=\oplus_{S=}^{Nn}-1op(m_{S})$ .
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Proof. The essential part is to show the equivalence between (1.9.1) and (1.9.2). Assume
that (1.9.2). Starting from $W_{N-n}$ and using that each $W_{p}$ is a Cartier divisor of $W_{p+1}$ ,
we show inductively that each $W_{p}$ is a complete intersection and $PiC(W_{p})\cong \mathbb{Z}o_{W_{\mathrm{p}}}(1)$

for $p\geq 1$ by virtue of Corollary 3.2 in [11], which is still valid in the singular cases.
Thus we have (1.9.1). Contrary, now we assume (1.9.1). A little care is needed to apply
Bertini’s theorem and to see that $W_{p-1}\subset Reg(W_{p})$ , which is rather a strong condition
than $X\subset I\ g(W_{p})$ . Take hypersurfaces $D_{1},$

$\ldots$ , $D_{r}$ of degree $d_{1}$ , - .. , $d_{r}$ , respectively
such that $r=N-n,$ $j(X)=D_{1}\cap\ldots\cap D_{r}$ and $d_{1}\leq\ldots\leq d_{r}$ . Then consider the linear
system $\Lambda_{r}=H^{0}(P, I_{x}(\iota))$ on $P=W_{r}$ . Since $I_{X}(f)$ is generated by global sections, the
$\mathrm{b}\mathrm{a}s\mathrm{e}$ locus $BS(\Lambda_{r})$ coincides with $X$ . Also by $D_{r}\in\Lambda_{r}$ satisfing $X\subset Reg(D_{r})$ , we find
that general members are smooth. Then we put $W_{r-1}$ to be a smooth member of $\Lambda_{r}$ .
Obviously $j(X)=D_{1}\cap$ . $..\cap D_{r-1}\cap W_{r-1}$ . As an induction hypothesis, we may assume
that we have smooth complete intersection subvarieties: $W_{k},$ $W_{k+1},$ $\ldots$ , $W_{r}=P$ such that
$dim(W_{p})=n+p,$ $j(X)=D_{1}\cap\ldots\cap D_{\mathrm{p}}\cap W_{\mathrm{p}}$ for $p=k,$ .-. , $r$ . We may assume $k\geq 2$ .
Then we consider a sublinear system $\Lambda_{k}:=H^{0}(W_{k}, I_{X/}W_{k}(d_{k}))\subset H^{0}(W_{k}, O_{W_{k}}(dk))$ on
the subvariety $W_{k}$ . Since $I_{X/W_{k}(d_{k})}$ is generated by the sections $D_{1},$ $\ldots,D_{k}$ , namely
$(D_{1}, \ldots, D_{k})$ : $\oplus^{k}=1oWk(qdk-d)qarrow I_{X/W_{k}(d_{k})}$ is surjective, we have $BS(\Lambda_{k})=X$ . By
the same argument as above, we obtain a smooth member $W_{k-1}\in\Lambda_{k}$ . Then, using the
arithmetic normality of $W_{k}$ , it is easy to see that $W_{k-1}$ is also a complete intersection and
$j(X)=D_{1^{\cap}}\ldots\cap Dk-1^{\cap W}k-1$ . 1

\S 2 Conjectures.
In this section, we give some conjectures relating to Lefschetz operators. We expect that
these conjecures give an approach to get our previous working hypothesis.

First, let us recall the definition of Lefschetz operators (cf. [19]).

Definition 2.1 (Lefschetz operator) Let $X$ be a complex projective scheme of dimen-
sion $n\geq 0,$ $j$ : $Xarrow P=\mathrm{P}^{N}(\mathbb{C})$ an embedding, $E$ an $\mathcal{O}_{X}$ -coherent sheaf, and $N_{X/P}^{}$

the conormal sheaf of $j(X)i.nP*$’ where $I_{X}$ denotes the sheaf of ideals defining $j(X)$ in
P. By naturd restriction: $J$ : $H^{1}(P, \Omega_{P}^{1})arrow H^{1}(X, \Omega^{1})\mathrm{x}$

’ we have a hwerplane class
$h=j^{*}(c_{1}(O_{p}(1)))\in H^{1}(X, \Omega^{1})\mathrm{x}$

’ which induces a cohomological operator (depending on
the embedding $j$):

$L_{X}$ : $H^{\mathrm{P}}(x, \Omega_{X^{\otimes}}^{q}E)rightarrow h\cup H^{p+1}(x, \Omega_{\mathrm{x}}q+1\otimes E)$

For a section $\sigma\in H^{0}(X, E)$ , if the class $L_{X}^{p}(\sigma)\in H^{p}(X,$ $\Omega px^{\otimes E)}$ is $noi$ zero and $L_{X}^{\mathrm{H}^{1}}(\sigma)$ is
zero, then we say that the section a has the penetration order $p$ and denote it by $\mathit{1}^{\kappa nt}(\sigma)=$

$p$. For an equation $F\in H^{0}(P, I_{x}(m))$ of $j(X)$ with degree $m$ , we define pent$(F)=$
$\varphi nt([F])$ by puuing $E=N_{\check{X}/P}(m)$ , where $[F]$ denotes ffie section of $H^{0}(X, N_{\check{X}/}(P)m)$

induced by ffie naturd restriction $I_{X}arrow I_{X}/I_{X}^{2}=N_{X/P}^{}$ .
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We introduce meta-Lefschetz operators, which are difficult to control but give finer
information than Lefschetz operators.

Definition 2.2 (meta-Lefschetz operator [27], [26]) Let $X$ be a complex $pro\dot{p}$ctive
scheme of dimension $n\geq 0,$ $j$ : $Xarrow P=\mathrm{P}^{N}(\mathbb{C})$ an emhedding, $N_{\check{X}/P}=I_{X}/I_{X}^{2}$ the
conormd sheaf of $j(X)$ in $P$, where $I_{X}$ denotes $fhe$ sheaf of ideals defining $j(X)$ in $P$ .
Then we take ffie de Rham complex $\Omega_{P}$ of $P$ :

$0arrow O_{P}arrow d\Omega_{P}^{1}rightarrow d\Omega_{P}^{2}arrow d$ $...arrow d\Omega_{P}^{N}arrow 0$

and ffie ideal order filtration (cf. [14]) $F_{\nu}^{p}\Omega_{\dot{P}}$ :

$0$ $arrow I_{X}^{\nu+p}rightarrow dI_{X}^{\nu+p}-1\Omega_{P}1arrow d$ ... $rightarrow d$

$I_{\mathrm{x}P}^{y+1}\Omega^{\mathrm{P}}-1arrow d\Omega_{P}^{p}$ $arrow d$ ... $arrow d\Omega_{P}^{N}arrow 0$ .

