0oooo0O0oooo
1078 0 1999 0 174-184 . 174

Alexander duality theorem and
Stanley-Reisner rings
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Introduction

In this article we survey [Te] and [Fr-Te].

Alexander duality theorem plays an important role in the study on a
minimal free resolution of Stanley-Reisner rings. (See [Br-He,], [Te-Hi;],
[Te-Hi,], for example.) In particular, Eagon and Reiner used Alexander
dual complexes and proved the following interesting theorem:

THEOREM 0.1 ([Ea-Re, Theorem 3]). Let k be a field. and let A be a
simplicial compler and A* its Alezander dual complez. Then k[A] has a
linear resolution if and only if k|A*] is Cohen-Macaulay.

The above result is a starting point of this article. We generalize it in
the following way.

THEOREM 0.2. Let k be a field. Let A be a (d—1)-dimensional complez
on the verter set [n]. Suppose d < n —2. Then |

reg Ipn —indeg Ia = dim k[A*] — depth k[A*].

Note that Theorem 0.2 corresponds to Theorem 0.1 in the case that
either side of the equality is 0.

Using the Auslander-Buchsbaum formula, we have the following corol-
lary:

COROLLARY 0.3. Let k be a field. Let A be a (d — 1)-dimensional
complez on the vertex set [n]. Supposed < n —2. Then

reg Ipn = pd k[A*].
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Here, we use indeg I5 = embdim k[A*] — dim k[A*].

It is an interesting problem to estimate regularity of homogeneous ideals.
Upper bounds of regularity are studied very actively in algebraic geometry
and commutative algebra, that seems to be motivated by Eisenbud-Goto
Conjecture. See, for example, [Kw] and [Mi-Vo|. Here we focus on monomial
ideals. We give two kind of inequalities as an application of Alexander
duality.

THEOREM 0.4 ([Ho-Tr, Theorem ’1.1], [Fr-Te, Theorem 3.8]). Let I be
a monomial ideal in the polynomial A = k[zy,2,,...,2,] over a field k.
Assume codimA/I > 2. Then we have -

reg I < arith-degl.

Theorem 0.4 was first pro’ved by Hoa and Trung. After that, Friibis-
Kriiger and the author proved it independently using Alexander duality.

THEOREM 0.5 (Monomial version of Eisenbud-Goto Conjecture). Let k
be a field. and let A be a pure simplicial complex connected in codimension
1. Then we have

reg Ia < deglp — codim k[A] + 1.

As another application, we give some upper bound for the multiplicities
of homogeneous k-algebras. In [Ba-Mu| and [He-Sr], among other things,
the following inequality is proved :

THEOREM 0.6 ([Ba-Mu, Proposition 3.6], [He-Sr, Corollary 3.8]). Let
k be a field and let R = k[zy,2z,,...,2,]/] be a homogeneous k-algebra of
codimension hy. Then

e(R) < (mg I ;';1”1 - 1).

We improve it as follows:

THEOREM 0.7. Let k be a field and let R = k[zy,zq,...,2,)/1 be a

homogeneous k-algebra of codimension hy > 2. Then

I+ hy— —ind hy —
e(R)S(reg ;11 }1)_‘(regl in Z?I—I— 1 1).
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8§1. Preliminaries

We first fix notation. Let N(resp.Z) denote the set of nonnegative inte-
gers (resp. integers). Let | S | denote the cardinality of a set S.

We recall some notation on simplicial complexes and Stanley-Reisner
rings according to [St]. We refer the reader to, e.g., [Br—He], [Hi], [Ho]
and [St] for the detailed information about combinatorial and algebraic
background.

