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On nef values of determinants of ample vector bundles

Masahiro Ohno
KB B

0 Introduction

Let M be an n-dimensional complex projective manifold and £ an ample vector bundle of
rank r on M. The nefness of the adjoint bundle Kj; + det £ has been studied by several
authors in the case where » > n — 2. In this note, we investigate the nef value 7(M, det £)
of the polarized manifold (M, det £), and show the following results.

Proposition 0.1. 7(M,det &) < (n + 1)/r and equality holds if and only if (M,&) =
(P™, O(1)%7).

If we put r = n +1, this proposition implies [YZ, Theorem 1] and [P1, Theorem). This
proposition can be strengthened as follows.

Proposition 0.2. Ifr <n, then 7(M,det &) < n/r unless (M, &) = (P™, O(1)%).
Proposition 0.3. Ifr >n, 7(M,det &) < (n+1)/(r +1) unless (M, €) = (P™,O(1)%").

If we put 7 = n, these propositions are the same proposition of Ye and Zhang [YZ,
Theorem 2]. The main theorems of this note are the following:

Theorem 0.4. If r < n, then 7(M,det&) = n/r if and only if (M,E) is one of the
following;

1) (P™, Tpn)

2) (P 0(1)20-) 6 O(2))

3) (Q,0q(1)®7), where Q is a hyperquadric in P+ '

4) (P(F), H(F) @ ¢*G) where F is a vector bundle of rank n on a smooth proper curve
C, ¥ : P(F)—C is the projection, and G is a vector bundle of rank r on C.

Note that if » = n then Theorem 0.4 implies Peternell’s theorem [P2, Theorem 2] and
if » > n then Theorem 0.4 and Proposition 0.3 (or 0.1) lead Fujita’s theorem [F4, Main
Theorem].
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Theorem 0.5. Suppose that 7(M,det&) < n/r. Ifr < n —1, then 7(M,det&) <
(n —1)/r unless (M, €) = (P*,0(1)20=1 ¢ O(2)) and r > (n — 1)/2.

Note also that if » = n — 1 then Theorem 0.5 combined with Proposition 0.2 leads
[YZ, Theorem 3].

Theorem 0.6. Suppose that 2 <r <n—2. If 7(M,det&) = (n —1)/r, then (M,E) 1s
one of the following;

0) (P, 0(1)80~1) @ O(2)) where r = (n — 1)/2 and n is odd.

1) M is a Del Pezzo manifold with Pic M = Z, and £ = L®" where L is the ample gen-
erator of Pic M .

2) There exist a hyperquadric fibration o : M—C over a smooth curve C, a -ample
line bundle Op(1) on M and an ample vector bundle G of rank r on C such that
E = On(1) @Y*G where Op(1)|r = Og(1) for any fiber F = Q of 3.

3) There exists a P %-fibration ¢ : M—S, locally trivial in the étale (or complex) topol-
ogy, over a smooth surface S such that E|p = Opn—2(1)®" for every fiber F' of 9.

4) M 1is the blowing-up ¢ : M—M' of a projective manifold M’ at finite points, and there
exists an ample vector bundle £ of rank r on M’ such that 7(M’',det ') < (n —1)/r and
E=YP*E' ® Op(—FE) where E is the exceptional divisor of 1.

Theorem 0.6 could be seen as a natural continuation of [ABW, Theorem|, [PSW, Main
Theorem(0.3)] and [F1, Theorem 3’] from the view point of nef value.

Notation and conventions

In this note we work over the complex number field C. Basically we follow the standard
notation and terminology in algebraic geometry. We use the word manifold to mean a
smooth variety. For a manifold M, we denote by K or simply by K the canonical divisor
of M. We use the word line to mean a smooth rational curve of degree 1. We also use the
words "locally free sheaf” and ”vector bundle” interchangeably. For a vector bundle £ on
a variety X, we denote also by H(&) the tautological line bundle Op(¢)(1) on P(£). We
are going to use the terminology in the Minimal Model Program. For our terminology,
we fully refer to [KMM] and [M2]. For an extremal ray R of NE(M), we denote by {(R)
the length of the ray R.