Now we fix $\nu$ and see $Gr_{F^{\nu}}^{p}(\Omega_{P})=F_{\nu}^{p}/F_{\nu}^{p+1}$ :

$0arrow$ $I_{\mathrm{x}^{+p}}^{\nu}/I_{x^{+p+1}}^{\nu}$ $arrow\overline{d_{I}}I_{X}^{\nu+_{\mathrm{P}^{-}}}1/I_{xP}\nu+p_{\otimes}\Omega^{1}arrow\overline{d_{J}}$ ...
$arrow\overline{d_{I}}I_{x^{+1}}^{\nu}/I^{\nu}+2\otimes \mathrm{x}\Omega_{P^{-1}}^{\mathrm{P}}arrow\overline{d_{I}}$

$\Omega_{P}^{p}|_{\mathrm{x}_{(\nu)}}$ $arrow 0$,

where $X_{(\nu)}=(|X|,O_{P}/I_{X}^{\nu+1})$ . Contrary to ffie fact that ffie exterior derivative $d$ is not
$O_{P}$ -linear, ffie map $\overline{d_{I}}$ is $O_{P}$ -linear and compatible uriffi tensoring by $O_{P}(m)$ . Thus we
have:

$I_{\mathrm{x}^{+1}}^{\nu}/I_{X^{+2}}^{\nu}(m)\otimes\Omega_{P}p-1arrow\overline{d_{I}}\Omega_{P}^{p}|_{\mathrm{x}_{(}}\nu)(m)$

and

$H^{t}(X, I_{x}\nu+1/I_{x}\nu+2(m)\otimes\Omega_{P}^{p-1})-^{\overline{d_{I}}}H^{t}(X_{(\nu)}, \Omega_{P}p|\mathrm{x}_{(}(\nu)m))$

Next we consider a natural exact sequence $\prime LFT$):

$0arrow I_{x^{+1}}^{\nu}/I^{\nu+2}x\otimes\Omega_{P}^{p}(m)arrow\Omega_{P}^{\mathrm{p}}(m)|_{\mathrm{x}_{(}}\nu+1)arrow\Omega_{P}^{p}(m)|_{\mathrm{x}_{(\nu)}}rightarrow 0$,

which induces an obstruction map:

$\overline{\delta}_{LF\tau}^{(\nu)}$ : $HS(x(\nu), \Omega_{P}^{p}(m)|x_{(\nu}))arrow H^{S+1}(X, I_{\mathrm{x}}^{\nu+1}/I_{\mathrm{x}}\nu+2\otimes\Omega_{P}^{\mathrm{p}}(m))$ .

Then we can define a map:

$\hat{L}_{X}^{(\nu)}=\overline{\delta}_{LF}^{(\nu)}\circ\overline{d_{I}}\tau$ : $H^{a}(X, I_{X}\nu+1/I_{\mathrm{x}}^{\nu}+2(m)\otimes\Omega_{P}^{b})arrow H^{a+1}(X, I_{X}\nu+1/I_{x}^{\nu}+2(m)\otimes\Omega_{P}^{b+1})$,
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which is called the $\nu$-th meta-Lefschetz operator wiffi respect to the embedding $j$ : $Xarrow P$ .
In case of $\nu=0$ , we denote it by $\hat{L}_{X}$ instead of $\hat{L}_{X}^{(0)}$ and call it simply meta-Lefschetz
operator if fhere is no danger of confusion. Moreover, for the meta-Lefschetz operator
$\hat{L}_{X}$ , we set

$g\overline{sy}_{\mathcal{Z}^{q}}x(m):=Im[\hat{L}_{x} : H0(x, N_{\mathrm{x}}\mathrm{v}/P(m)\otimes\Omega_{P}^{q-1})arrow H^{1}(X, N_{\mathrm{x}}^{\vee}(/Pm)\otimes\Omega_{P}^{q})]$

Fundamental properties on meta-Lefschetz operator are given as follows.

Theorem 2.3 ([26]) $It$ $X$ be a complex projective variety of dimension $n,$ $j$ : $Xarrow$

$P=\mathrm{P}^{N}(\mathbb{C})$ an embedding, $N_{X/P}^{}=I_{X}/I_{X}^{2}$ the conormal sheaf of $j(X)$ in $P$, where $I_{X}$

denotes the sheaf of ideals defining $j(X)$ in P. Take ffie meta-Lefschetz operator $\hat{L}_{X}$ with
respect to $\theta oe$ embedding. Then the following properties hold.

(2.3.1) The meta-Lefschetz operator has naturd\’ity. In other words, for any dosed sub-
scheme $Y$, the diagram:

$H^{p}(X,N_{X/P}n\mathrm{n}tur\mathrm{v}a\mathrm{t}\mathrm{I}(m)\otimes\Omega_{P}q)arrow L_{X}\wedge H^{p+1}(x, N_{X/P}^{\mathrm{v}}(m)\mathrm{I}n\alpha\iota ural\otimes\Omega_{P^{+1}}^{q})$

$H^{p}(\mathrm{Y}, N_{\mathrm{Y}/P}\mathrm{v}(m)\otimes\Omega_{P}^{q})arrow\wedge L_{Y}H^{p+1}(Y, N_{\mathrm{Y}/P}\mathrm{v}(m)\otimes\Omega_{P^{+1}}q)$

is commutative.

(2.3.2) The diagram:

$H^{p}(Xn’ aturalN_{\mathrm{x}}^{}(/P)\otimes\Omega^{q}\mathrm{p}1m)$

$L_{X}\wedge$

$\downarrow naturd$

$arrow H^{p+1}(x, N^{\vee}\mathrm{x}/P(m)\otimes\Omega_{P}^{q+}1)$

$H^{p}(X, N_{x}^{\vee}(/Pm)\otimes\Omega_{X}^{q})--m\cdot L_{X}H^{p+1}(x, N_{\mathrm{x}}^{\vee}(/Pm)\otimes\Omega_{X}^{q1}+)$

is commutative, where $L_{X}$ denotes the Lefschetz operator.

