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This is a very brief summary of my talk given in the workshop held in July
1998 at RISM. First of all, I would like to express the gratitude to the organiser,
Professor Miyazaki.

In the talk, I first formulated an equivariant version of Torelli Theorem for K3
surface with prescribed finite group action (Theorem (1.1)), which describes the
automorphisms of a K3 surface commuting with a presciribed group action in terms
of cohomology, and then explained how $\mathrm{o}$ne- can apply this to prove the following
two results:

(1) Finiteness of $c_{2}=0$ fiber space structures on a Calabi-Yau threefold up to
isomorphisms as fiber spaces (Theorem (2.1));

(2) Classification of K3 surfaces admitting order 11 automorphisms (Theorem
(3.1) $)$ .

The purpose of this short note is to recall the results presented in my talk
precisely, while detailed explanation of proofs will be omitted. I hope that details
will be found in the preliminary version of my preprint, ”An Equivariant Torelli
Theorem for K3 surfaces with finite group action and its application to fibered
Calabi-Yau threefolds” (the final version inculding non-trivial examples are now in
preparations) and also in the preliminary version of my preprint written jointly with
D. Q. Zhang, ”K3 surfaces with order 11 automorphisms”, which will be included
in our joint paper, ” Classification of finite group actions on K3 $\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{f}\mathrm{a}\mathrm{C}\mathrm{e}\mathrm{S}$ ”, $.(\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{r}$

progress) in future.

\S 1. An equivariant Torelli Theorem for K3 surfaces with finite group
actions

Let $X$ be a projective complex K3 surface and $G\subset \mathrm{A}\mathrm{u}\mathrm{t}(X)$ a finite automor-
phism group. Throughout this section these are fixed. We consider the second
cohomology group $H^{2}(X, \mathrm{Z})$ as a lattice by the non-degenerate symmetric bilinear
form $(*.*)$ induced by the cup product on this space. We will employ the following
notation:
$S$ : the N\’eron Severi lattice of $X$ ;
$N:=\{[E]\in S|E\subset X, E\simeq \mathrm{P}^{1}\},$

$\mathrm{t}\mathrm{h}’\mathrm{e}$ set of nodal $\mathrm{c}\mathrm{l}\mathrm{a}\check{\mathrm{s}}$ ses;
$M:=(S)^{c_{=}}$ {$x\in S|g^{*}(X)=x$ for all $g\in G$};
$(C)^{\mathrm{o}}:=\mathrm{t}\mathrm{h}\mathrm{e}$ connected component of $\{x\in S\otimes \mathrm{R}|(x.x)>0\}$ containing the ample
classes of $X$ ;
$C:=\mathrm{t}\mathrm{h}\mathrm{e}$ union of $(C)^{\mathrm{o}}$ and all $\mathrm{Q}$ -rational rays in $\mathrm{t}\dot{\mathrm{h}}\mathrm{e}$ closure of $(C)^{\mathrm{o}}$ in $S\otimes \mathrm{R}$;
$C_{M}:=C\cap(M\otimes \mathrm{R})$ ;
$A:=\mathrm{t}\mathrm{h}\mathrm{e}$ intersection of the nef cone $\overline{Amp}(X)$ and $C$ ;
$A_{M}:=A\cap(M\otimes \mathrm{R}))$.
$Q:=\{f\in \mathrm{A}\mathrm{u}\mathrm{t}(X)|f\circ g=g\circ f$ for all

$\mathrm{g}\in G\}$ ;
$O(M):=\mathrm{t}\mathrm{h}\mathrm{e}$ orthogonal group of the lattice $M$ preserving $C_{M;}$

$O(M)^{\mathrm{o}}:=$ {a $\in O(M)|\sigma=\overline{\sigma}|M$ for some Hodge isometry $\tilde{\sigma}$ with $\tilde{\sigma}\circ g^{*}=g^{*}\mathrm{o}$

$\tilde{\sigma}$ for all $g\in G$};
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$P(M):=\{\sigma\in O(M)|\sigma(AM)=A_{M}\}$ ;
$P(M)^{\mathrm{o}}:=$ { $\sigma\in O(M)|\sigma=f^{*}|M$ for some $f\in Q$ } $(\subset P(M))$ .