1 Preliminaries and proofs of propositions

We first recall the nef value (M, L) of a polarized manifold (M, L): (M, L) is defined
to be the minimum of the set of real numbers ¢t such that Kps + tL is nef.

We also recall, for convenience of the reader, the following theorem [CM, Main Theo-
rem] due to Koji Cho and Yoichi Miyaoka.

Theorem 1.1. Let M be a Fano manifold of dimension n over the complex numbers. If
(C,—Kp) > n+1 for every effective rational curve C C M, then M is isomorphic to P".

Now we begin with the proof of Proposition 0.1
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Proof of Proposition 0.1. Let 7 be the nef value 7(M,det &) of the polarized manifold
(M,det £). We may assume that 7 is positive. Then there exists an extremal rational
curve C on M such that (K + 7det£).C = 0. Thus 7 < (n+ 1)/r since —K.C <n +1
and det £.C > r. If equality holds, then M is a Fano manifold of Picard number one by
(I, Theorem (0.4)]. Hence M is isomorphic to P™ by Theorem 1.1. Since € turns out to
be a uniform vector bundle of type (1,...,1), £ is isomorphic to O(1)®", O

Proof of Proposition 0.2. Assume that K + (n/r)det & is not nef. Let R be an extremal
ray of NE(M) such that (K + (n/r)det £).R < 0 and let C be an extremal rational curve
which belongs to R. Then n < (n/r)det£.C < —K.C < n +1. Thus —K.C = n+1
and therefore the length {(R) of R is n 4+ 1. Hence M is a Fano manifold of Picard
number one by [I, Theorem (0.4)] and M is isomorphic to P™ by Theorem 1.1. Moreover
det£.C <r(n+1)/n=r+ (r/n). Since r < n, this implies that det £.C = r. Therefore
€ is a uniform vector bundle of type (1,...,1) and isomorphic to O(1)®". O

Remark 1.2. We can give another proofs of Propositions 0.1 and 0.2 without using The-
orem 1.1.

Proof of Proposition 0.3. Assume that K + (n+1/r +1) det £ is not nef. Let R be an
extremal ray of NE(M) such that (K +(n+1/r+1)det £).R < 0 and let C be an extremal
rational curve which belongs to R. Then r < det£.C' < —(r+1)/(n+1)K.C < r+1 and so
det£.C =r. Hencen < (n+1)r/(r+1)=(n+1)/(r+1)det£.C < —K.C <n+1. Thus
—K.C =n 41 and the length [(R) of R is n + 1. Hence M is a Fano manifold of Picard
number one by [I, Theorem (0.4)]. Therefore M is isomorphic to P* by Theorem 1.1 and
€ is a uniform vector bundle of type (1,...,1), so that £ is isomorphic to O(1)®". O

2 Proofs of Theorems 0.4 and 0.5

First we give a proof of Theorem 0.4.

Proof of Theorem 0.4. Let P be the projective space bundle P(£) over M, 7 : P—M the
projection, and L the tautological line bundle H(&). Let R be an extremal ray of NE(M)
such that (Kp + (n/r)det€).R = 0 and let ¢ : M—C be the contraction morphism
of R. Since r < n, we have (Ky + det&).R < 0 so that —m*(Ky + det &) is ¢ o -
nef. Thus —Kp is ¢ o m-ample because —Kp = rL — 7*(Kj + det £). This implies
that ¥ o 7 is the contraction morphism of an extremal face. Let R, be the extremal ray
corresponding to 7 : P—M and H an ample Cartier divisor on C. Then the extremal face
(¢ o m)*H)* N NE(P) corresponding to 1 o 7 can be expressed as R, + Ry, where R, is
an extremal ray of NE(P) different from R,. Let ¢ : P—>N be the contraction morphism
of R;. Then there exists a unique morphism 7’ : N—C such that n’ 0 ¢ =4 o 7, and we
have the following commutative diagram

P -2 N

|- [+

M — C.
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Let z € N be a point such that dim¢™'(z) > 0 and put d = dime~!(z). Let A, be
a d-dimensional irreducible component of »™!(z). Since 7|4, : A,—M is finite, we have
d < n. Hence we have [(R;) < n + 1 by Wisniewski’s theorem [W, Theorem (1.1)]. Let
Cy C P be arational curve which belongs to R; and which attains the length [(R;) of R;.
Since ¥(m(C1)) is a point, 7(C;) belongs to R, and therefore (Kp+(n/r) det £).7(Cy) = 0.

