Basic sequences of torsion free graded modules

Mutsumi Amasaki

Faculty of School Education, Hiroshima University, 1-1-1 Kagamiyama, Higashi-Hiroshima 739-8524, Japan E-mail: amasaki@ipc.hiroshima-u.ac.jp

October 31, 1998

Let $R := k[x_1, \ldots, x_r]$ denote a polynomial ring in r indeterminates over an infinite field k of arbitrary characteristic, $\mathfrak{m} := (x_1, \ldots, x_r)$ its maximal ideal, and E a finitely generated graded R-module. All modules treated here are graded.

Let us recall first the main results of [7].

Theorem 1 ([7, Corollary 2.6, Theorem 2.11]). There exist a finitely generated graded $k[x_i, \ldots, x_r]$ -submodule $E^{[i]} \subset E$ and a finitely generated graded free $k[x_i, \ldots, x_r]$ -submodule $E^{\langle i \rangle} \subset E$ for each $i = 1, \ldots, r+1$ such that

(1.1)
$$E^{[1]} = E, E^{[r+1]} = E^{\langle r+1 \rangle},$$

(1.2)
$$E^{[i]} = E^{\langle i \rangle} \oplus E^{[i+1]} \text{ as } k[x_{i+1}, \dots, x_r] \text{-module, and}$$

$$(1.3) x_i E^{[i+1]} \subset (x_{i+1}, \dots, x_r) E^{\langle i \rangle} \oplus E^{[i+1]}$$

for all i = 1, ..., r, if and only if

$$(1.4) (x_r, \ldots, x_{i+1})E :_E x_i \subset (x_r, \ldots, x_{i+1})E :_E \langle \mathfrak{m} \rangle$$

for all i = 1, ..., r, where

$$Z:_E \langle \mathfrak{m} \rangle = \{ e \in E \mid \mathfrak{m}^t e \subset Z \text{ for some } t \in \mathbf{N} \}.$$

If the submodules as above exist, denoting homogeneous free bases of $E^{(i)}$ by e_l^i ($1 \le l \le m_i$), we call $W := \{ e_l^i \mid 1 \le i \le r+1, 1 \le l \le m_i \}$ a weak Weierstrass basis of E with respect to x_1, \ldots, x_r .

Remark 2. (1) If the condition (1.4) is satisfied, we say that x_r, \ldots, x_1 form a filter-regular sequence with respect to E (see [19, Appendix:Definition 1]).

(2) For fixed x_1, \ldots, x_r , the structures of $E^{\langle i \rangle}$ and $E^{[i]}$ are uniquely determined up to isomorphism over $k[x_i, \ldots, x_r]$ for each $i = 1, \ldots, r+1$ by the conditions (1.1), (1.2) and (1.3).

(3) By
$$(1.2)$$
,

(2.1)
$$E^{[i]} = E^{\langle i \rangle} \oplus E^{\langle i+1 \rangle} \oplus \cdots \oplus E^{[r+1]}$$

as k-vector space.

Remark 3. (1) If E satisfies $l_R(H^i_{\mathfrak{m}}(E)) < \infty$ for all i < r, then the sequence x_1, \ldots, x_r is always filter-regular with respect to E (see [19, Appendix:Proposition 16]).

(2) If the variables x_1, \ldots, x_r are chosen sufficiently generally regarding E, then x_1, \ldots, x_r form a filter-regular sequence with respect to E.

Example 4. Let $E = R/(x_1, \ldots, x_{j-1})$ and let

$$E^{\langle 1 \rangle} = \dots = E^{\langle j-1 \rangle} = 0, \quad E^{\langle j+1 \rangle} = \dots = E^{\langle r+1 \rangle} = 0,$$
 $E^{\langle j \rangle} = k[x_j, \dots, x_r]e^j_1 \quad \text{with} \quad e^j_1 = 1,$
 $E^{[i]} = 0 \ (j+1 \le i \le r+1), \quad E^{[i]} = E \ (1 \le i \le j).$

Then these submodules satisfy (1.1) - (1.3).