A simplicial complez A on the vertez set [n] = {1,2,...,n} is a collection
of subsets of [n] such that (i) {¢} € A for every 1 <i <n and (ii) F € A,
G C F = G € A. Each element F of A is called a face of A. We call
F € A an i-faceif | F |= i+ 1 Weset d = max{| F || F € A} and
define the dimension of A to be dimA = d — 1. We call a maximal face a
facet. We say that A is pure if every facet has the same cardinality. When
A is pure, we call A connected in codimension 1, if for every two facets
F and G, there is a sequence of facets F' = Fy, Fy,...,F, = G such that
| FENFyy |=|F|-1for0<:<p—1.

Let f; = fi(A), 0 <1 < d -1, denote the number of :-faces in A. We
define f_; = 1. We call f(A) = (fo, f1,-.., fa-1) the f-vector of A. Define
the h-vector h(A) = (ho, b1, ..., ha) of A by

d d

Yo fia(t = 1) =3 Rttt

1=0 =0

If Fis a face of A, then we define a subcomplex linka F' as follows:
linkaF ={GeA|FNG=0,FUG € A}.

Let fI;(A; k) denote the i-th reduced simplicial homology group of A with
the coeflicient field k.

Let A = k[zy,%3,...,2,] be the polynomial ring in n-variables over a
field k. Define I5 to be the ideal of A which is generated by square-free
monomials z;, i, -z, 1 < 4 <1p < -+ < 1, < n, with {21,22,...,%,} &

A. We say that the quotient algebra k[A] := A/IA is the Stanley-Reisner
ring of A over k.

THEOREM 1.1 (Hochster’s formula on the local cohomology modules
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(cf. [St, Theorem 4.1])).

. ; . . ' ] t—l |F|
F(.H;,z(k[A]), t) = E dlmk H,-_|F|;1(11nkAF; k) —-—-—:1—) .
’ FeA 11
where Hyy, (k[A]) denote the i-th local cohomology module of k[A] with re-
spect to the graded mazimal ideal m.

Let A be the polynomial ring k[zy, z,, ... ,Zn) for a field k. Let M be a
finitely generated graded A-module and let

0 — P A(=7)Pi M) — . — P A(—j)Ps M) —, M — 0
JEZ JEZ
be a graded minimal free resolution of M over A. We call §;(M) = iez Bij(M)
the s-th Betti number of M over A. We sometimes denote S24(M) for 5;(M)

to emphasize the base ring A. We define a Castelnuovo-Mumford regqularity
reg M of M by

reg M = max {j — 1 | §;;(M) # 0}.
We define an initial degree indeg M of M by
indeg M = min {s | M; # 0} = min {j | o ;(M) # 0}.

THEOREM 1.2 (Hochster’s formula on the Betti numbers[Ho, Theorem
5.1]). :
Bii(k[Al)= > dimH, i 1(Ar;k),
FC[n], IF]:j
where

Ar={GeA|GCF}.

Finally we quote some result on Grobner bases we use later. See [Ei,
Chapter 15] for complete explanation.

Let A be the polynomial ring k[z1, zs,...,z,] for a infinite field k. Let
I be a homogeneous ideal in A. We denote Gin (I) to be a generic initial
ideal of I with respect to the reverse lexicographic order. It is well known
that e(A/Gin (1)) = e(A/I).

Further we have:

THEOREM 1.3 ([Ba-St]).
(1)depth A/Gin (I) = depth A/I.
(2)reg Gin (I) = reg 1.
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§2. Alexander duality and some generalization of the
Eagon-Reiner theorem

First we recall the definition of Alexander dual complexes.

Definition (cf. [Ea-Re]). For a simplicial complex A on the vertex set
[n], we define an Alezander dual complez A* as follows:

A*={F C[n}:[n]\ F ¢ A}.
If dimA < n —3, then A* is also a simplicial complex on the vertex set [n].

In the rest of the paper we always assume dim k[A] = d and dim k[A*] =
d* for a fixed field k.

Now we give some generalization of the Eagon-Reiner theorem.

THEOREM 2.1. Let A be a (d — 1)-dimensional complex on the vertex
set [n]. Suppose d <n —2. Then

reg Io — indeg I = dim k[A*] — depth k[A"].