Hence we have

n+1>—Kp.Oy = rL.Cy - (Ky +det £).C,
= rL.Ci+ ((n/r) —1)det E.m.(Ch)

> r+n-—r=n.
If L.Cy > 2, then we have r = 1 by these inequalities. Thus
n+1>rL.Cy+((n/r)—1)det Em(Cy) = nL.Cy > 2n,

and we have n = 1. The theorem is obvious when n = 1. Therefore we may assume that
L.Cy=1.

Since L.Cy = 1, we know that C;—7(C}) is birational. Let f : W—A, be the
normalization, W—W a desingularization, and ¢ : W—W—A, the composite of these
two morphisms.

Assume that —Kp.C; = n+1. Then we have 1 < —n— Kp.C; = —nL.C; — Kp.C,. It
follows from the argument in [Ma, (2.3)] that A*(W, —tg*(L|4.)) = 0 for all ¢ < n. Since
d < n, this implies that (W, f*(L]a,)) = (P%, O(1)) by [F2, (2.2) Theorem]. If d < n —1,
then h (W, —ng*(L|4.)) = h*(P%, O(=n)) # 0, which is a contradiction. Hence we have

= n. Therefore Lazarsfeld’s theorem [L, §4] implies that M = P". Let D be a line in
P". Since det £.D = (r/n)(—Kp).D =r(1+(1/n)) and r < n and det £.D is an integer,
we have r = n. Thus £ is a uniform vector bundle of type (1,...,1,2) and so £ = Tpn or
£=0(1)%1 5 O(2) (see, e.g., [0SS]). Since ¢ has n-dimensional fibers, we know that
€= 0(1)%Y g O(2). This is the case 2) of the theorem.

Assume that —Kp.Cy = n. The theorem is true for r = n by [F4, Main Theorem]
or [P2, Theorem 2], and so we may assume that r < n — 1 in the following. Then we
have det £.7(Cy) = r and — K. 7(Cy) = n. On the other hand, for every rational curve
D C M belonging to R, we have —Ky;.D = n/r det £.D > n. Therefore the length I(R)
of Ris n. It follows from Wisniewski’s theorem [W, Theorem (1.1)] that dimC < 1.

Suppose that dimC = 1. Let U denote the largest open subset of C such that
™1 (U)—U is smooth. Let F be any fiber of the morphism ¢~ (U)—=U. Then Kp +
n/rdetE|p = 0, Le., 7(F,det E|p) = ((n — 1) + 1)/r. Hence Proposition 0.1 shows that
(F,&|p) = (P71, 0(1)%). Since H*(U,0}5) = 0 by Tsen’s theorem, where we consider
U with metric (or étale) topology, ~!(U) is isomorphic to P(Fy) over U for some vector
bundle Fyy on U. Let H denote the tautological line bundle H(Fy) on ¢~ (U). We can
extend H to a line bundle on M, which we also denote by H by abuse of notation. Let F”
be an arbitrary fiber of 4. Then F” is irreducible and reduced because v is the contraction
morphism of an extremal ray and dimC = 1. Since the polarized variety (F, H|r) has
Fujita’s delta genus A(F, H|r) = 0 and degree H|% ' = 1, (F', H|p) also has the same
delta genus and degree, so that (F', H|p) = (P*71,O(1)%). Thus det&|m = O(r).
Therefore £|p = O(1)%". This is the case 4) of the theorem.



