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Basic sequences of torsion free graded modules
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Let R := k[zy,...,x,] denote a polynomial ring in r indeterminates over an infinite
field k of arbitrary characteristic, m := (z,...,z,) its maximal ideal, and E a finitely
generated graded R-module. All modules treated here are graded.

Let us recall first the main results of [7].

Theorem 1 ([7, Corollary 2.6, Theorem 2.11]). There exist a finitely generated
graded k[z;, . . . , x,]-submodule Bl C E and a finitely generated graded free k[z;, . .., x,]-
submodule E® C E for each i =1,...,r+ 1 such that

(1.1) EW = g, Elrtl = gir+D),

(1.2) EWl = EO @ B+ g5 k[2,,4,. .., 2,]-module, and
(1.3) B C (244, , 2, )EY @ EFHY
foralli=1,...r, if and only if

(1.4) (@, ..., 2i1)E g 2 C (Tr,...,2i41)E :p (m)
foralli=1,...,r, where

Z:g{m)={ecE|meC ZforsometeN }.

If the submodules as above exist, denoting homogeneous free bases of E® by ¢! (1 <

I<m;),wecal W:={el|1<i<r+1, 1<1<m;}aweak Weierstrass basis of E
with respect to xy,...,z,.

Remark 2. (1) If the condition (1.4) is satisfied, we say that z,,...,z; form a filter-
regular sequence with respect to E (see [19, Appendix:Definition 1]).

(2) For fixed zy,...,z,, the structures of E? and Ell are uniquely determined up
to isomorphism over k[z;,...,,] for each i = 1,...,7 + 1 by the conditions (1.1), (1.2)
and (1.3).

(3) By (12),
(2.1) Ell = B g B6+D g ... g Elr+l

as k-vector space.



149

Remark 3. (1) If E satisfies [g(H.(E)) < oo for all i < r, then the sequence
1,..., %, is always filter-regular with respect to E (see [19, Appendix:Proposition 16]).

(2) If the variables 21,...,, are chosen sufficiently generally regarding E, then
z1,..., 2, form a filter-regular sequence with respect to E.

Example 4. Let £ = R/(x1,...,2;-1) and let
EW =...= 0D =9, EU) ... = Bir+D —
EY) = k[z;,... 2,)e] with € =1,
Efl=0@G+1<i<r+1), EM=F(1<i<j)
Then these submodules satisfy (1.1) — (1.3).

Proof. 1t is clear that E = R-1 = k[z;,...,z,]-1,since x; =0in Efori=1,...,5— 1.
Hence (1.1) and (1.2) hold. Verification of (1.3) is easy. O

Example 5. Let r:=3 and E := Syzf(R/m). Then F is the image of the matrix

-2y —x3 0
1 0 —2a3
0 1 )

Denote the first column by e}, the second by e}, and the third by e?. Set
EY = Rel @ Rel, E® = k[zy,23)6?, E® =E% =0,
EM=F EA=g® FEB gl g

Then these submodules satisfy (1.1) — (1.3).

Proof. The condition (1.2) follows from e.g. [7, Lemma 1.1]. Since rzel—zyel+z1e2 =0,
we find z16} = —zse] +z0€} € (29, 73) E®. Hence (1.3) holds. This implies on the other
hand that £ = FW!l by [7, Lemma 2.7]. Thus (1.1) - (1.3) are satisfied. O

Example 6. Let r:=2 and F := (22, 22) C R = kzy, z5]. Let further
1, T3

e1 =3, €2 =13, €2 = x122,
EW = Rei, E@ = kfzs)e} @ k[zo]ed, E® =0,
El_p pFo_p® go_g

Then these submodules satisfy (1.1) — (1.3).

Proof. 1t is easy to verify (1.1) and (1.2). Since z1€? = 2122 = 1-€2 € EP and
1165 = 2222 = 22el € (22) BV, the condition (1.3) holds, too. O
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Example 7. Let r :=4 and F := (22, 217, 23, 2123 — 2224) C R = k[, T, T3, 24]. Let
further

1 2 2 2 2 3
€1 = X7, €1 = X1T2, €9 = Ty, €1 = T1X3 — Taol4,

ED = Rel,  E® = klzy, 3, z4)e? @ k2, 23, 74led, E® = kzs, z4)ed,

EWN=pg EA=E%®q¢E® EB = E® EY=EH =, E® — gl = 0.
Then these submodules satisfy (1.1) — (1.3).