My idea for the formulation is a quite simple one, namely, to modify everything
in $S$ appeared in the abstract version of the Torelli Theorem for K3 surface to put
into the invariant lattice $M$ in an $G$ -equivariant way. For this, the most important
part is the formulation of the $G$ -equivariant reflection group on $M$ , which I will
first present.

Let us identify $[b]\in N$ and the unique smooth rational curve $b$ which repre-
sents $[b]$ and set for $b\in N,$ $B:=( \sum_{g\in G}g^{*}(b))red$ , the reduction of the divi-

sor $\sum_{g\in G}g*(b)$ , and denote by $B=\coprod_{k=1}^{n(b})_{B_{k}}$ the decomposition of $B$ into the
connected components. Note that the value $(B_{k}.B_{k})$ is independent of $k$ and
that $(B_{k}.B_{k})=-2$ if $(B_{k}.B_{k})<0$ . Set $N_{M}:=\{b\in N|(B_{k}.B_{k})=-2\}$ and
define for $b\in N_{M}$ and $k\in\{1,2, \ldots, n(b)\}$ the reflection $r_{B_{k}}$ on $H^{2}(X, \mathrm{Z})$ by
$r_{B_{k}}(x)=x+(x.B_{k})B_{k}$ . It is well known and is easily checked that $r_{B_{k}}$ are Hodge
isometries and $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\Phi r_{B}k(M)=M$ and $r_{B_{k}}(C_{M})=C_{M}$ . Using $(B_{k}.B_{l})=-2\delta_{kl}$ ,
we easily calculate that $r_{B_{k^{\circ r}}B_{t}}=r_{B_{\iota^{\circ r}k}}B$ and $r_{B_{k}}^{2}=\dot{i}d$ . These equalities readily
imply the following formulas:

(1) $( \prod_{k=}^{n(b}1))_{r_{B_{k}}}(x)=x+\sum_{k1}^{n(b)}=(x.B_{k})B_{k}$.
(2) $( \prod_{k=}^{n()}b1rB_{k})^{2}=\dot{i}d$ .

Set $R_{b}:= \prod_{k=1}^{n(b)_{r}}B\mathrm{k}$ for $b\in N_{M}$ and $\Gamma_{M}$ $:=<R_{b}|b\in N_{M}>(\subset O(M))$ . This is
the reflection group which we want to formulate. I can now state our Equivariant
Torelli Theorem:

Theorem (1.1)
(1) $\Gamma_{M}$ is a normal subgroup of $O(M)^{\mathrm{o}}$ and fits in the semi-direct decomposition
$O(M)^{\circ}=\mathrm{r}M^{\cdot}P(M)^{\mathrm{O}}$ .
(2) There exists a finite rational polyhedral fundamental domain $\triangle$ for the action
$P(M)^{\mathrm{o}}$ on $A_{M}$ .
For application, the next three Corollaries will be useful.
Corollary (1.2).
The set of $G$-stable fiber space structures on $X$ is finite up to $G$-equivariant
isomorphism.
Corollary (1.3).
Let $Z$ be a normal K3 surface and $G_{Z}$ a finite automorphism group of $Z$ . Then $Z$

admits only finitely many $G_{Z^{-}}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b}.1\mathrm{e}$ fiber space structures up to $G_{Z}$ -equivariant
isomorphism.
Corollary (1.4).
(1) Assume that $M$ represents $0$ . Then $X$ admits a $G$-stable elliptic fibration. In
particular, if the rank of $M$ is greater than or equal to 5, then $X$ admits a $G$ -stable
elliptic fibration.
(2) Assume that $M$ contains the even unimodular hyperbolic lattice $U$ of rank 2.
Then $X$ admits a $G$-stable Jacobian fibration.

\S 2. Finiteness of $c_{2}=0$ fibrations on a Calabi-Yau threefold
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In this section, I will explain the first application, which was indeed my moti-
vation to reformulate the Torelli Theorem for K3 surface in an equivariant setting.
Thoughout this section, a Calabi-Yau threefold means a smooth projective com-
plex threefold $X$ which satisfies that $\mathcal{O}_{X}(K_{x})\simeq \mathcal{O}_{X}$ and $\pi_{1}(X)=\{1\}$ . A fiber
space means a surjective morphism $\varphi$ : $Xarrow W$ between positive dimensional nor-
mal projective varieties with connected fibers. Two fiber spaces $\Phi$ : $Xarrow W$ and
$\Phi’$ : $X’arrow W’$ are said to be isomorphic if there exist isomorphisms $F$ : $Xarrow X’$

and $f$ : $Warrow W’$ such that $\Phi’\mathrm{o}F=f\circ\Phi$ .
Let $X$ be a Calabi-Yau threefold. A fiber space $\Phi$ : $Xarrow W$ is called a $c_{2}=0$

fibration if (D. $c_{2}(X)$ ) $=0$ for a divisor $D$ such that $\Phi=\Phi_{|D|}$ . This notion does
not depend on the choice of representatives $|D|$ of the morphism $\Phi$ .