79

Suppose that dimC = 0. Then M is a Fano manifold of Picard number one and
Ky +n/rdet€ = 0. Let A be the ample generator of PicM: PicM = Z - A. Since
0=—n— Kp.C; = —nL.Cy — Kp.Cy, we get h*(W,—tg*(L|a,)) =0 forall t <n —1 by
the argument in [Ma, (2.3)]. Thus we obtain d > n — 1 by the same reason as before.

If ¢ is birational, then h?(W, —ng*(L|4.)) = 0 by [F3, (11.4) Lemma)]. Therefore we
know that d = n and (W, f*(L|4,)) = (P",O(1)) by [F2, (2.2) Theorem]. Hence it follows
from Lazarsfeld’s theorem [L, §4] that M = P", which contradicts the assumption that
[(R) = n. Thus ¢ is of fiber type.

Ifd =n—1, then (W, f*(L]4,)) & (P",0(1)) by [F2, (2.2) Theorem]. We claim
that ¢ has equidimensional fibers. Suppose, to the contrary, that ¢ has an n-dimensional
fiber p~1(2') over a point 2z’ € N. Let A,/ denote an n-dimensional irreducible component
of ¢71(2'). Let f': W'—A, be the normalization, W/—W’ a desingularization, and
g : W'—W'—A, the composite of these two morphisms. Since 0 = —nL.Cy; — Kp.C},
we have h™(W', —tg""(L|a,,)) = 0 for all t < n by [YZ, Lemma 4]. Thus Fujita’s theorem
[F2, (2.2) Theorem] again implies that (W', f*(L|4,,)) = (P",O(1)). Hence M = P" as
before, which contradicts the assumption that {(R) = n. Therefore ¢ has equidimensional
fibers. This implies that ¢ is a P*~!-bundle over a projective manifold N by [F1, (2.12)
Lemma). Note that dim N = r. Let F denote @.L. Then F is a vector bundle of rank n.
Moreover F is ample because H(F) = L.

We have Pic N = Z: let B denote the ample generator of Pic N. Since

—rL+ 71 (Ky+detE) = Kp=-—nL+¢"(Ky+detF),

we have n—r = p*(Ky+det F).l = (Ky+det F).¢.(l), where [ denote a line in a fiber of 7.
Note that [—¢(l) is birational because L.l = 1. Thus —Kn.¢(l) = det F.p(l)+r—n >r.

We claim here that —Kn.p(l) < r+1. Assume, to the contrary, that — Ky.¢(l) > r+42.
Then ¢(l) can be deformed to a sum Ele I; of at least two rational curves [;’s (some of
which may be equal) (¢ = 1,...,6,d > 2) such that —Kn.l; < r + 1 by [Ml, Theorem
4]. Thus n —r = (Kn + det F).p(l) = S (Kn + det F).l; > §(—r — 1+ n). Hence
(6 —1)(n —r) < é. Since r < n — 1 by the preceding assumption, we have 1 <n —r <
1+(1/(6-1)) <2. Ifn—r =1, then 1 = (Ky+det F).o(l) = Zle([&"N—}-det F).l;, which
is a contradiction because Pic N = Z and so Ky +det F is ample. Hencen—r =2, § = 2,
and (Ky+det F).l; = 1. Sincen < det F.l; = 1-Kn.l; <r+2 = n, weobtainn = det F./;
and —Ky.l; = r+1. This implies that Ky +(r+1)(Ky+det F) = 0. Applying Kobayashi
and Ochiai’s theorem [KO], we infer that (N, Ky + det F) = (P",0O(1)). Therefore
det F = O(r + 2) = O(n) and F = O(1)®". This means that 7 is P"-bundle, which is a
contradiction.