(2.3.3) Assume that $j(X)$ has arithmetic depth $\geq 2$ , which includes the case ffiat $X$ is a
normal projective variety of dimension $n>0$ and the embedding is arithmeticdly
normal, namely $H^{0}(P, O_{P}(m))arrow H^{0}(X, O_{x}(m))$ is surjective for all integers
$m$ . Then there $\dot{i}S$ a naturd one to one correspondence $\gamma^{q}(m)$ : $gsyz_{X}^{q}(m)arrow$

$g\overline{sy}_{Z^{q}}x(m)$ as vector spaces. Here the space $gsyz_{X}^{q}(m)$ represents minimal gener-
ators in degree $m$ of the q-ffi syzygy of $R_{X}$ .
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(2.3.4) For an integer $k$ satisfying $n-1\geq k\geq 1$ , assume that ffie projective subvariety
$j(X)$ has $aritt\iota metic$ depffi $k+2$, or equivdenuy $H^{S}(X, ox(u))=0$ for $u\in \mathbb{Z}$,
$k\geq s\geq 1_{2}$ and $H^{0}(P, O_{P}(m))arrow H^{0}(x, O_{\mathrm{x}}(m))$ is surjective for $dl$ integers $m$ .
Then ffie $k$ -uple of the meta-Lefschetz $operat_{or}.\cdot$

$(\hat{L}_{X})^{k}$ : $H^{1}(X, N^{\mathrm{v}}x/P(m)\otimes\Omega_{P}^{q})arrow H^{k+1}(x, N_{x}^{\vee}(/Pm)\otimes\Omega_{P}^{q+k})$

is injective on the subspace $g\overline{sy}z_{X}^{q}(m)$ for all integers $m$ . Moreover, ffie map
$\overline{d_{I}}$ : $H^{k+1}(x, N_{\mathrm{x}}^{\vee}(/Pm)\otimes\Omega_{P}^{q+k})arrow H^{k+1}(x,$ $\Omega_{P}q+k+1\otimes \mathit{0}_{x(m))}$ is injective on ffie
subspace $(\hat{L}_{X})^{k}(\overline{gSy}Z_{X}(qm))$ .

Retuming to Lefschetz operators and make a preparation for defining Lefschetz chains
and dual Lefschetz chain which play key roles in our conjectures.

Now we take the canonical map $\gamma^{1}(m)$ : $gsyz_{X}^{1}(m)arrow\overline{gsyz}_{X}^{1}(m)$ in the $\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{n}\Omega.3$

above for $q=1$ and consider the commutative diagram:

$\Sigma Z_{t}H^{0}(Ix(m-1))arrow$ $H^{0}(I_{X}(m))$ $arrow$ $gsyz_{X}^{1}(m)$ $arrow 0$

$naturH^{0}(aN_{\mathrm{x}}^{\mathrm{v}}(m))l\downarrow$

$arrow$

$\overline{gsy_{Z(}}\downarrow\gamma^{1}(m)\cong x1m)$

$rightarrow 0$

$\wedge L_{\mathrm{X}}$

$L\mathrm{x}\downarrow$

;..
$\downarrow In\mathrm{c}lu\mathit{8}im$

$H^{1}(N_{X}(m)\otimes\Omega_{X}^{1})-naeuralH^{1}(N_{X}(m)\otimes\Omega_{P}^{1}|_{\mathrm{x}})$

$L_{X}^{\mathrm{p}-1}\downarrow$

$H^{p}(N_{X}^{}(m)\otimes\Omega_{\mathrm{x}}^{\mathrm{P}})$ ,

where the first and the second rows are exact. Then we put:

$\sqrt(pm)=Ker[H0(IX(m))arrow H^{\mathrm{o}}(N_{\mathrm{x}}^{\mathrm{v}}(m))^{L^{\mathrm{p}+}}Xarrow H\mathrm{p}+1(N_{X}^{\vee}(m1)\otimes\Omega \mathrm{p}+1)x]$ .

From a chain of $\mathrm{c}_{-\mathrm{V}\propto}\mathrm{t}\mathrm{o}\mathrm{r}$ spaces:

$J_{-1}(m):=Im[\Sigma Z_{t}H^{0}(I_{X}(m-1))]\subseteq J_{0}(m)\subseteq J_{1}(m)\subseteq\cdots\subseteq J_{n-1}(m)\subseteq J_{n}(m)=H^{\mathrm{o}_{((m))}}IX$ ,

we chose a finite subset $\{F_{1,s,m}, \ldots, F_{k(s),s,m}\}$ from $J_{s}(m)$ which forms a Gbasis of $J_{s}(m)/J_{s-1}(m_{\mathit{1}})$

and define closed subschemes $W_{p}\subset P$ and $W_{p}^{*}\subset P$ by the equations $\{F_{1,s,m},$ $\cdots,$ $F_{k(S),m}s,|0\leq$

$s\leq p,$ $m\in \mathrm{N}_{0}\}$ and by $\{F_{1,s,m}, \cdots , F_{k(s)_{)}s,m}|n\geq s\geq p, m\in \mathrm{N}_{0}\}$, respectively for
$p=0,$ $\cdots,n$ .
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Definition 2.4 (Lefschetz chain and dual Lefschetz chain) Under ffie circumstances,
we obtain two chains of dosed subschemes P. The one is:

$j(X)=W_{n}\subseteq W_{n-1}\subseteq\cdots\subseteq W_{0}\subseteq P$

and is cdled a Lefschetz chain of $j(X)$ . The offier one is :

$J\acute{(}X)=W_{0}^{*}\subseteq W_{1}^{*}\subseteq\cdots\subseteq W_{n}^{*}\subseteq P$,

and is named a dual Lekchetz chain of $j(X)$ .

Before claim our conjectures, we pre,sent fundamental properties of Lefschetz chains
and dual Lefschetz chains.

Theorem 2.5 Let $X$ be a complex projective manifold of dimension $n>0,$ $j$ : $X^{\mathfrak{c}}arrow P=$

$\mathrm{P}^{N}(\mathbb{C})$ an arithmetically normd embedding. Take a Lefschetz chain and a dual Lefschetz
chain of $j(X)$ as above and fix them. The $foll_{\mathit{0}\eta}\dot{h}ng$ properties hol&.

(2.5.1) The submanifold $j(X)$ is a complete intersection if and only if the Iaefschetz chain
is of $u\mathrm{r}e$ form :

$j(X)=Wn\subset Wn-1=\ldots=W0=P$.

The simdar equivalence holds on ffie dual Lefschetz chain by replacing the $fom$:

$j(X)=W_{0}*=W_{1}*W^{*}=\cdots=\subset Pn$.

