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Abstract

We consider how to optimize a ratio of two expected values of additive statistics on
a finite-state controlled Markov chain. We present an algorithm for finding an optimal
policy by use of both stochastic dynamic programming and fractional programming.

1 Introduction

We are concerned with finding an optimal policy which maximizes a ratio of two expected
values of additive rewards over a controlled Markov decision process ([7],[8]).

2 Fractional Expectation Problem
Throughout the paper, the following data is given:

N > 1 is an integer; the total number of stages

S = {sy, S2,...,8p} is a finite state space

A = {ay, ay,...,a} is a finite action space

r:SxA— R, R:SxA—(0,00) are two n-th reward functions

k:S— R K:8—(0,00) are two terminal reward functions (1)
B3 is a discount factor : 0 < 8 <1

p is a Markov transition law

: plylz,u) >0 Y(z,u,y) € Sx AxS, Y plylz,u)=1 V(z,u) €S xA
yeSs
z,u) denotes that next state y conditioned on state z and action u

y~p(
appears with probability p(y|z,u).

We use the following simple notations:

Tp i=T(Xn, Un), Rp:=R(Xn,Up) 1<n<N

TN41 = k(XN+1), Ry = K(XN+1) (2)
E, [Y]:= E[Y|Xn = 2,].

Let ¢ € R! be a given constant (level). Then we consider how to maximize the ratio of the
expected value of one additive statistics ' :

» T(Xl,U1)+T(X2,U2)+"'+T(XN,'UN)+IC(XN+1)
to that of the other

R(X1,Uy) + R(X3, Us) + - - + R(Xn, Un) + K (Xn11)-
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A Markov policy 7 = {m, 7, ...,y } is a finite sequence of decision functions:
S —A 1<n<N. ‘ (3)

The set of all Markov policies is denoted by II. Given an initial state z; € S, let us consider
the maximization problem:

N+1
ET [ > rn]

el
Ex, [ > Rn]
n=1

By introducing the Lagrange multiplier ), the fractional optimization problem (4) is trans-
formed into the standard stochastic optimization problem with the following additive criteria:

F(x;) Maximize subject to (i) 7 € IL (4)

N+1
Maximize E [ > (ra— /\Rn)] (5)
n=1
P(z1; ) subject to (i) @ny1 ~ p(-[Tn,un) 1< <N

(i) un€A 1<n<N
z1 €8, AeR, 1<n<N+1L

Let u,(z,; A) be the maximum value of the subproblem:

N+1
Maximize FE_ [ > (rm — )\Rm)} (6)
Pn(zn; A) subject to () Tmy1 ~ PC|Tm,Um) n<MIN

(i) um€eAd n<m<N
z, €S, NeR', 1<n<N+1

Then we have the recursive equation([4]):

THEOREM 2.1
Un(z; N) = I}L/Ieajc[r(x, u) — AR(z,u) + Y tny1(y; Np(y)z, u)] (7)
yeS
reS, AeR, 1<n<N
uns(z;A) = k(z)—AK(z) €S, e R\

3 Infinite-stage Problem

In this section we consider an optimization problem of the ratio of one total discounted expected
value over an infinite-stage to the other as follows:

E;rx l:i /Bnmlrn]
n=1

= subject to (i) 7 eIl (8)
E;)rl I:z ﬁn-—an] .

n=1

F'(z1) Maximize
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where
i B, = (X, Up) + Br(Xe, Un) 4+ -+ 8% (X, Up) + -+
n=1
}o_i, B IR, = R(X,,U)+ BR(X2,Us) + -+ B R(Xp, Up) + -+ -
n=1
Here II is the set of all Markov policies, whose element m = {m,mg,...,m,,...} is an infinite

sequence of decision functions :
T:S—A n=1,2,.... (9)

An introduction of Lagrange multiplier \ reduces the fractional optimization problem (8) to
a standard discounted dynamic programming problem ([3],[5],[6],[9]) as follows:

Maximize E7 | 8" '(rn — ARn) (10)
n=1
P'(z1; A) subject to (1) Zpy1 ~p(|Te,un) n=1,2,...
(i) uped n=1,2,...

€S, A€ R
Let u(xy; A) be the maximum value of the problem (10); Then we have the recursive equation:

THEOREM 3.1

u(z;\) = l\tfleaj([r(:c, u) — AR(z,u) + Z;gu(y; Ap(y|z, u)] (11)
z€S, A€R.

4 Fractional Programming Approach

In this section we solve the fractional expectation problems (4) and (8) through both fractional
programming and dynamic programming.