Proof. It is clear that $E = R \cdot 1 = k[x_j, \dots, x_r] \cdot 1$, since $x_i = 0$ in E for $i = 1, \dots, j - 1$. Hence (1.1) and (1.2) hold. Verification of (1.3) is easy.

Example 5. Let r := 3 and $E := \operatorname{Syz}_2^R(R/\mathfrak{m})$. Then E is the image of the matrix

$$\begin{pmatrix} -x_2 & -x_3 & 0 \\ x_1 & 0 & -x_3 \\ 0 & x_1 & x_2 \end{pmatrix}.$$

Denote the first column by e_1^1 , the second by e_2^1 , and the third by e_1^2 . Set

$$E^{\langle 1 \rangle} = Re_1^1 \oplus Re_2^1, \quad E^{\langle 2 \rangle} = k[x_2, x_3]e_1^2, \quad E^{\langle 3 \rangle} = E^{\langle 4 \rangle} = 0,$$

 $E^{[1]} = E, \quad E^{[2]} = E^{\langle 2 \rangle}, \quad E^{[3]} = E^{[4]} = 0.$

Then these submodules satisfy (1.1) - (1.3).

Proof. The condition (1.2) follows from e.g. [7, Lemma 1.1]. Since $x_3e_1^1-x_2e_2^1+x_1e_1^2=0$, we find $x_1e_1^2=-x_3e_1^1+x_2e_2^1\in(x_2,x_3)E^{\langle 1\rangle}$. Hence (1.3) holds. This implies on the other hand that $E=E^{[1]}$ by [7, Lemma 2.7]. Thus (1.1) – (1.3) are satisfied.

Example 6. Let r := 2 and $E := (x_1^2, x_2^2) \subset R = k[x_1, x_2]$. Let further

$$e_1^1 = x_1^2, \ e_1^2 = x_2^2, \ e_2^2 = x_1 x_2^2,$$
 $E^{\langle 1 \rangle} = R e_1^1, \quad E^{\langle 2 \rangle} = k[x_2] e_1^2 \oplus k[x_2] e_2^2, \quad E^{\langle 3 \rangle} = 0,$
 $E^{[1]} = E, \quad E^{[2]} = E^{\langle 2 \rangle}, \quad E^{[3]} = 0.$

Then these submodules satisfy (1.1) - (1.3).

Proof. It is easy to verify (1.1) and (1.2). Since $x_1e_1^2 = x_1x_2^2 = 1 \cdot e_2^2 \in E^{[2]}$ and $x_1e_2^2 = x_1^2x_2^2 = x_2^2e_1^1 \in (x_2)E^{\langle 1 \rangle}$, the condition (1.3) holds, too.

Example 7. Let r := 4 and $E := (x_1^2, x_1x_2, x_2^2, x_1x_3 - x_2x_4) \subset R = k[x_1, x_2, x_3, x_4]$. Let further

$$\begin{split} e_1^1 &= x_1^2, \ e_1^2 = x_1 x_2, \ e_2^2 = x_2^2, \ e_1^3 = x_1 x_3 - x_2 x_4, \\ E^{\langle 1 \rangle} &= R e_1^1, \quad E^{\langle 2 \rangle} = k[x_2, x_3, x_4] e_1^2 \oplus k[x_2, x_3, x_4] e_2^2, \quad E^{\langle 3 \rangle} = k[x_3, x_4] e_1^3, \\ E^{[1]} &= E, \quad E^{[2]} = E^{\langle 2 \rangle} \oplus E^{\langle 3 \rangle}, \quad E^{[3]} = E^{\langle 3 \rangle}, \quad E^{\langle 4 \rangle} = E^{[4]} = 0, \quad E^{\langle 5 \rangle} = E^{[5]} = 0. \end{split}$$

Then these submodules satisfy (1.1) - (1.3).