The first application of the Equivariant Torelli Theorem is the following:
Theorem (2.1).
Each Calabi-Yau threefold $X$ admits only finitely many $c_{2}=0$ fibrations up to
isomorphism. In particular, each Calabi-Yau threefold admits only finitely many
abelian fiber space structures up to isomorphism.

I will omit to repeat the detailed proof here. However, I hope that readers
will recognaise that there certainly exist close relations between Equivariant Torelli
Theorem (1.1) and Theorem (2.1) through (1.3) and the following Classification
Theorems, particularly $(2.3)(\mathrm{b})$ , due to the present author, which themselves might
have their own interests.

Theorem (2.2).
Let $\varphi$ : $Xarrow W$ be a $c_{2}=0$ fibration. Assume that $\dim W=3$ . Then $\varphi$ : $Xarrow W$

is isomorphic to either
(a) the unique crepant resolution $\Phi_{3}$ : $X_{3}arrow\overline{X_{3}}:=(E_{\zeta_{3}})^{3}/<g_{3}>$ , where $E_{\zeta_{3}}$ is
the elliptic curve of period $\zeta_{3}$ and $g_{3}=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\zeta 3, \zeta 3, \zeta_{\mathrm{s}})$ , or
(b) the unique crepant resolution $\Phi_{7}$ : $X_{7}arrow\overline{X_{7}}:=A_{7}/<g_{7}>$ , where $A_{7}$ is the
Jacobian threefold

of the Klein quartic curve $C:=(x_{0}x_{1}+x1X_{2}+x_{2}X_{0}^{3}\mathrm{s}3=0)\subset \mathrm{P}^{2}$ and $g_{7}\in \mathrm{A}\mathrm{u}\mathrm{t}(A_{7})$

is the Gorenstein automorphism of order 7 induced by the automorphism $gc$ of $C$

defined by $g_{C}^{*}([X0:x1:x_{2}])=[\zeta_{7}x0:\zeta 7^{X}21 (_{7}^{4}X_{2}]$ .

Theorem (2.3)
Let $\varphi$ : $Xarrow W$ be a $c_{2}=0$ fibration. Assume that $\dim W=2$ . Then $\varphi$ : $Xarrow W$

is isomorphic to either
(a) a minimal smooth birational model, over the base $E_{\zeta_{3}}^{2}/<\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\zeta_{3}, \zeta_{\mathrm{s}})>$ , of
the composite of the crepant resolution of $((E_{\zeta_{3}})^{2}\cross E_{\zeta_{3}})/<\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\zeta \mathrm{s}, \zeta_{\mathrm{s}}, \zeta 3)>$

and the natural projection $p_{1}$ : $((E_{\zeta_{3}})^{2}\mathrm{x}E_{\zeta_{3}})/<\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\zeta 3, \zeta_{3}, \zeta 3)>arrow(E_{\zeta_{3}})^{2}/<$

$\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\zeta \mathrm{s}, \zeta_{3})>$ , or
(b) a minimal smooth birational model, over the base $Z/G$ , of the composite of a
crepant resolution of $(Z\cross E)/G$ and the natural projection $p_{1}:...(Z\chi E)/Garrow Z/G$ ,
where $Z$ is a normal K3 surface, $E$ is an elliptic curve and $G$ is a finite Gorenstein
automorphism group of $Z\cross E$ whose elements $g\in G$ are of the forms $g=(gz, g_{E})\in$

Aut $(Z)\cross$ Aut $(E)$ . ..