By the claim above, we have two cases: (—Kn.p(l),det F.o(l)) = (r +1,n+ 1) and
(—Kn.@(l),det F.p(1)) = (r,n). Let I’ denote ¢(I) and let C] denote 7(Cy). Put s = A.C]
and t = B.l'. We have ¢*B = 2L + yn*A for some z,y € Z. Restricting this formula on
[, we get 0 < t = z, and restricting this formula on Cj, we obtain 0 = z + ys. Hence
y < 0. Since ™A€ Z-L®Z-¢*B,yisaunit in Z. Hence y = —1 and s =z ={. Thus
¢*B = sL — m*A. Put P} = [. Note that P} = [—/' is the normalization. Let X denote
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P xn P}?, and let mx denote the composite of X—P and .

X—)P}7

!

P —=5 N
Suppose that (—Ky.l',det F.I') = (r + 1,n + 1). Then
X =P(FR0)=POp(1)2"1 g 02)).

Let p : X—P7 be the morphism determined by |H(Op:1(1)®"~V ¢ O(2))|. Note that
Lx = He + H,, where He = H(OE"™" & O(1)) = Opy(1) @ Ox and H, = Opy(1) ® Ox.
Hence 75 A = sLx — (¢*B)x = sHe + sH, — tH, = sH;. Thus we obtain a unique finite
morphism A : PZ— M forming a commutative diagram

P +—— X
b
M —— M

This implies that M = P" by Lazarsfeld’s theorem [L, §4]. This contradicts the assump-
tion that /(R) = n. Hence this case does not occur.

Suppose that (—Ky.l',det F.I') = (r,n). Then
X=PFrO0)= Pg_l x P,
Let p : X—)P?“l be the projection. We have Ly = H¢ + H,, where H; = Op?(l) ® Ox
and H, = Opy(1) ® Ox. Hence 73 A = sLx — (¢*B)x = sH¢ + sH, — tH, = sH;. Thus

there exists a unique finite morphism A : P’g‘l—ﬂw forming a commutative diagram

Pg-l PRI '€

Ll

M M.

Put Dy = 7m(X). Dy is a prime divisor on M. For every point z € ', n(¢p™1(2)) = Dy,.
This implies that for every line [; in a fiber of m we have 7(¢7'(2)) = (¢~ (2")) for
all points 2,z € ¢(l;). Since every two points in the fiber 77!(n([)) can be joined by
a line, we know that m(¢™'(z)) = D for every point z € (r~1(m(l))). Moreover
for every point * € Dy and 2’ € h™'(x), 2’ x P} is embedded as a line in 77*(z)
because Ly = H¢ + H,, and ¢(2' x P}) = I'. Therefore it follows from the above
argument that m(¢71(2)) = Dy for every point z € p(r7!(z)). Hence m(p~1(2)) = Dy
for every point z € (7' (Dpr)). Putting Dp = 7*(Dyy), we get m(p~(p(Dp))) = Dy
Thus ¢ (@(Dp)) = 7~Y(Dpy) = Dp. Therefore Dp.C; = 0. On the other hand, since
Dyr = aA for some positive integer a, we have Dp.Cy = an*A.C; = aA.C] = as > 0.
This is a contradiction. Therefore there is no (n — 1)-dimensional fiber in ¢ and d = n.
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Now take 2 as a general point of N. Then W = W = A, = ¢ !(z). It follows
from (Kp +nL).Cy = 0 that K,-1(,) + nL|,-1;) = 0. Applying Kobayashi and Ochiai’s
theorem [KO], we infer that ¢~ !(z) = Q". Hence we obtain M = P" or Q™ by [CS] or
[PS]. Now we are in the assumption that {(R) = n, so that M is in fact isomorphic to Q™.
Furthermore since det £.D = —r/nKy;.D = r for any line D in Q we have E|p = Op(1)®"
for any line D C Q. Hence £ = O(1)%". ~ O

Finally we give a proof of Theorem 0.5.