4.1 Fractional Programming

Let us review two fundamental results on fractional programming. We consider the following
problem:

S

(2)
2)

where 7 is a nonempty set and f : Z — R!, g : Z — (0,00). It is well-known that the
fractional programming problem Fr is associated with the following parametric problem:

|

Fr Maximize subject to z € Z (12)

Q
—

Pr(A) Maximize f(z) — Ag(z) subjectto z € Z. (13)
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THEOREM 4.1 ([11]) The fractional problem Fr has an optimal solution 2* € Z if and only
if the parametric problem Pr()\) has the optimal solution z* € Z for some parameter A and the
optimal value vanishes.

Let us consider Dinkelbach’s Algorithm:

e Step 1. Select some z € Z and set n =1, z;) = z and A(y) = l;%
e Step 2. Solve Pr()\,)) and select some optimal solution z € Z.
e Step 3. If f(2) — Anyg(z) = 0, set 2/ = z and X = 5%, and stop. Otherwise, set
f(z) \
1) = d Apy1) = ——=.
Z(n+1) = Z aNd A(n+1) 9(2)

e Step 4. Set n =n + 1 and go to Step 2.

THEOREM 4.2 ([11]) Either Dinkelbach’s Algorithm terminates in some finite n-th itera-
tion, in which case 2’ is an optimal solution and X is a mazimum value of Fr, or else the
sequence {Am)} converges strict-monotonically to the mazimum value of Fr. Termination is
assured if Z is finite.

We remark that the convergence is in fact superlinear. If Dinkelbach’s Algorithm generates
a finite sequence {A(k)}1<k<n With properties

(i) /\(1) < /\(2) <L e K )\(n—l) < /\(n),

(i) f(z) — Amg(2) = 0 for some optimal solution z € Z of Pr(Aw)), (ili) 2’ = 2, and
f(z2)

(iv) XN = g—(;)—’ and terminates, then the z is an optimal solution and \() is the maximum

value of I'r.

4.2 Fractional Expectation Problems

First let us consider the fractional expectation problem (4) by use of fractional programming
([1]) and dynamic programming. The problem (4) is formulated as the following fractional
programming problem:

fm; x1)
g(m; 1)

where II is the set of N-stage Markov policies and

N+1
firia) = EI [Z ]
n=1

Fr(z;) Maximize subject to m € II (14)

N+1

stma) = B 3 A .
n=1
Then the corresponding parametric problem reduces to:

Pr(z1)(A)  Maximize f(m;x;) — Ag(m;z1) subject to 7 € 1L (15)
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THEOREM 4.3 For each initial state x; € X, Dinkelbach’s Algorithm yz’eldé a Markov policy
m*, which s optimal at x,:

N+1 N+1
B [z r,,] Br [z rn]
N > el vr eIl (16)
E::[ZRH] | E;[ZRn]
n=1 n=1
Proof  Since 11 is finite, Theorems 4.1 and 4.2 apply. 0

Second we consider the infinite-stage problem (8). By taking in turn
fwa) = B3]
n=1

g(rizy) = E;z[zﬁ"—lfan],
n==1

we have a stationary policy which is optimal at a given initial state.

THEOREM 4.4 For each state ©; € X, Dinkelbach’s Algorithm yields a stationary policy
7 = h{®), which is optimql at xy:

EZ; [Z B Ej, [Z ﬁ"“rn]
nl > ot vr €11 (17)
| Srn] R[S

where h : S — A is a stage-free decision function of n*:
R ={h, h, ..., hy...}.

Proof  Let II,; be the set of all stationary policies. Then we see that Il C II and Il is
finite. We restrict the fractional problem (14) to Ily. Then Theorems 4.1 and 4.2 apply. In fact,
the corresponding parametric problem (15) is a discounted dynamic programming problem in
the sense of D. Blackwell ([3]). Thus it has an optimal stationary policy. a

5 A 2-2 Decision Models

In this section, we illustrate a two-state and two-action decision model.

51 A 2-2-2 Decision Model

As an illustrative example we consider the following two-stage problem:
E7 [r(z1,w1) + r(Xs, Ua) + k(X3)]
Egl [R(.’L‘l, Ul) + R(Xz, Uz) + K(Xg)]
F(x,) subject to (1) Zp41 ~P(|ZTn,un) 1<n <2 (18)
(i) uned 1<n<2