Proof. It is easy to verify (1.1) and (1.2). Since $x_1e_1^2 = x_2e_1^1 \in (x_2)E^{\langle 1 \rangle}$, $x_1e_2^2 = x_2e_1^2 \in E^{[2]}$, $x_1e_1^3 = x_3e_1^1 - x_4e_1^2 \in (x_3)E^{\langle 1 \rangle} \oplus E^{[2]}$, and $x_2e_2^3 = x_3e_1^2 - x_4e_2^2 \in (x_3, x_4)E^{\langle 2 \rangle}$ the condition (1.3) holds, too.

Definition 8. Choose a sufficiently general set of variables x_1, \ldots, x_r . Let $\{e_i^i \mid 1 \leq i \leq r+1, 1 \leq l \leq m_i\}$ be a weak Weierstrass basis of E with respect to x_1, \ldots, x_r . We define the basic sequence $B_R(E)$ of E to be the sequence $(\bar{n}^1; \bar{n}^2; \cdots; \bar{n}^{r+1})$ made of the nondecreasing sequences of integers \bar{n}^i $(1 \leq i \leq r+1)$ such that $\bar{n}^i = (\deg(e_1^i), \ldots, \deg(e_{m_i}^i))$ up to permutation. In case $E^{(i)} = 0$, then $m_i = 0$ and $\bar{n}^i = \emptyset$.

Remark 9. (1) depth_m $(E) = r + 1 - \max\{ i \mid E^{(i)} \neq 0 \}.$

- (2) $\bar{n}^1 = (n_1^1, \dots, n_{m_1}^1)$ with $m_1 = \operatorname{rank}_R(E)$
- (3) If $E \subset R$, then $m_1 = 1$ and $n_1^1 = \min\{d \mid [E]_d \neq 0\}$. Further $n_1^1 = m_2$ if $\operatorname{ht}(E) \geq 2$.

The notion of basic sequence was established first in [2] for the case of homogeneous ideals defining space curves and was applied to the study of arithmetically Buchsbaum curves in \mathbf{P}^3 . It was extended to homogeneous ideals in polynomial rings of arbitrary number of variables in [6]. Later, for the purpose of generalizing a result on the structure of homogeneous ideals defining graded Buchsbaum rings obtained in [6], we further extended it to arbitrary finitely generated graded modules over polynomial rings.

One of the most difficult and important problems concerning basic sequence is to give a characterization of those of the homogeneous prime ideals. We have only few results so far in this direction, among which we think the following generalization of Gruson-Peskine's connectedness theorem (see [16]) a good one.

Theorem 10 (cf. [3, Corollary 1.2]). Let $I \subset R$ be a homogeneous prime ideal of height larger than or equal to two and let $(\bar{n}^1; \dots; \bar{n}^{r+1})$ its basic sequence. Then $n_l^2 \leq n_{l+1}^2 \leq n_l^2 + 1$ for all $l = 1, \dots, m_2 - 1$ (note that $m_2 = n_1^1$).

Proof. You will find a proof for the case r=4 in [3, Section 1]. Reading it carefully, you will be convinced that the assertion is true for arbitrary k and $r \ge 2$. See [14] for another method.

There are a lot of other applications of basic sequences to the study homogeneous ideals defining curves in \mathbf{P}^3 . For them, see [2] – [5].

We pass on to the next topic we are most interested in now. Let $p \geq 2$ and let M be a finitely generated torsion-free graded R-module with no free direct summand satisfying $\operatorname{Ext}_R^i(M,R)=0$ for $i=1,\ldots,p-1$. Let further $\Im(M,p)$ be the set of all homogeneous ideals I in R of height p fitting into exact sequences of the form

$$0 \longrightarrow S_{p-1} \longrightarrow S_{p-2} \longrightarrow \cdots \longrightarrow S_1 \longrightarrow S_0 \oplus M \longrightarrow I(c) \longrightarrow 0.$$

where c is an integer and S_i ($0 \le i \le p-1$) are finitely generated graded free R-modules. By this sequence one obtains

$$H_{\mathfrak{m}}^{i-1}(R/I)(c) \cong H_{\mathfrak{m}}^{i}(M)$$
 for $i = 1, \dots, \dim(R/I) = r - p$.