Proof of Theorem 0.5. Let 7 denote the nef value 7(M,det £) of (M,det £). Let R be an
extremal ray of NE(M) such that (Ky + 7det £).R = 0 and v : M—C the contraction
morphism of R. Let D be an extremal rational curve belonging to R. Since (n—1)/r < T,
(Kp+(n—1)/rdet&).R < 0. Hence we have n — 1 < (n—1)/rdet £.D < —Kj.D, and
therefore n < —Kj.D. On the other hand, (Kp +n/rdet&).R > 0 since 7 < n/r. If
we have —Kj;.D = n, this implies that det £.D > r. Hence det £.D > r + 1. Therefore
we have —Ky.D > (n —1)/rdetE.D >n—14(n—1)/r > nsince r < n — 1. This is
a contradiction. Thus we have —Kj;.D = n + 1, so that the length I(R) of R is n + 1.
Applying Ionescu’s theorem [I, Theorem (0.4)], we know that dim C = 0. Therefore M is
a Fano manifold of Picard number one. It follows from Theorem 1.1 that M = P™. For
every line D in P", we have det £.D < r(n+1)/(n—1)=r+(2r/(n —1)) <r +2 and
det £.D > r(n+1)/n =7+ (r/n). Hence det £.D =7+ 1 and 1 < 2r/(n — 1). Therefore
EXOMBN @ O2) and r > (n—1)/2. d

Remark 2.1. Without using Theorem 1.1, we can show Theorem 0.5.

3 Outline of Proof of Theorems 0.6

Outline of Proof of Theorem 0.6. Let P be the projective space bundle P(€) over M,  :
P— M the projection, and L the tautological line bundle H(E). Let R be an extremal ray
of NE(M) such that (K + ((n —1)/r)det £).R = 0 and let ¢ : M—S be the contraction
morphism of R. Since r < n — 1, we have (Kj + det £).R < 0-so that —7*( K + det £)
is ¢ o m-nef. Thus —Kp is ¥ o m-ample because —Kp = rL — 7*(Kp + det £). Let R, be
the extremal ray corresponding to 7 : P—M. Then NE(M/S) = R, + Ry, where R, is an
extremal ray of NE(P/S) different from R,. Let ¢ : P— N be the contraction morphism
of Ry, which is naturally an S-morphism. Let 7/ : N—.S be the structural morphism. We
have the following commutative diagram

P —= N

M-t

Let z € N be a point such that dim¢~'(z) > 0 and put d = dimp~!(z). Let A, be a d-
dimensional irreducible component of ¢~!(2). Since 7|4, : A,—M is finite, we have d < n.
Hence we have [(R;) < n + 1 by Wisniewski’s theorem [W, Theorem (1.1)]. Let C; C P
be a rational curve which belongs to R; and which attains the length I(R;) of R;. Since
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¥(7(C})) is a point, m(C) ) belongs to R, and therefore (Kp +((n—1)/r)det £).7(Cy) = 0.
Hence we have

n+1>~-Kp.C; = rL.C;—7"(Kpy+det&).C)
= rL.Ci+ (((n—=1)/r) —1)det E.m(CY)
> n—1.

If L.Cy > 2, then det £.m.(Cy) > r + 1. Hence

n+l > rL.Ci+ (((n—1)/r)—1)det E.m(Cy)
> 2r+(n—=0)010+(1/r))=r—=1=r—-14n—-14+(n—-1)/r.

However this contradicts the assumption that 2 < » < n—2. Therefore we have L.C; = 1.

Since L.Cy = 1, we know that C;—m(Cy) is birational. Let f : W—A, be the
normalization, W—W a desingularization, and ¢ : W—W —A, the composite of these
two morphisms.

The case where —Kp.C; = n + 1 is ruled out by the same argument in the proof of
Theorem 0.4. If —Kp.C; = n, then we know that o is birational and that (M,&) =
(P, O(1)®~V) @ O(2)) where » = (n —1)/2 and n is odd by the similar argument in the
proof of Theorem 0.4. This is the case 0) of the theorem.