Proof. It is easy to verify (1.1) and (1.2). Since z1e? = xse € (22)EW, 1163 = 29€} €
B 2163 = z3e! — 24€2 € (23)EV @ EP, and 2063 = z3e} — 2463 € (23, 24) E® the
condition (1.3) holds, too. O

Definition 8. Choose a sufficiently general set of variables 1, ..., z,. Let { el1<i<
r+1, 1 <1 < m; } be aweak Weierstrass basis of F with respect to x1, ..., 2. We define
the basic sequence Br(E) of E to be the sequence (i'; 7% - ;7" ') made of the nonde-
creasing sequences of integers 7° (1 <4 <r+ 1) such that 7' = (deg(e}), ..., deg(e;,,))
up to permutation. In case E® = 0, then m; = 0 and 7' = 0.

Remark 9. (1) depth,(F) =r+1—max{i|E® #0 }.

(2) na!=(ni,...,n}, ) with m =rankg(E)

(3) If EC R, thenmy =1 and n} = min{ d | [E], # 0 }. Further nj = my if
ht(E) > 2.

The notion of basic sequence was established first in [2] for the case of homogeneous
ideals defining space curves and was applied to the study of arithmetically Buchsbaum
curves in P3. It was extended to homogeneous ideals in polynomial rings of arbitrary
number of variables in [6]. Later, for the purpose of generalizing a result on the structure
of homogeneous ideals defining graded Buchsbaum rings obtained in [6], we further
extended it to arbitrary finitely generated graded modules over polynomial rings.

One of the most difficult and important problems concerning basic sequence is to
give a characterization of those of the homogeneous prime ideals. We have only few
results so far in this direction, among which we think the following generalization of
Gruson-Peskine’s connectedness theorem (see [16]) a good one.

Theorem 10 (cf. [3, Corollary 1.2]). Let I C R be a homogeneous prime ideal of
height larger than or equal to two and let (R';--- ;A"+Y) its basic sequence. Then n} <
nt, <nf+1foralll=1,...,my—1 (note that my = nj).

Proof. You will find a proof for the case r =4 in [3, Section 1]. Reading it carefully,
you will be convinced that the assertion is true for arbitrary k and r > 2. See [14] for
another method. O
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‘There are a lot of other applications of basic sequences to the study homogeneous
ideals defining curves in P3. For them, see [2] - [5].

We pass on to the next topic we are most interested in now. Let p > 2 and let
M be a finitely generated torsion-free graded R-module with no free direct summand
satisfying Extz(M,R) = 0 for 4 = 1,...,p — 1. Let further J(M,p) be the set of all
homogeneous ideals I in R of height p fitting into exact sequences of the form

O—*Sp_l'—*Sp__g-‘——f-'-—*Sl—HS()@M——?I(C)“HO.

where c is an integer and S; (0 < i < p—1) are finitely generated graded free R-modules.
By this sequence one obtains

HYR/T)(c) 2 HL (M) for i=1,...,dim(R/I) =r—p.

Since Hy(M)=0fori=r—p+1,...,r—1andi=0 by local duality, considering the
local cohomologies of R/I is the same thing as considering those of M.

Problem 11. Describe Bg(I) for all I € 3(M, p).
Our first result is this.

Theorem 12 ([9, Theorem 3]). For all M and p as above, the set I(M,p) is not
empty.

Though it may not be explicit in [2], the argument of [2] and [6] on the structure
of homogeneous ideals defining graded Buchsbaum rings was based wholly on the com-
parison of I and M. This comparison theorem can be generalized in the following
form.

Theorem 13 ([8, Theorem 2.3]). Let I € 3(M,p). If the variables 1, ..., x, satisfy
(1.4) for both I and M then IW = C' ® M¥(—c) as k[z,, . .., 2,]-module with a finitely
generated graded free k[z,,. .., x,]-module C.

Corollary 14 ([8 Corollary 2.4]). Let I € 3(M,p), BR([) (At a% - ;) and
Br(M) = (¥44%--- ;™). Then we have

{ﬁp = (W, 5" +¢) up to permutation and

=5 +c fori=p+1,....r+1

with a suitable sequence of integers W', where ¥ + ¢ = (1 +¢,...,u +¢) for a sequence

lj:(”l;---ayl)'

We have some results obtained as applications of the above theorem. They are
formulated mainly in terms of C and @'.

e An answer to Problem 11 for the case p = 2 (see [10] and [11]).
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e An answer to Problem 11 for the case M is Buchsbaum (see [6, Sections 5 and 6]).

e Almost complete description of Bg([) for I defining graded Buchsbaum integral
domains of codimension two (see [5] and [6, Section 7]).

e Some description of Bg(I) for I defining graded integral domains of codimension
two (see [17] and [11]).