(2.5.2) Put $s=dim(Im[L_{x}^{n} : \oplus_{m}H^{0}(N_{X}\mathrm{v}(m))arrow\oplus_{m}H^{n}(N_{\mathrm{x}}^{}(m)\otimes\Omega_{X}^{n})])$ , then for the
Lefschetz chain, the exact sequence:

$0arrow Im(N_{Wn_{-1}}^{\vee}|X)arrow N_{X}^{\vee}arrow N_{X/W_{n}}^{\vee}-1arrow 0$

dways splits and $N_{X/Wn-1}^{}\cong\oplus^{s}o_{X}(-m_{i})$ . Simdarly for the dual Lefschetz chain,
the exact sequence:

$0arrow N_{W_{\mathfrak{n}^{k}}}^{}|_{x}arrow N_{X}^{\vee}arrow N_{X/W_{n}^{*}}^{}arrow 0$

always splits and $N_{\check{W}_{n}^{*}}|_{X}\cong\oplus^{s}\mathit{0}_{x(}-mi$).
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(2.5.3) Assume fhat the Standard Conjecture holds on the projective mnnifold X. For
the Lefschetz chain, if $W_{p}\neq W_{p-1}$ , then ffiere is an integer $m$ and a $p$-cyde $\xi$

such ffiat $h^{p}\cdot\xi>0$ and $\xi\cdot c_{\Gamma}(N_{\mathrm{x}}^{}(m))\equiv_{num.eq}$ . $0$ , where $h=c_{1}(O_{X}(1))$ . Also for
the dud Lefschetz chain, if $W_{p}^{*}\neq W_{p+1}^{*},$ $eacu_{y}$ the same holds.

Outline of Proof. For (2.5.1) and (2.5.2), we have only to apply Serre duality. The
claim (2.5.3) is obtainai by using the result of [20] with a $s$light modification. To remove
the condition ”transverse to the zero section”, we use Hironaka resolution for makin$\mathrm{g}$ the
divisor normal crossing and study localized top Chern class instead of the zero locus of
the section. See [30] for a precise argument. 1

Now we can describe our main conjectures as follows.

$\mathrm{m}\mathrm{i}\mathrm{n}$ Conjecture 2.6 Let $X$ be a complex projective manifold of dimension $n>0$ ,
$j\sim$. $Xarrow P=\mathrm{P}^{N}(\mathbb{C})$ an arithmetically $nom?d$ embedding. Take a Lefschetz chain
$\{W_{p}\}_{p=0}^{n}$ and a dual Lefschetz chain $\{W_{\mathrm{P}}^{*}\}p=0n$ suitably. Then we $e\varphi ect$ the $followi_{\mathfrak{U}}$

properties hold by the suitable choice of ffie chains.

(2.6.1) Each $W_{p}$ and $W_{p}^{*}$ an $PG$-shell of $j(X)$ .

(2.6.2) Each $W_{p}$ and $W_{p}^{*}$ are reduced along $j(X)$ .

(2.6.3) Each $W_{p}$ and $W_{p}^{*}$ are iroeducible.

(2.6.4) Each restricted conormal sheaf $N_{\check{W}_{\mathrm{p}}/W_{\mathrm{p}1}}|_{x}-$ is a vector bundle on $X$ and is ex-
tendable to $W_{p-1}$ as a vector bundle. Simdarly, each restricted conomwl sheaf
$N_{W_{\mathrm{p}}^{*}/W_{\mathrm{p}}}^{}*|_{x}+1$ is a vector bundle and is extendable to $W_{p+1}^{*}$ as a vector bundle.

(2.6.5) Fix the manifold $X$ of dimension $n\geq 2$ . Chose suitably the embedding $j,$ Lef-
schetz chain $\{W_{p}\}_{P^{=0}}^{n}$, and a dual Lefschetz chain $\{W_{p}^{*}\}_{p=}^{n}0$ . Then a refinement of
the Lefschetz chain or offfie dual Lefschetz chain realizes the Working Hypothesis
1.7 (cf. Problem 2.9).

Proposition 2.7 Let $X$ be a connected complex projective manifold of dimension $n\geq 2$

and $j$ : $X^{\mathrm{C}}arrow P=\mathrm{P}^{N}(\mathbb{C})$ an arithmetically normal embedding. Assume that $j(X)$ is non-
degenerate, namely no hyperplane in $P$ contains $j(X)$ . For an equation $F\in H^{0}(P, I_{\mathrm{x}}(m))$

of $j(X)$ , take the class $[F]\in H^{0}(X, N_{X}^{\vee}(/Pm))$ induced by the equation F. Then we have:
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(2.7.1) If $m=2$ , then the class $(\hat{L}_{X})2([F])\in H^{2}(X, N_{\mathrm{x}}^{\vee}(/P2)\otimes\Omega_{P}^{2})$ is not zero. More
generdly, take a non-zero dass $\tau\in g\overline{sy}z_{X}^{q}(q+1)\subseteq H^{1}(X, N_{x/P}^{\vee}(q+1)\otimes\Omega_{P}^{q})$

which naturally correspon& to an element of minimal generators of q-ffi syzygy
module of $R_{X}$ in degree $q+1$ , then $\hat{L}_{X}(\tau)\in H^{2}(X, N_{x}(/Pq+1)\otimes\Omega_{P}^{q+1})$ is not
zero.

(2.7.2) If $m=3$ and the dass $(\hat{L}_{X})^{2}([F])\in H^{2}(X, N_{\mathrm{x}}^{\mathrm{v}}(/P3)\otimes\Omega_{P}^{2})$ is zero, ffien $q(X)=$

$h^{1}(O_{X})>0$ .

Proof. Apply Lemna 1.5 in [27]. See also [26]. 1

Remark 2.8 Proposition 2.7 shows that the meta-Lefschetz operator has really finer in-

formation on the syzygies of the coordinate ring than the Lefschetz operator does. For
example, take $X=\mathrm{P}^{n}(\mathbb{C})(n\geq 2)$, an embedding $j=\nu-ffi$ Veronesean embedding $(\nu\geq$

3) and any equation $F$ of $j(X)$ in degree 2, then it is easy to see ffiat $(L_{X})^{2}([F])\in$

$H^{2}(X,N_{x}^{\mathrm{v}}(/P2)\otimes\Omega_{X}^{2})$ is zero.

The following problem is natural to be considered. We expect that proving this prob-
lem brings us a new idea for necessary reffiments of Lefschetz chains and dual Lefschetz
chains and helps us to solve our previous conjectures. For partial results on this problem,
see [26].