Assume that —Kp.Cy = n — 1 in the following. Then (((n —1)/r) — 1) det £.x(Cy) =
n —1 —r by the inequality above. Since r < n — 2, it follows that det £.7(C}) = r. Hence
—Ky.m(Cy) = n—1and [(R) = n — 1. Suppose that 1 is birational. Then ¢ is also
birational by the analogous argument in [ABW, Lemma 1.8]. Since —Kp.C; = n — 1,
it follows from the analogous statement in [ABW, Lemma 1.13] that S is smooth. Let
E be the exceptional locus of 1. Since I(R) = n — 1, F is an irreducible divisor which
is contracted to a point by ¢. Thus ¢ is the blowing-up of S at a point ¥(FE) by [ES,
Theorem 1.1]. Hence we have the case 4) of the theorem by the standard argument.

Now suppose that 9 is of fiber type. Then dimS < 2 because [(R) = n — 1. If
dim S = 2, then we have the case 3) of the theorem by the same argument as in [ABW].
Assume that dim S = 1 and let F' be a general fiber of 1». Then Kp+((n—1)/r) det & = 0.
Since r < n — 2, it follows from Theorem 0.4 that (F,Er) is isomorphic to (@, Og(1)%")
or (P(F),H(F)®¢"G), where F is a vector bundle of rank n — 1 on a smooth proper
curve C, ¢' : P(F)—C is the projection, and G is a vector bundle of rank r on C. If
F = P(F), then we have h'(O¢) = h'(OF) = 0 since F is Fano. Hence C = P! and F
and G can be written as direct sums of line bundles. Now we can derive a contradiction
by the assumption that 2 < r < n — 2 and the fact that Kp + ((n — 1)/r)det&r = 0.
Thus we have (F,Er) = (Q,Og(1)®"). Hence we obtain the case 2) of the theorem by the
standard argument.

Finally let us consider the case dim S = 0. Note that M is a Fano manifold of Picard
number one and that Ky + ((n — 1)/r)det& = 0. If ¢ has an n-dimensional fiber,
then it follows from the argument in [PSW, §4] that every fiber of ¢ is n-dimensional
and that M is a Del Pezzo manifold. Let Oy (1) be the ample line bundle such that
Ky + (n —1)Opm(1) = 0. Since —Kp.m(Cy) = n — 1, we have Op(1).7(Cr) = 1. Hence
H(E(—1)).Cy = 0 and H(E(—1)) is nef. Therefore H(E(—1)) is a supporting function for
¢ and semiample. Thus £(—1) = O% by [PSW, Cor.1.2], and hence £ = Oy (1)%". Let
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us assume that ¢ has no n-dimensional fibers in the following. Moreover we can show
that ¢ has no (n — 1)-dimensional fibers by the similar argument as in [PSW, §5].

Hence it follows from —Kp.C; = n — 1 that ¢ is of fiber type and that every fiber
of ¢ is (n — 2)-dimensional. Then (¢7'(2), L|,-1(»)) = (P"7%,0(1)) for a general point
z € N. Thus N is smooth of dimension r + 1 and ¢ makes (P, L) a scroll over N by
[F1, (2.12)]. Let F be @.L. F is an ample vector bundle of rank n —1 on N. Note
that C; is a line in W = P™~2, Since det Ew.Cy = r, we have det Ew = Ow(r). Hence
Ew = Ow(1)®". Since —rL + m*(Kpy + det &) = —(n — 1)L + ¢*(Kn + det F), we have
n—r—1= ¢ (Ky+ det F).l, where [ denotes a line in a fiber of m. Hence we obtain
(K + det F).lI', where I' denotes ¢(1). Thus —Kn.I' = det F.l' +r—(n—1) > 7. '