In three dimensional birational geometry, there is a particular phenomenon that
minimal models of a given threefold are no more unique. This makes three di-
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mensional birational geometry more rich. It will be also worth recalling here that
another important material of the proof of Theorem (2.1) is Kawamata’s Theorem
of the finiteness of the minimal models of Calabi-Yau fiber space $Xarrow B$ over the
base $B$ up to $\mathrm{A}\mathrm{u}\mathrm{t}(X/B)$ , [Y. Kawamata, On the cone of divisors of Calabi-Yau
fiber spaces, Internat. J. Math. 8 (1997), especially Theorem 3.6].

\S 3. K3 surfaces with order 11 automorphisms (joint work with D. Q.
Zhang)

In this section, I would like to explain our second application, the classification
of complex K3 surface with automorphism of order 11, or slightly more generally,
describe all the families of pairs (X, $G$ ) consisting of a complex projective K3 surface
$X$ and a finite group $G$ of automorphisms on $X$ which fits in the exact sequence:

$1arrow G_{N}arrow Garrow\mu_{11n}=\langle\zeta_{11}n\ranglearrow 1$,

where the last map $\rho$ is the natural representaion of $G$ on the space $H^{2},0(X)=\mathbb{C}\omega x$

and $n$ is some positive integer. Recalling Nikulin’s result that $\mathrm{o}\mathrm{r}\mathrm{d}(a)\leq 8$ for
$a\in G_{N}$ , we choose and fix an element $g\in G$ with $\rho(g)=(_{11}$ , and set $M$ $:=$

$H^{2}(X, \mathbb{Z})^{<}g>=S^{<g>}$ . This invariant lattice $M$ appeared also in section 1 will
plays an important role for our classification. For simplicity of description, $G$ is
also assumed to be maximal in the sense that if (X, $G’$ ) also satisfies the same
conditon as above for some $n’$ and $G\subset G’$ then $G=G’$ .

In order to state the classification, I first recall three kinds of examples of
such pairs. In these examples, $U$ denotes the lattice defined by the Gram ma-
trix $,$ $U(m)$ the lattice defined by

definite lattices given by the Dynkin diagrams of the indicated types.
Example 1.
Let $S_{66}$ be the K3 surface given by the Weierstrass equation $y^{2}=x^{3}+(t^{11}-1)$ ,
and $\sigma_{66}$ the automorphism of $S_{66}$ given by $\sigma_{66}^{*}(x, y, t)=(\zeta_{66}^{22_{X}}, \zeta_{66}33\zeta y,6612t)$. Then
the pair $(S_{66}, \langle\sigma_{66}\rangle)$ gives an example of (X, $G$) such that $n=6$ (and $G_{N}=\{1\}$ ),
i.e., $G\simeq\mu_{66}$ and that $M\simeq U$ .
Example 2.
Let us consider the rational, fibered threefold $\varphi:\mathcal{X}arrow \mathbb{C}$ defined by $y^{2}=x^{3}+X+$

$(t^{11}-s)$ , and its order 22 automrphism $\sigma$ given by $\sigma^{*}(x, y, t, S)=(x, -y, \zeta 11t, s)$ ,
where $s$ is the coordinate of C. $\varphi$ is a smooth morphism over $s\neq\pm\sqrt{-4}/27$ and
$\mathcal{X}_{\sqrt{-4/27}}(\simeq \mathcal{X}_{-\sqrt{-4/27}})$ has a unique singular point of type $A_{10}$ .

The pair $(\mathcal{X}_{0}, \langle\sigma_{44}\rangle)$ , where $\sigma_{44}^{*}(x, y, t)=(\zeta_{44}^{22_{X}},$ $\zeta_{4}^{1}4y1,$ $(_{44}^{34}t)$ , gives an example of
(X, $G$ ) such that $n=4$ (and $G_{N}=\{1\}$ ), i.e., $G\simeq\mu_{44}$ and that $M=U.$ (The
minimal resolution of) $(\mathcal{X}_{s}, \langle\sigma\rangle)(s\neq 0)$ gives an example of (X, $G$ ) such that $n=2$

(and $G_{N}=\{1\}$ ), i.e., $G\simeq\mu_{22}$ and that $M=U$ (resp. $U\oplus A_{10}$ ) if $s\neq 0,$ $\pm\sqrt{-4}/27$