Since $H^i_{\mathfrak{m}}(M) = 0$ for $i = r - p + 1, \dots, r - 1$ and i = 0 by local duality, considering the local cohomologies of R/I is the same thing as considering those of M.

Problem 11. Describe $B_R(I)$ for all $I \in \mathfrak{I}(M,p)$.

Our first result is this.

Theorem 12 ([9, Theorem 3]). For all M and p as above, the set $\Im(M,p)$ is not empty.

Though it may not be explicit in [2], the argument of [2] and [6] on the structure of homogeneous ideals defining graded Buchsbaum rings was based wholly on the comparison of $I^{[p]}$ and $M^{[p]}$. This comparison theorem can be generalized in the following form.

Theorem 13 ([8, Theorem 2.3]). Let $I \in \mathfrak{I}(M,p)$. If the variables x_1, \ldots, x_r satisfy (1.4) for both I and M then $I^{[p]} \cong C \oplus M^{[p]}(-c)$ as $k[x_p, \ldots, x_r]$ -module with a finitely generated graded free $k[x_p, \ldots, x_r]$ -module C.

Corollary 14 ([8, Corollary 2.4]). Let $I \in \mathfrak{I}(M,p)$, $B_R(I) = (\bar{n}^1; \bar{n}^2; \dots; \bar{n}^{r+1})$, and $B_R(M) = (\bar{\gamma}^1; \bar{\gamma}^2; \dots; \bar{\gamma}^{r+1})$. Then we have

$$\begin{cases} \bar{n}^p = (\bar{w}', \bar{\gamma}^p + c) & up \text{ to permutation and} \\ \bar{n}^i = \bar{\gamma}^i + c & \text{for } i = p + 1, \dots, r + 1 \end{cases}$$

with a suitable sequence of integers \bar{w}' , where $\bar{\nu} + c = (\nu_1 + c, \dots, \nu_l + c)$ for a sequence $\bar{\nu} = (\nu_1, \dots, \nu_l)$.

We have some results obtained as applications of the above theorem. They are formulated mainly in terms of C and \bar{w}' .

• An answer to Problem 11 for the case p = 2 (see [10] and [11]).

- An answer to Problem 11 for the case M is Buchsbaum (see [6, Sections 5 and 6]).
- Almost complete description of $B_R(I)$ for I defining graded Buchsbaum integral domains of codimension two (see [5] and [6, Section 7]).
- Some description of $B_R(I)$ for I defining graded integral domains of codimension two (see [17] and [11]).

Finally we explain the computational aspect of (weak) Weierstrass bases and basic sequences in the case where E is a submodule of a graded free module, namely, the case where E is torsion-free. If $\operatorname{rank}_R(E) = 1$, then essentially E is a homogeneous ideal and weak Weierstrass bases can be obtained with the use of generalized Weierstrass preparation theorem due to Hironaka or Grauert (see [18] and [15]). In fact, for generic coordinates, Gröbner bases with respect to reverse lexicographic order form Weierstrass bases if $\operatorname{char}(k) = 0$ and $\operatorname{rank}_R(E) = 1$. We will make this point clear for the general torsion-free case below.

Let $\bar{a} = (a_1, \ldots, a_s)$ be a sequence of integers. Suppose $E \subset R(-\bar{a}) := \bigoplus_{i=1}^s R(-a_i)$. Denote by v_i the free base ${}^t(0, \ldots, 0, 1, 0, \ldots, 0) \in R(-\bar{a})$ of degree a_i for each $i = 1, \ldots, s$. Let $v = \sum_{i=1}^s f_i v_i$ be an element of $R(-\bar{a})$. We define the degree of v to be $\max\{\deg(f_i) + a_i \mid 1 \leq i \leq s\}$ and denote it by $\deg_{\bar{a}}(v)$. If every f_i is homogeneous and there is an integer b such that $\deg(f_i) + a_i = b$ for all i with $f_i \neq 0$, then we say that v is homogeneous of degree b. An element of $R(-\bar{a})$ of the form fv_i $(1 \leq i \leq s)$ with a monomial $f \in R$ in x_1, \ldots, x_r will be called a monomial of $R(-\bar{a})$ in x_1, \ldots, x_r . An element of $R(-\bar{a})$ is homogeneous if and only if it is the linear combination of monomials of the same degree over k.