Problem 2.9 (Preservation of Filtration) Let $X$ be a connected complex projective

manifold of diroension $n\geq 1$ and $j$ : $Xarrow P=\mathrm{P}^{N}(\mathbb{C})$ an embedding. Consider the exact
sequence: $0arrow N_{X/P}^{}arrow\Omega_{P}^{1}|_{X}arrow\Omega_{X}^{1}arrow 0$, which induces a canonical decreasing filtration
$F_{q}^{\cdot}:\Omega_{P}^{q}|X=F_{q}0\supset F_{q}^{1}\supset\ldots\supset F_{q}^{q}\supset F_{q}^{q}=\{0\}$ such that $F_{q}^{p}/F_{q}^{p}+1\cong\Omega_{x\mathrm{x}/}^{q-p_{\otimes\wedge N}}pP$ . Then

a natural decreasing filtration on $H^{t,s}(m)=H^{s}(X, N_{\mathrm{x}}^{\vee}(/Pm)\otimes\Omega_{P}^{t})$ is induced by puHing
$F^{p}H^{t,s}(m)=Im[H^{s}(X, N^{\vee}(X/Pm)\otimes F_{t}^{p})arrow H^{t,S}(m)]$ . Then does it always hold that the

meta-Lefschetz operator keeps the filtration, namely $\hat{L}_{X}(FpH^{t},S(m))\subseteq F^{p}H^{t++}1,S1(m)$ ?

\S 3 Infinitesimal Methods.
In this section, we introduce our simple tools which consist of two key concepts. These

are mysteriously powerful for controling higher obstructions appearing in the study of
infinitesimal neighborhoods. These are important to consider the correspondence between
subbundles of the normal bundle and intermediate ambient varieties.

Definition 3.1 (Differntial Splitting) On a complex dgbraic scheme $W$, we consider
an $\mathcal{O}_{W}$ -linear exact sequence of $\mathcal{O}_{W}$ -coherent sheaves:

$0arrow Grightarrow\alpha Farrow\beta Earrow 0$ .
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We say ffiat ffiis sequence splits differentially of order $\leq\mu$ if ffiere exists a (holomorphic
$\mathbb{C}$-linear) differential operator $\nabla_{\beta}$ : $Earrow F$ of order $\leq\mu$ such that $\beta 0\nabla_{\beta}=Id_{E}$ , namely,
the operator $\nabla_{\beta}$ gives a splitting in ffie category of abelian sheaves. It is easy to see ffiat
this condition is equivalent to ffie condition that the existence of two differentid operators

$\nabla_{\alpha}$ : $Farrow G$ and $\nabla_{\beta}$ : $Earrow F$ of order $\leq\mu$ which satisfy: $\beta\circ\nabla\rho=Id_{E}$ ; $\nabla_{\alpha^{\circ\alpha=Id}G}$

$l$
and $\alpha\circ\nabla_{\alpha}+\nabla_{\beta}\circ\beta=Id_{F}$ . When the schemae $W$ is smooth and ffie sheaf $E$ is of locally

free, the condition of splitting differentially of some order is equivalent to ffie condition in
terms of $D_{W}$ -modules that the sequence:

$0rightarrow G\otimes D_{W}-^{\alpha}F\otimes D_{W}-^{\beta}E\otimes D_{W}arrow 0$,
splits in ffie category of right $D_{W^{-\pi w}}dules,$ $.whereD_{W}$ denotes ffie sheaf of holomorphic
linear different\’ial operators on $W$ .

As showed in [24], there are many examples where differential splittings are observed.
One of the typical examples is given as follows.

Example 3.2 Let $V$ be a complex algebraic scheme, $E$ a vector bundle on $V,$ $f$ : $G=$

$Grass(E,r)arrow V$ the Grassmann bundle which parametrizes quotient $r$-bundles of $E$ .
Consider the universd sequence on $G$ :

$0arrow Srightarrow\alpha_{G}f^{*}Earrow\beta_{G}Qarrow 0$ .

Then $\theta\iota iS$ universd sequence splits differentidly of order $=1$ (Obviously it never splits
$O_{G}$ -linearly).

Definition 3.3 $(H^{p_{-}}\mathrm{G}.\mathrm{L}.\mathrm{C}.)$ Let $W$ be a noetherian scheme, $X$ a dosed subschenoe of
$W$ which is defined by a sheaf of ideds $I_{X},$ $E$ a coherent $\mathcal{O}_{W}$ -mdule.

(3.3.1) For each non-negative integer $\mu$ , we set ffie $\mu$-th infinitesimd noeighborhood $X_{(\mu)}$

of $X$ in $W$ to be $(|X|, \mathcal{O}_{W}/I_{X}^{\mu 1}+)$ and the restricted sheaf $E_{(\mu)}$ of $E$ to $X_{(\mu)}$ to be
$E/I_{X^{+1}}^{\mu}E$ as usud. Let $\nu$ be a non-negative integer. We say ffiat the $H^{p}$-global
lifting criterion of the coherent sheaf $\mathrm{E}$ hol&at the (infinitesimal) lifting level $\lambda$

along $(X_{(\nu)}, x)$ if the equdity:

$Im[H^{p}(W, E)arrow H^{p}(x_{()}\nu’ E_{(\nu)})]$

$=Im[H^{p}(x(\nu+\lambda), E_{(\nu}+\lambda))arrow H^{p}(x_{(\nu)}, E_{(\nu)})]$

holds in the space of $H^{p}(X_{\mathrm{t}^{\nu}}),$ $E_{\mathrm{t}^{\nu})})$ . This condition is $abbre8\dot{\hslash}ated$ as ”$H^{p}- G.L.c$.

of $E$ holds at level $\lambda$ dong $(x_{(\nu)},X)^{:}’$ .
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(3.3.2) It is called ffiat the $H^{p}$ -global lifting criterion of the coherent sheaf $E$ holds uni-
formly at ffie (infinitesimd) lifting level $\lambda$ dong $X$ if for any positive integer $\nu$ ,
$H^{p}- G.L$ . C. of $E$ holds at level $\lambda$ dong $(X_{(\nu)},x)$ . This condition is $dsoabbre8\dot{h}-$

ated as ”$H^{p}- G.L$ . C. of $E$ holds uniformly at lifling level $\lambda$ dong $X$ ”.

Let us show one of the results in [25] as the simplest example for showing the power-
fulness of our previous two key concepts.

Theorem 3.4 (Quotient Type) Let $W$ be a complex dgebraic scheme. For an exact
seqruence of $O_{W}$ -coherent sheaves:

$0arrow G\alphaarrow Farrow E\betaarrow 0$

connected by $O_{W}$ -linear homomorphisms $\alpha$ and $\beta$, assume that this sequence splits differ-
entidly of order $\lambda$ . If the $H^{p}$ -lifling criterion on the sheaf $F$ holds at ffie level $\mu$ along
$(X_{(\nu)}, x)$ , then $\#\iota eH^{p}$ -lifting criterion on the sheaf $E$ holds at ffie level $\lambda+\mu$ along
$(X_{(\nu)}, X)$ .