Assume that —Kn.l’ > r 4+ 3. Then [’ can be deformed to a sum Z?ﬂli of at
least two rational curves l;’s (some of which may be equal) (i = 1,...,6,6 > 2) such
that —Kn.l; < r+ 2 by [M1, Theorem 4]. Thus n —r —1 = Zle(]&’]v + det F).l; >
§(—r —2+4+n—1). Hence (6§ —1)(n —r —1) < 24. Since r < n — 2 by the assumption, we
have 1 <n—r—1<24(2/(6—1)) < 4. We can rule out the case n—r—1 = 1 by the same
reason as before. If n —1 —r = 2 or 3, then (K +det F).; = 1 for some i. Hence r+2 >
—Kyl=det Fl,—1>n—-2. Ifn—1—r=2,thenr+2=n—1. f —Ky.l; = r+2, then
we know that (N, F) = (P, 0(1)®"=2 g 0(2)) by Kobayashi-Ochiai’s theorem [KO] as
before. However this contradicts the fact that 7 is of fiber type. If —Kn.l; = r + 1, then
again by Kobayashi-Ochiai’s theorem [KO] we infer that (N,F) = (Qr+1,0(1)8(-1),
However this implies that Im(m) = P"~%, which is also a contradiction. If n — 1 —r =3,
then —Ky.l; = r + 2. Hence we obtain (N, F) = (P™+1, 0(1)®(»~1)  which contradicts
the fact that Im(n) = P*"2. If n — 1 —r =4, then § = 2. If (Ky +det F).l; = 1 for some
i,then n—3=r+2> —Ky.l; = det F.[; —1 > n — 2. This is a contradiction. Hence we
may assume that (Ky + det F).l; = 2 for 1 = 1 and 2. This implies that n =3 =r+2 >
—Ky.l;, =det Fl; —2>n—3. Thus —Ky.l; = 7+ 2 and det F.[; = n — 1. Hence there
exits a rational curve ; on P such that L.[; = 1 and a,o(l;) ={;. If 7r(l~,) is a point, then we
may assume that lz = [ and this contradicts the assumption that —Kn.l' > r + 3. Thus
7r(l~z) is a rational curve. On the other hand, —7*( K + det 5)12 =n—1—r—2=2.
This gives that (((n — 1)/r) — 1) det £.7(/;) = 2. Therefore we get r < det En(ly) =r/2,
which is a contradiction. Hence we have —Kn.I' <r + 2. ‘

By the consideration above, we have three cases: (—Ky.l',det F.I') = (r 4+ 2,n + 1),
(r+1,n) or (r,n—1). Let A be the ample generator of Pic M and B the ample generator
of Pic N. Let C! denote 7(C;). Put s = A.C] and t = B.I'" Then we obtain s =1
and ©*B = sL — 7 A by the same argument as before. We can rule out the case where
det F.I' = n+ 1 by the argument before and the case where det F.I' = n by the argument
as in [PSW].

Let us consider the case (—Ky.l',det F.I') = (r,n — 1) in the following. This part
is the heart of this proof of the theorem. Let F denote any fiber of m. We have
Flr =2 Op(1)2~Y. Note that F'—@(F) and W—m(W) are birational. For any point
z € N, we have &|,-1(;) = Opn—2(1)¥". Hence we have a birational morphism P2 x
P1or Y (m(p~(2))). Since m~1(m(p'(2))) D ¢ '(z) = P"?, it induces a birational
morphism P"'=p(r71(1(¢(2)))). Fix a point z; € N and take an irreducible re-
duced curve C on N such that C' is not contained in (77 (7 (" (20)))). For any 2z €
C\ p(rHr (¢ (20)))), we have (¢~ (z1)) N 7(¢™ (2)) = 0. Since dimp™(C) =
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1+n—2=n-1, we know that dimn(¢™(C)) =n—1. Put Dpy = (" 1(C)). Dy is a
prime divisor on M. Put Dp = 7m*(Djys). Dp is a prime divisor on P. It follows from Dy =
Uscom(9p7(2) that Dp = Useom=(n(p~(2))). Hence ¢(Dp) = Usecw(r(r(#*(2)).
Thus Dp—¢(Dp) has (n — 2)-dimensional fibers and dimp(Dp) =n+r—-2—n—-2=r.
Putting Dy = ¢(Dp), we know that Dy is a prime divisor on N and Dp = ¢*(Dy). This
implies that Dp = n*(Dys) = n*(Dy), which is impossible. Therefore if dim S = 0 then
M is a Del Pezzo manifold and £ = Oy, (1)®". This is the case 1) of the theorem. O
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