Let < denote the reverse lexicographic order on the monomials of R in x_1, \ldots, x_r . We denote by the same symbol < the term order on the monomials of $R(-\bar{a})$ in x_1, \ldots, x_r such that

$$fv_i < gv_j$$
 if and only if $\begin{cases} f < g \text{ or } \\ f = g \text{ and } i > j \end{cases}$

(cf. [13, Definition 3.5.2]). Taking the gradation determined by $\deg_{\bar{a}}()$ into account, we further consider the term order $<_{\bar{a}}$ on the monomials of $R(-\bar{a})$ in x_1, \ldots, x_r such that

$$fv_i <_{\bar{a}} gv_j$$
 if and only if
$$\begin{cases} \deg_{\bar{a}}(fv_i) < \deg_{\bar{a}}(gv_j) & \text{or} \\ \deg_{\bar{a}}(fv_i) = \deg_{\bar{a}}(gv_j) & \text{and} \quad fv_i < gv_j. \end{cases}$$

The initial term of $v \in R(-\bar{a})$ with respect to $<_{\bar{a}}$ will be denoted by $\operatorname{in}_{\bar{a}}(v)$. As at the beginning the base field k is infinite of arbitrary characteristic. **Theorem 15 ([12]).** Assume that x_1, \ldots, x_r are sufficiently general. Then there exists a set $W = \{ e_l^i \mid 1 \leq i \leq r, 1 \leq l \leq m_i \}$ of homogeneous generators of E such that $e_l^i \neq 0$ for all i, l which satisfies the following conditions.

(15.1)
$$E = \bigoplus_{i=1}^{r} E^{\langle i \rangle} \quad as \ k\text{-module with} \quad E^{\langle i \rangle} := \bigoplus_{l=1}^{m_i} k[x_i, \dots, x_r]e_l^i,$$

$$(15.2) x_{i'}e_l^j \in (x_{i'+1}, \dots, x_r) \left(\bigoplus_{l=1}^{m_{i'}} k[x_{i'+1}, \dots, x_r]e_l^{i'} \right) \oplus \left(\bigoplus_{i=i'+1}^r E^{\langle i \rangle} \right)$$

for every triple i', j, l such that $1 \le i' < j \le r, 1 \le l \le m_j$,

- (15.3) the coefficient of $\operatorname{in}_{\bar{a}}(e_l^i)$ is one for all i, l,
- (15.4) $\operatorname{in}_{\bar{a}}(e_l^1) \in k[x_1]v_j \quad \text{for some} \quad j = 1, \dots, s,$
- (15.5) $\operatorname{in}_{\bar{a}}(e_l^i) \in k[x_1, \dots, x_i] x_i v_j$ for some $j = 1, \dots, s$ for all $i = 2, \dots, r$,

(15.6)
$$\sum_{i=1}^{r} \sum_{l=1}^{m_i} g_l^i \operatorname{in}_{\bar{a}}(e_l^i) = 0 \quad \text{with} \quad g_l^i \in k[x_i, \dots, x_r] \quad (1 \le i \le r, \ 1 \le l \le m_i)$$

$$\text{if and only if} \quad g_l^i = 0 \quad \text{for all} \quad i, \ l,$$

(15.7)
$$e_l^i - \operatorname{in}_{\bar{a}}(e_l^i) \notin \sum_{i=1}^r \sum_{l'=1}^{m_j} k[x_j, \dots, x_r] \operatorname{in}_{\bar{a}}(e_{l'}^j)$$
 for all i, l, l

where $\bigoplus_{l=1}^{m}(\)$ means that the sum $\sum_{l=1}^{m}(\)$ is direct and we understand $\bigoplus_{l=1}^{m}(\)=0$ if m=0.