Finally we explain the computational aspect of (weak) Weierstrass bases and basic
sequences in the case where F is a submodule of a graded free module, namely, the case
where E is torsion-free. If rankg(F) = 1, then essentially E is a homogeneous ideal
and weak Weierstrass bases can be obtained with the use of generalized Weierstrass
preparation theorem due to Hironaka or Grauert (see [18] and [15]). In fact, for generic
coordinates, Grobner bases with respect to reverse lexicographic order form Weierstrass
bases if char(k) = 0 and rankg(E) = 1. We will make this point clear for the general
torsion-free case below.

Let @ = (a1, ... ,as) be a sequence of integers. Suppose F C R(—a) := P;_; R(—a).

Denote by v; the free base 40,...,0,1,0,...,0) € R(—a) of degree a; for each i =
1,...,s. Let v = 3., fiv; be an element of R(—a). We define the degree of v to be
max{ deg(f;) + a; | 1 <14 < s} and denote it by degz(v). If every f; is homogeneous
and there is an integer b such that deg(f;) +a; = b for all ¢ with f; # 0, then we say that
v is homogeneous of degree b. An element of R(—a) of the form fv; (1 <14 < s) with
a monomial f € R in z1,..., 2, will be called a monomial of R(—a) in x1,...,2,.. An
element of R(—a) is homogeneous if and only if it is the linear combination of monomials
of the same degree over k.

Let < denote the reverse lexicographic order on the monomials of R in zy,...,z,. We
denote by the same symbol < the term order on the monomials of R(—a) in xy,..., %,
such that

f<g or

v; < gu; if and only if
/ v Y {f:g and 7>

(cf. [13, Definition 3.5.2]). Taking the gradation determined by deg,( ) into account, we
further consider the term order <; on the monomials of R(—a) in x4, ..., , such that

deg;(fv;) < deg,(gu;) or

i <a gv; if and only if
Jui <agv; ifandonly {dega(fvi):dega(gvj) and  fv; < gu;.

The initial term of v € R(—a) with respect to <z will be denoted by inz(v).
As at the beginning the base field £ is infinite of arbitrary characteristic.
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Theorem 15 ([12]). Assume that 1, ...z, are sufficiently general. Then there exists
asetW={¢e|1<i<r 1<1<m;} of homogeneous generators of E such that
ej # 0 for all i, | which satisfies the following conditions.

(15.1) E=@EDEY as k-module with E® :=Dklz;, ..., z]e,
i=1

=1
(15.2) zoel € (Tirg1,-. ., 2,) (@ k[xi/+1,...,xr]€;’) @ ( EB E(”)
I=1 i=i/+1
for every triple ', 3,1 such that 1 <¢' <j<r, 1<l <m;,
(15.3) the coefficient of ing(e}) is one for all i, I,
(15.4) inz(ef) € klz1)v; forsome j=1,...,s,
(15.5)  ing(e}) € k[z1,...,zi]zv; forsome j=1,...,s

forall ¢=2,...,m

(15.6) Y. giina(ej) =0 with gj € kfzi,...,2,] (1<i<r 1<1<my)

=1 =1
if and only if g, =0 forall i, I,
(15.7) e} —ing(e}) ¢ ZZk[xj,...,xr]ina(e{,) forall 1,1,
=1 I'=1

where @;~,( ) means that the sum Y - ( ) is direct and we understand @;-( ) =0
if m=0.

Corollary 16 ([12]). Let E® (1 <i <) be as in the above theorem and E“+YV :=0.
Let further EUl be the subsets of E defined by the formula (2.1) for eachi=1,...,r+1.
Then B9 (1 <i<r+41) and El (1 <i < r+1) satisfy the conditions (1.1) — (1.3).

Definition 17 ([12]). We call the system W of generators of F stated in Theorem 15
a perfect Weierstrass basis of E with respect to x1,..., ..

Proposition 18 ([12]). Let W be a perfect Weierstrass basis of E with respect to
Z1,...,%-. Then the members of W form a Grobner basis of E with respect to the
term order <. In particular, the basic sequence of E is a sequence consisting of the
degrees of the members of a generic Grobner basis with respect to the term order <s.

Remark 19. See [6, Section 3] for free resolutions starting with Weierstrass bases.
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