Proof. It is enough to show that for any class $\phi\in H^{p}(X_{(}\nu),$ $E(\nu))$ which is an image of a
class of $H^{p}(x_{(\lambda}+),$$E_{(\lambda}\nu\nu+))$ , the class $\phi$ can be lifted to $H^{\mathrm{p}}(W, E)$ .

Let us consider six natural $O_{W}$-linear homomorphisms: $e:Earrow E(\nu),$ $\overline{e}:E(\lambda+\mu+\nu)arrow$

$E_{(\nu)},$ $r$ : $Earrow E_{(+)}\lambda+\mu\nu’ f$ : $Farrow F_{(\nu)},$ $\overline{f}$ : $F_{(\mu+\nu)}arrow F_{(\nu)}$ , and $s$ : $Farrow F_{(\mu+\nu}$), which
$\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{S}\Psi e}=\overline{e}\mathrm{o}r$ and $f=\overline{f}\circ s$ . Since the differential operator V: $Earrow F$ is of C-linear
and of order $\lambda$ , it induces a homomorphism of abelian $\mathrm{s}\mathrm{h}\mathrm{e}\mathrm{a}\mathrm{v}\oplus\overline{\nabla}$ : $E_{(+)}\lambda+\mu\nuarrow F_{\mathrm{t}\mu+\nu}$)

which satisfies $s\circ\nabla=\overline{\nabla}\circ r$ . Then, using carefully the commutativities of the maps
already checked, we see that:

$\overline{\beta}\circ\overline{f}\circ\overline{\nabla}\circ r=\overline{\beta}\circ\overline{f}\circ s\circ\nabla=\overline{\beta}\circ f\circ\nabla=e\circ\beta\circ\nabla=e\circ Id_{E}=\overline{e}\circ r$,

where $\overline{\beta}$ : $F_{(\nu)}arrow E_{(\nu)}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathfrak{B}$ the natural $O_{W}$-linear homomorphism induced by $\beta$ :
$Farrow E$ . Considering all the homomorphisms given above as the homomorphisms in the
category of abelian sheaves, the surjectivity of the homomorphism $r$ (at each stalk) implies
that:

$\overline{\beta}\circ\overline{f}\circ\overline{\nabla}=\overline{e}$.

Now, by assumption, we can take a class $\overline{\psi}\in H^{p}(X_{(\lambda++}\nu),$$E(\lambda+\mu+\nu))\mu$ whose image by the
map $\overline{e}$ coincides with the given class $\phi$ of $H^{p}(X_{(}\nu),$ $E(\nu))$ . Then, takirg $H^{p}$ of the sheaves
introdeced in the above, we have the following (a partially non-commutative) diagram:
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By the assumption that $H^{p}-\mathrm{G}.\mathrm{L}.\mathrm{C}$. of the sheaf $\mathrm{F}$ holds at the level $\mu$ along $(X_{(\nu)}, x)$ , the
class $\overline{f}\circ\overline{\nabla}(\overline{\psi})$ , which is the image $\mathrm{o}\mathrm{f}\overline{\nabla}(\overline{\psi})\in H^{p}(F_{(\mu+}\nu))$ by the map $\overline{f}$ , can be lifted to a
class $\sigma\in H^{p}(W, F)$ , namely $f(\sigma)=\overline{f}\circ\overline{\nabla}(\overline{\psi})$ . Then, putting $\psi$ to be $\beta(\sigma)$ , we see that:

$e(\psi)=e\circ\beta(\sigma)=\overline{\beta}\mathrm{O}f(\sigma)=\overline{\beta}(\overline{f}0\overline{\nabla}(\overline{\psi}))=\overline{e}(\overline{\psi})=\phi$,

which is the desired conclusion.

Corollary 3.5 Let $V\subseteq P=\mathrm{P}^{N}(\mathbb{C})$ be a dosed subscheme and $m\geq m_{0}$ non-negaive
integers. Assume fhat the restriction map $H^{0}(P, oP(m0))arrow H^{0}(V, oV(m0))$ is surjective.
Then $H^{0}- G.L$ . C. of $O_{P}(m)$ holds at levd $m-m_{0}$ along $(X_{(0)},x)$ . In offier words, any
section $\sigma\in H^{0}(V, \mathit{0}_{V(m)})$ can be lifled to $H^{0}(P, O_{P}(m))$ if and only if $\hslash e$ section can be
lifled to $H^{0}(V(m-m\mathrm{o}), O_{V_{(m}}-m\mathrm{o}^{)}(m))$ .

Proof. By the assumption, $H^{0}-\mathrm{G}.\mathrm{L}.\mathrm{c}$. of $O_{P}(m_{0})$ holds at level $0$ along $(X_{(0)}, x)$ . We
use induction on $m$ by starting from the case $m=m_{0}$ . Take a positive integer $m>m_{0}$ .
We have only to apply Theorem 3.4 to the Euler sequence:

$0arrow\Omega_{P}^{1}(m)arrow\oplus O_{P}(m-1)arrow O_{P}(m)rightarrow 0$ ,

which splits differentially of order 1 for positive integer $m$ . (N.B. In case of $m=0$, this
sequence never splits even in the sense of differential splitting.) I
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\S 4 Arithmetic Normality.
In this section, we discuss arithmetic normality from the two points of view. The

first one is a viwpoint for clarifying our framework and strategy of studying the geomet-
ric structures of projective embeddings. The second one is a viewpoint from Differential
Geometry, which presents a crtiterion for arithmetic normality in terms of Differential
Geometry.

For the first viewpoint, let us review weighted objects such as ”weighted projections”,
which relates to” arithmetic normality” as a usual” projection” does to” linear normality”.

Definition 4.1 (Weighted Projection) For $N+L+1$ -variables utth weighted de-
gree wt.deg$(Z_{p})=s_{p}\geq 1(p=0, \ldots, N)$ ; wt.deg$(W_{q})=w_{q}(q=1, \ldots, L)$ , take
a weighted polynomial ring $T=\mathbb{C}[Z_{0}, ..\cdot,’. , Z_{N}, W_{1}, . . , , W_{L}]$ and its polynomial subring
$S=\mathbb{C}[Z_{0}, \ldots, Z_{N}]$ . By applying ’

$fPro_{J}$ operation, we get a rational map between the
weighted projective spaces:

Proj $(T)=\mathrm{P}(S0, \ldots, s_{N}, w_{1}, \ldots,w_{L})\cdots.\pi...Proj(S)=^{\mathrm{p}}(S0, \ldots, s_{N})$,

which is called a weighted projection dong the center $Z=\{W_{1}=\ldots=W_{L}=0\}$ .