Proof. Put depth k[A*] = p*. By Hochster’s formula on the local
cohomology modules, we have

] . . t-—-l lFl
F(Hin(k[A*]), t)= Z dimy Hy_|pj-1(link s« F; k) (1 t—l) )
FeA* -

Hence ifl < p*, then I;’I_|p|_1(linkA.F; k) = (0) for all F € A*. By the proof
in [Ea-Re, Proposition 1], we have H,_;_s(AF; k) = (0) for all F C [n]. By

Hochster’s formula on the Betti numbers this means that §;;1,_1—1(k[A]) =
0 for 1 > 1. Hence

:Bi,i+n(IA) = ,Bi,i-i-n——l(IA) == ,Hi,i+n—p*+1(IA) =0

for ¢ > 0. Similarly, since f{n_pt-_g(A[n]\F; k) = I:Ip-_lpl_l(linkA-F; k) #
(0) for some F € A, we have S;iyn_p+(Ia) # 0 for some 7 > 0. Hence
reg In = n — p*. By the definition of the Alexander dual complex we have
indeg Ip = n—d*. Therefore, we have reg Ip —indeg In = d*—p*. Q.E.D.
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- §3. On upper bounds for regularity of monomial
| ideals " |

In this section we give some upper bounds for regularity of monomial

ideals.

~ 'THEOREM 3.1 ([Fr-Te, Theorem 3.1]). Let k be a field. and let A be a
simplicial complez. Assume codimk|[A] > 2. Then we have

reg Ia < arith-degla.
See, for example, [Ba-Mu]| for the definition of arithmetic degree of an

ideal I. Here we just remark that arithmemic degree arith-deg/, of a square-
free monomial ideal I, is the number of the facets in A.

Proof. Tayor resolution guarantees pd k[A*] < B;(Ia+). Then we have
reg In = pd k[A"] < Bo(Ia+) = arith-degl,

by Corollary 0.3. Q.E.D.

By combinatorial argument on standard pairs, which are introduced by
[St-Tr-Vo), we can show:

'THEOREM 3.2 ([Fr-Te, Corollary 3.6]). Let I be a monomial ideal of a
polynomial ring. Put IP! be the polarization of I. Then we have

reg I = regl®,
See, for example, [St-Vo] for the definition and basic properties of the

polarization of monomial ideals.
Combining Theorem 3.1 and 3.2, we have:

THEOREM 3.3 ([Ho-Tr, Theorem 1.1], [Fr-Te, Theorem 3.8]). Let I be
a monomial ideal in the polynomial A = klz,z,,...,2,] over a field k.
Assume codimA[I > 2. Then we have

reg [ < arith—deg] .



180

Next,we will prove a certain conjecture of Eisenbud (see [Ei-Po].) , which
is a monomial version of Eisenbud-Goto Conjecture (see [Ei-Go}).

THEOREM 3.4. Let k be a field and let A be a pure simplicial complex
connected in codimension 1. Then we have

reglp < degk[A] — codimk[A] + 1.

We give a sketch of a proof, which is simplified by suggestions of Eisen-
bud. '

Sketch of proof. Let V be the vertex set of A. Put §(V) = n and
dim k[A] = d. We prove the theorem by induction on the number fg_; of
facets in A.

First if codim k[A] < 1, then k[A] is a hypersurface. In this case the
theorem is clear.

Suppose codim k[A] > 2 and f;_; > 2. Then there exists a facet o € A
such that

A’ := A\ {7 € A | For any facet p(# o) € A; 7 & p}

is pure and connected in codimension 1. Denote by V' the vertex set of A’
and by f;_, the number of facets in A’. There are two cases.

Case(i) V # V. Put V\V' = {v}. For W C V with v ¢ W we
have Aw 2 Al,. On the other hand, for W C V with v € W, We have
Hi(Aw; k) 2 -Hy( W\(wp k) for 2 > 1. Since

reg In = max{i + 2 | H;(Aw; k) # 0 for some W C V},
we have

reglp = reglas
< fiq—(r=-1-d)+1
= fin—(n—d)+1.