(resp. if $s=\pm\sqrt{-4}/27$).
Example 3.
Let us consider the following three series of rational Jacobian elliptic surfaces:
(1) $j^{(1)}$ : $J^{(1)}arrow \mathbb{P}^{1}$ , defined by the Weierstrass equation $y^{2}=x^{3}+(t-1)$ , whose
singular fibers are $J_{1}^{(1)}$ of Kodaira’s type II and $J_{\infty}^{(1)}$ of Kodaira’s type $II^{*}$ ,
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(2) $j^{(2)}$ : $J^{(2)}arrow \mathrm{P}^{1}$ , defined by the Weierstrass equation $y^{2}=x^{3}+X+(t-\mathit{8})$ with
$s\neq\pm\sqrt{-4/27}$ , whose singular fibers are $J_{\alpha}^{(2)},$

$J_{\beta}^{(2}$

) (where $t=\alpha,$ $\beta$ are two distinct
non-zero roots of the discriminant $\Delta(t)=4+27(t-_{S})2)$ of Kodaira’s type $I_{1}$ , and
$J_{\infty}^{(2)}$ of Kodaira’s type $II^{*}$ , and
(3) $j^{(3)}$ : $J^{(3)}arrow \mathrm{P}^{1}$ , defined by the Weierstrass equation $y^{2}=x^{3}+X+(t-S)$ with
$s=\sqrt{-4/27}$ , whose singular fibers are $J_{0}^{(3)},$ $J_{2s}^{(3)}$ of Kodaira’s type $I_{1}$ , and $J_{\infty}^{(3)}$ of
Kodaira’s type $II^{*}$ .
Let $p^{(i,e)}$ : $P^{(i,e)}arrow \mathrm{P}^{1}$ be a non-trivial principal homogeneous space of $j^{(i)}$ : $J^{(i)}arrow$

$\mathbb{P}^{1}$ given by an element $e$ of order 11 in $(J^{(i)})_{0}$ . Then $p^{(i,e)}$ : $P^{(i,e)}arrow \mathrm{P}^{1}$ is a
rational elliptic surface with a multiple fiber of multiplicity 11 over $0$ (of type $I_{0}$ in
the cases $\dot{i}=1,2$ and of type $I_{1}$ in the case $\dot{i}=3$).
Let $Z^{(i,e)}$ be the $\log$ Enriques surface of index 11 obtained by the composite of the
blow up at the intersection of the components of multiplicities 5 and 6 in $(P^{(i,e)})_{\infty}$ ,
which is of Kodaira’s type $II^{*}$ , and the blow down of the proper transform of
$(P^{(i,e)})_{\infty}$ . Let $X^{(i,e)}$ be the global canonical cover of $Z^{(i,e)}$ and $G^{(i,e)}$ the Galois
group of this covering. Then, each of these pairs (X $(i,\in),$ $G^{(}i,e$) $)$ gives an example
of (X, $G$) such that $n=1$ (and $G_{N}=\{1\}$ ), i.e., $G\simeq\mu_{11}$ and that $M=U(11)$ .

Our result states that these are all:
Theorem (3.1).
Under the notation above, the following are true:
(1) $G_{N}=\{1\}$ so that $G\simeq\mu_{11n}$ and $g$ is unique and of order 11.
(2) $M$ is isomorphic to either one of $U,$ $U\oplus A_{10}$ or $U(11)$ .
(3) In the case where $M\simeq U$ or $U\oplus A_{10},$ $(X, G)$ is isomorphic to either $(S_{66}, \langle\sigma_{66}\rangle)$ ,
$(\mathcal{X}_{0}, \langle\sigma_{44}\rangle)$ , or $(\mathcal{X}_{S}, \langle\sigma\rangle)(s\neq 0)$ in Examples 1 and 2.

Moreover, $M\simeq U\oplus A_{10}$ if and only if (X, $\langle g\rangle$ ) is isomorphic to $(\mathcal{X}_{\sqrt{-4/27}}, \langle\sigma^{2}\rangle)$

$(\simeq(\mathcal{X}_{-\sqrt{-4/27}}, \langle\sigma\rangle 2))$ .

(4) In the case where $M\simeq U(11),$ $(X, G)$ is isomorphic to one of $(X^{(i,\mathrm{e})}, G(\mathrm{i},e))$ in
Example 3.

The key of the proof is to determine all the possibilities of $M$ and then apply
(1.4) to find a $<g>$ -stable elliptic fiber space structure on $(X,$ $<g>)$ to get
concrete descriptions of such pairs as in Examples 1-3.
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