Definition 4.2 (Weighted Linear Degeneration) Consider a weighted polynomial ring
$S=\mathbb{C}[Z_{0}, \ldots , Z_{N}]$ wiffi wt.deg $(Z_{p})=s_{p}$ and a closed subscheme $X\subset Proj(S)=$

$\mathrm{P}(s_{0}, \ldots, s_{N})=P$ . If there is a weighted linear homogeneous polynomial $F\in S$ , which is
degree 1 without weight in at least one variable, $e.g$. $F=Z_{0}+F_{1}(Z_{1}, \ldots Z_{N})$ , and if $X$ is
a dosed subscheme of the subscheme Proj $(S/(F))\subset P$, then we say that ffie subscheme
$X$ degenerates weighted linearly. (In this case, the subscheme $X$ can be isomorphically
projected through a suitable weighted projection.)

Lemma 4.3 Let $X$ be a complex projective scheme of dimension $n\geq 0$ and $j$ : $Xarrow P=$

$\mathrm{P}^{N}(\mathbb{C})=\mathrm{P}(1, \ldots , 1)$ an embedding to a projective $N$-space (in a usual sense). Then there
is a weighted projective space : $Q=\mathrm{P}(1N+1,w_{1}, \ldots,w_{L})$ and an embedding ; $\overline{J}:Xarrow Q$

which make the commutative diagram:

$\subset_{-})$

$\lambda\overline{j}\Gamma$

and satisfy the surjectivity on the natural map: $H^{0}(Q, OQ(m))arrow H^{0}(x, O_{x}(m))$ for
every non-negative integers $m$ .
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Since several people asked me a proof for this lemma, it may be a little worth writing
down its proof here.

Proof. The idea is very simple and is only to add enough variables with suitable weighted
degree. The argument goes as follows. Let us put the vector space $V$ to be $Im[H0(P, oP(1))arrow$
$H^{0}(X,o_{X}(1))]$ and the section $\sigma_{t}\in V$ to be the image of $Z_{t}\in H^{0}(P, o_{P}(1))$ for $t=$

$0,1,$ $\ldots$ , $N$ , where $N=dim(H^{0}(P,O_{P}(1)))-1$ and $\{Z_{t}\}_{t=}^{N}0$ form a $\mathbb{C}$-basis of $H^{0}(P, o_{P}(1))$ .
Since the line bundle $O_{X}(1)=j^{*}O_{P}(1)$ is ample, there are only finitely many posi-
tive integers $m$ such that $dimCoker[V\otimes H^{0}(X,O_{\mathrm{x}}(m-1))arrow H^{0}(X, o_{X}(m))]=$

$\mathrm{q}_{n}\neq 0$ . Set $\{m(1), \ldots,m(u)\}=\{m\in \mathrm{N}|c_{m}\neq 0\}$ and $L=c_{m(1)}+c_{m(2)}+\cdots+$

$c_{m(u)}$ , where $1\leq m(1)\leq\cdots\leq m(u)$ . Now we take the sections $\tau_{1},$ $\ldots$ , $\tau_{L}$ such that
$\tau_{c_{m(1)}}+\cdots+c(s-1)+m1,$

$\cdots$ , $\tau_{\mathrm{c}_{m()}+\cdots+}1\mathbb{C}_{m\mathrm{t})}s\in H^{0}(X,O\mathrm{x}(m(s)))$ induce the $\mathbb{C}$-basis of $Coker[V\otimes$

$H^{0}(X,O\mathrm{x}(m(s)-1))arrow H^{0}(X, o_{X}(m(s)))]$ for $s=1,$ $\ldots,$
$u$ . Take variables $W_{k}$ with

$deg(W_{k})=w_{k}$ corresponding to the section $\tau_{k}\in H^{0}(X, Ox(w_{k}))$ for $k=1,$ $\ldots,$
$L$ , namely

$w_{k}=m(s)$ if $c_{m(1)}+\cdots+c_{m(_{S-}1)}+1\leq k\leq c_{m(1)}+\cdots+c_{m(s)}$ . Now we have two es-
sentially surjective ring homomorphisms : $T=\mathbb{C}[Z_{0}, \ldots,Z_{N}, W_{1}, \ldots, W_{L}]arrow\overline{R_{X}}=$

$\oplus_{m}H^{0}(X,OX(m))$ and $S=\mathbb{C}[Z_{0}, \ldots, Z_{N}.]arrow R_{X}=\oplus_{m}H^{0}(X, Ox(m))$ by sending $Z_{t}$ to
$\sigma_{t}$ and $W_{k}$ to $\tau_{k}$ , which make a commutative diagram:

Taking their ”Proj”, we obtain the result. (N.B. For simplicity, we constructed the ring
$T$ rather roughly and it may have dispensable variables.)

Here we would like to make a discussion on a framework and a strategy for our research.
Generally the weighted projective space $Q$ has singularities and the sheaf $O_{Q}(m)$ is not a
line bundle but only a reflexive sheaf. On the other hand, Lemma 4.3 above shows that
my projective embedding is a composition of a weighted projection and an embedding into
a weighted projective space which is very similar to an arithmetically normal embedding.

Hence, to study the geometric structures of projective embedding, we can divide the
problem into the three problem: (a) investigate the arithmetically normal embeddings ;
(b) generalize the results of (a) into the case of weighted projective spaces (e.g. Working
Hypothesis in weighted version); (c) study the effects of weighted projections on the
intermediate ambient varieties and on weighted $\mathrm{G}$-sheus (”weighted $\mathrm{G}\frac{-}{}\mathrm{s}\mathrm{h}\mathrm{e}\mathrm{l}1$

” is similarly
defined by using $T\sigma r_{q}^{T}(-,\tau/\tau_{+})$ instead of $T\sigma r_{q}^{s_{(}}-,$ $s/S_{+}$)).

Relating to the problem (c) above, we should notice the fact that even if we have a good
intermediate ambient variety $W$ with $\overline{J’}(x)\subset W\subset Q$, the variety $W$ may collapse by the
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weighted projection but the variety $X$ itself is projected isomorphically. Thus we believe
that the arithmetic normality is a natural condition as the fundamental assumption for
our research in the first step, because we can ignore the difficulty arising from weighted
projections.