Corollary 16 ([12]). Let $E^{\langle i \rangle}$ $(1 \leq i \leq r)$ be as in the above theorem and $E^{\langle r+1 \rangle} := 0$. Let further $E^{[i]}$ be the subsets of E defined by the formula (2.1) for each $i = 1, \ldots, r+1$. Then $E^{\langle i \rangle}$ $(1 \leq i \leq r+1)$ and $E^{[i]}$ $(1 \leq i \leq r+1)$ satisfy the conditions (1.1) - (1.3).

Definition 17 ([12]). We call the system W of generators of E stated in Theorem 15 a perfect Weierstrass basis of E with respect to x_1, \ldots, x_r .

Proposition 18 ([12]). Let W be a perfect Weierstrass basis of E with respect to x_1, \ldots, x_r . Then the members of W form a Gröbner basis of E with respect to the term order $<_{\bar{a}}$. In particular, the basic sequence of E is a sequence consisting of the degrees of the members of a generic Gröbner basis with respect to the term order $<_{\bar{a}}$.

Remark 19. See [6, Section 3] for free resolutions starting with Weierstrass bases.

References

[1] M. Amasaki, Preparatory structure theorem for ideals defining space curves, Publ. RIMS, Kyoto Univ. 19 (1983), 493 – 518.

- [2] M. Amasaki, On the structure of arithmetically Buchsbaum curves in \mathbf{P}_k^3 , Publ. RIMS, Kyoto Univ. **20** (1984), 793 837.
- [3] M. Amasaki, Examples of nonsingular irreducible curves which give reducible singular points of $\operatorname{red}(H_{d,g})$, Publ. RIMS, Kyoto Univ. **21** (1985), 761 786.
- [4] M. Amasaki, Curves in \mathbf{P}^3 whose ideals are simple in a certain numerical sense, Publ. RIMS, Kyoto Univ. 23 (1987), 1017 1052.
- [5] M. Amasaki, Integral arithmetically Buchsbaum curves in \mathbb{P}^3 , J. Math. Soc. Japan 41, No. 1 (1989), 1 8.
- [6] M. Amasaki, Application of the generalized Weierstrass preparation theorem to the study of homogeneous ideals, Trans. AMS 317 (1990), 1 43.
- [7] M. Amasaki, Generators of graded modules associated with linear filter-regular sequences, J. Pure Appl. Algebra 114 (1996), 1 23.
- [8] M. Amasaki, *Basic sequences of homogeneous ideals in polynomial rings*, J. Algebra **190** (1997), 329 360.
- [9] M. Amasaki, Existence of homogeneous ideals fitting into long Bourbaki sequences, to appear in Proc. AMS.
- [10] M. Amasaki, On the classification of homogeneous ideals of height two in polynomial rings, Proc. 36th Sympos. Algebra, Okayama, July 29 August 1, 1991, pp. 129 151.
- [11] M. Amasaki, Basic sequence and Nollet's θ_X of a homogeneous ideal of height two, preprint (August, 1996).
- [12] M. Amasaki, Generic Gröbner bases and Weierstrass bases of homogeneous submodules of graded free modules, preprint (September, 1998).
- [13] W. W. Adams and P. Loustaunau, "An Introduction to Gröbner Bases", Graduate Studies in Mathematics, AMS, 1994.
- [14] M. Cook, The connectedness of space curves invariants, to appear.
- [15] H. Grauert, Über die Deformation isolierter Singularitäten analytischer Mengen, Invent. Math. 15 (1972), 171 – 198.
- [16] L. Gruson et C. Peskine, Genre des courbes de l'éspace projectif, in "Algebraic Geometry", Lecture Notes in Math. **687**, Springer-Verlag, Berlin · Heidelberg · New York, 1978, pp. 31 59.
- [17] S. Nollet, Integral subschemes of codimension two, to appear..

- [18] H. Hironaka and T. Urabe, "Introduction to analytic spaces", in Japanese, Asakura Publ. Comp., Tokyo Japan, 1982.
- [19] J. Stückrad and W. Vogel, "Buchsbaum Rings and Applications", Springer-Verlag, Berlin · Heidelberg · New York, 1986.