Case(ii) V = V'. We have reg In = pd k[A*] by Corollary 0.3. If we
prove pd k[A*] < pd k[(A")*] + 1, we have

reg Ia reg Inr+ 1
fici—(n—d)+2

fd-—l —(n—d)+1

IAIA
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Then we have only to prove
pd k[A*] < pd E[(A)]+ 1.
Put k[A*] = k[(A")*]/(m), where m = I ;ev\o@:. If we show that
pd K[(A')*] 2 pd (Jans + (m))/Lian-,
then the mapping cone guarantees that |
pd B{A"] < pd K[(A)] +1
by [E, Exercise A.3.30]. But now we have

(Lan + (m))/Ian = (m)/((m) N Lary)
= (m)/((m)N (m,...,m))
= (m)/(lem(m,my)...,lcm(m,m,))
> Af(my,...,m}) @ (m),

where [anye = (mq,...,my), mi = lcmnT,m.- ,and A = k[z; | z; € V).
Hence, we have only to show

pd K[(A')"] > pd A/(m, ..., m}).
Now we have k[(A")*],, & A,,/(m],...,m!)A,,. Hence we have
pd k[(A)*] > pd k[(A)*],, = pd A/ (m],...,m})A,, = pd A/(m),...,m)).
Q.E.D.

§4. On upper bounds for multiplicities

In this section we give some upper bound for the multiplicities of homo-
geneous k-algebras.
First we prove the following lemma:

LEMMA 4.1.

e(k[A]) = Bin, (K[AT]).
Proof. We have
ho(A) + hy(A) (1 —t) + - + ha(A)(1 - ) (1)

LU A 4 A (A
= n—d '
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Since indeg Ia« = n — d = h;, we have
ﬁl,n-—d(k[A*])
(the coefficient of "% in — (1 — £)*™* (ho(A*) + b1 (A"t + - - - + has(A")t))
)
d

(the coeficient of t*~* in the numerator in (2)
= lim(ho(A) + B(A)(1 = )+ -+ ha(A)(1 — 1
= e(k[A)).

)

Q.E.D.

THEOREM 4.2. Let R = A/I be a homogeneous k-algebra of codimension
hy > 2. Then

o(R) < (reg I:lhl ——1) 3 (reg I—md:fl—i-hl—— 1).

Proof. We may assume | k |= co. By Theorem 1.3, we have reg Gin(I) =
reg I and h(A/I) = h(A/Gin(])). Considering the polarization, we obtain
a Stanley-Reisner ring k[A] = B/In with e(A/I) = e(k[A]) and reg I =
reg Ia. Put p* = depth k[A*]. By Theorem 2.1, we have d* — p* =reg [ —
(n — d*), where n = embdim k[A*]. Hence reg I = n — p*.

Let y1,¥2,- - ., Yp* be aregular sequence in k[A*];, and let z1, z5,.. ., zge_p» €
(k[A*)/(y1, Y2, - - -, Yp) )1 be asystem of parameters of K[A*]/(y1,Y2, - - -, Yp+)-
We have k21, 22,. .., 2as—p+] C k[A*]/(y1,Y2,-- -, Yp+). Since k[21, 22, .., 2ge_p+]
is isomorphic to the polynomial ring with d* — p* variables, we have
dimg (E[A*]/(y1,Y2y - - Yp*) Dby 2 (d‘””;:h‘—l). By Lemma 4.1, we have

e(k[A]) = B (K[AY])
R (A" (31,32, - - Yy )
= d]mk(B/(yh Yoy - 7yp"))h1 - dimk(k[A*]/(ylayQ’ e 7yp"))h1

n—p“+h —1 B d—p"+h—1
hl hl )

IA

Q.E.D.
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