The arithmetic normality is equivalent to $H^{0_{-}}\mathrm{G}.\mathrm{L}.\mathrm{c}$ . of $O_{P}(m)$ holding at level $0$

along $(X_{(0)},x)$ as we used it in the proof of Corollary 3.5. Since the bundle $O_{P}(m)$ is
a buildin$\mathrm{g}$ brock for coherent sheaves, the assumption of arithmetic normality makes the
higher obstruction control much more easier than without it. We might be going a bit
too far, but the difficulty of higher obstruction can be sometimes explained by relating
with weighted projections.

Now we proceed to the second viewpoint on arithmetic normality, namely that from
Differential Geometry. Let us recall the concepts of complex differential geometry. Take
a connected complex projective submanifold $X\subseteq P=\mathrm{P}^{N}(\mathbb{C})$ of dimension $n>0$ . By
inducing a metric on $X$ from the Fubini-Study metric on $P$ , we consider $X$ to be a K\"ahler

manifold. Consider the exact sequence of induced Hermitian vector bundles:

$0arrow N_{X/P}^{}arrow\Omega_{P}^{1}|_{X}arrow\Omega_{X}^{1}arrow 0$ .

Then we have Hermitian connections $\nabla$ : $A^{0}(\Omega_{P}^{1}|_{X})arrow A^{1}(\Omega_{P}^{1}|X)$ and $\nabla_{0}$ : $A^{0}(N_{X}^{\mathrm{v}})arrow$

$A^{1}(N_{X}^{\vee})$ , which induce a $C^{\infty}$-section $A=\nabla|_{N^{\vee}}-\nabla_{0}\in A^{(1,0)}(Hom(N_{\mathrm{x}}^{\mathrm{v}}, \Omega^{1}\mathrm{x}))$ of $(1,0)-$

form with values in $H\sigma m(N_{X’ X}^{\vee}\Omega^{1})$ . $\mathrm{I}\mathrm{n}s$tead of $N_{X}^{\vee}$ , considering $\Omega_{X}^{1}$ to be a $C^{\infty}$-subbundle
of $\Omega_{P}^{1}|_{X}$ , we have a $C^{\infty}$-section $B\in A^{(0,1)}(Hom(\Omega_{X’ x}^{1}N^{\mathrm{v}}))$ of $(0,1)$-form with values in
$Hm(\Omega_{x}^{1}, N_{\mathrm{x}}^{})$ .

The following properties are well-known (cf. $[8],[9],[12],[13]$ ).

Proposition 4.4 (Second Fundamental Forms) Under the circumstances,

(4.4.1) $B$ is an adjoint of-A. In offier wor&, for $\xi\in A^{0}(N_{\check{\mathrm{x}}})$ and $\eta\in A^{0}(\Omega_{X}1)$ , the
equality $h(A\xi,\eta)+h(\xi, B\eta)=0$ hol&, where $h(-$ , -$)$ denotes the Hermitian
metric on $\Omega_{P}^{1}|_{X}$ .

(4.4.2) Since $B$ is $\overline{\partial}$-closed, it defines a dass $[B]\in H^{1}(X, \ominus_{X}\otimes N_{X}^{\vee})$ , which coincides
wiffi ffie infinitesimal ring extension class of

$0arrow N_{X}^{\vee}rightarrow O_{P}/P_{X}arrow O_{X}arrow$
.

$0$ .

The class $\sigma_{II}(X)=[B]$ is cdled the second fundamental form of type $(0,1)$ for
X.
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(4.4.3) $A\in H^{0}(Sym^{2}(\Omega^{1}x)\otimes N_{X}^{\vee})$ . This dass $A$ is cdled the holomorphic second funda-
mental form of $X$ and coincides with the differentid of the Gauss $mnp$ induced
by ffie embedding. Also a linear system is defined by considering it at general
point of $X([9],[13])$ .

Now we take a smooth irraiucible divisor $D$ on $X$ . Then we have an exact sequence:

$0arrow\Theta_{D}arrow\Theta_{X}|_{D}rightarrow N_{D/X}arrow 0$,

and a natural induced homomorphism: $r_{D}$ : $H^{1}(X, \Theta_{X}\otimes N_{X}^{\vee})arrow H^{1}(N_{D/\mathrm{x}}\otimes N_{X}^{\vee}|_{D})$ .

Using these notation, we can describe a criterion for arithmetic normality, which was
first obtained in [28] by applying the view point of weighted projection. Here we explain
an outline of another proof simplified by using the tools introduced in \S 3.

Theorem 4.5 $(\mathrm{H}\mathrm{o}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{r}-\mathrm{s}\mathrm{P}\mathrm{e}\mathrm{i}\mathrm{S}\mathrm{e}\mathrm{r}-\mathrm{U}\mathrm{s}\mathrm{a})$ Let $X\subseteq P=\mathrm{P}^{N}(\mathbb{C})$ be a connected complex
projective submanifold of dimension $n\geq 2$ . Assume that $q(X)=h^{1}(o_{\mathrm{x}})=0$ . Then the
following two conditions are equivalent.

(4.5.1) $X$ is arithmeticdly $nom?d$.

(4.5.2) For any integer $m$ and any generic smooth member $D\in|O_{x}(m)|,$ $rD(\sigma_{II}(x))=$

$0$ .

Outline of Proof. Showing arithmetic normality is the essential part. We apply induc-
tion on $m$ . Take a section $\tau_{D}\in H^{0}(x, O_{\mathrm{x}}(m))$ defining the divisor $D$ . It is enough to
see that the section $\tau_{D}$ lifts to $H^{0}(P, O_{P}(m))$ . Using $q(X)=0$ and $r_{D}(\sigma_{II}(X))--0$ in
$H^{1}(N_{\mathrm{x}}^{\mathrm{v}}|D(m))$ , a direct computation on the exact sequence:

$0=H^{1}(N_{X}^{\vee})arrow\tau_{D}H^{1}(N_{X}^{\mathrm{y}}(m))arrow H^{1}(N_{X}^{\mathrm{v}}|D(m))$

tells that the obstruction class: $\overline{\delta}_{LFT}^{(0)}(\mathcal{T}_{D})\in H^{1}(X, N_{X}\mathrm{v}(m))$ vanishes, which means that
the section $\tau_{D}$ lifts to $H^{0}(X_{(1)}, O\mathrm{x}(1)(m))$ . Then apply Corollary 3.5. For precise calucu-

lation on $\overline{\delta}_{LFT}^{(0}$

)
$(\mathcal{T}_{D})$ , see [29]. 1
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