Maximize

on the following data:



stage rewards : (r(z¢, us), R(zs, ur))
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terminal rewards

xt\ut aq as T3 (k‘(l’3), K(£C3))
si | (0, 2) @, 1) si] @, 2
s2 (=1, 3) (2, 2) So 0, 1)

transition law

P(ay) = {p(141]m¢, 01)}

P(ag) = {p(ze11]1, 00)}

T\ Tp41 81 89 Te\Tt41 81 32
81 1/2 1/2 51 1 0
e 0 1 8o 1/4 3/4
Thus we have the following parametric data:
stage reward : 7(zy, u;) — AR(zy, uy) terminal reward
i't\ Uyt (151 as T3 k(il’g,) — )\K(Z‘g)
$1 0—2X 1—-X $1 1-—2A
S —-1-3X 2 -2\ 89 0—-A
Then the recursive equation
uz(z; A) = k(z) — A\K(z)
up(z;A) = Max |r(z,u) = AR(z, ) + 3 us(y; Mp(ylz, u) (19)
U | yes i
u(z;A) = M&x r(z,u) — AR(z,u) + Y_ ua(y; Np(y|z, u)
v L yeS ]
reS, AeR!
together with the suffixed notations
Un(A) = un(51;A),  Un(A) = up(s2; A)
ki = k(si)7 Kz = K(Si)’ Tzl'c = T(Shak)’ Rf = R(Siv ak)7 pf, = p(8j|3ia ak)
reduces to:
U3()\) = kl - )\Kl
U3(/\) = kg - )\Kg
un(A) = [r} = ARL + plittns1(N) + Platnin (V)]
v [7‘% - ’\Rf + P?1Un+1(/\) +sz’0n+1(/\)] (20)
vn(A) = [r3 = AR; + pptns1(N) + p;2vn+_1 (A]

v [T% - )‘Rg + pglun+l()‘) +P§2’Un+1(/\)] n = 1, 2.
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Then Eq.(20) becomes:

’u,g(A) 1—2)
s()) = 02
un(\) = [o S -;-unﬂ(,\) + %UHI(A)} VL= A+ tpps (V)]

1 3
vn(A) = 1= 3\ + a1 (N)] V [2 =20+ U (V) + qun“(/\)] n=1,2

Thus we have

1 7
1 . <A< -3
2-3), -3<)A<
9 13 —1—4\ —-oco<A<< 18
A = [-1-4A v[MM_— }:
va(A) = | VI 22 9 18\ 1n_)ca
4 4 3
(1 23 13
- = < =
1 4)\, 00 < A
noas 1w
_ 8 8 3
w =N 7 4 7
— — =) <AL ——
8 8"’ 35
7
3 —4), —§§)\<oo
.
—2 -7, ——oo<)\<—%3—
5 25 13 47
AN o= 22 2oy
() 1T ah T3sisTg
67 83 47
- 2 <
(16167 T SAS®
Then the desired optimal policy 7*(\) = {7¥()\), 75(\)} where
* . 7Tn(31;)\) ]
Wn(/\) - 77.;(82; /\) ] (21)
is specified as follows :
9 f T
[ [ ) ~oo</\§—1§ ‘ o : —oo</\_<_-~~éz
| | 3 | a1 17
" i a1 | 13 [ ay 47 7
A) = A< - f(\) = —— <A< ——
5 (A) = 4 a, |’ 3_/\__ 3 T (A) =4 _az]’ 17_)\~ 5 (22)
@2 , —3< A< az], <A<
\ L az 4 \ L Gz
By applications of Dinkelbach’s Algorithm from 7 = {[ Zl ] , [ Zl ]}, we have optimal
1 1

solutions as follows:
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CASE(I) Algorithm I for z; = s;.

1. Select m, = {[ o ] , [ a ]} € I Then Aqy = 1) _ —1/4 1

a a1 g(m;sy)  23/4 23

1

2. Solve Pr(——) and select unique optimal solution m = %2 ,{ %2 J} € II. Then
23 az az

. oy 1 72 _ flm;s1) 3
f(m2; 81) — Ayg(ma; 81) =3 ( 23) 4= 53 # 0. Hence A2y = o) ~ 4
3. Solve Pr (%) and select unique optimal solution 7* = {[ 22 J ; [ 22 }} € IL. Then f(7™; s1)—
2 2

A@)g(n*;81) = 3 — 1 -4 = 0. Thus 7" = my is an optimal at s; and A = y is the desired

maximum value.

CASE(II) Algorithm I for z; = s,.

1. Selectm:{[al},[ZlJ}EH.ThenA(I):M:m2
1

ay g(m1; 82)
2
2. Solve Pr(—?) and select unique optimal solution 7y = a ] ]} € II. Then
67 2\ 83 635 Flma; sg) “767/16 67
F(m2i 82) = Awyg(m23 52) = 3 7) 16~ 1rz 7 O Henee day = N = 8316 83

3. Solve Pr(gg) and select unique optimal solution 7* = {[ . ],[; }} € II. Then
2

67 67 83 67
f(m*;82) — Ayg(m*; 82) = 68 16— 0. Thus 7* = 7, is also optimal at s, and A(g) = 3
is the desired maximum value.

Qg ao

Therefore, the resulting stationary policy 7* = { ® ] , [ a2 ]} is optimal (for both states)

‘ . [ 3/4
and the optimal ratio vectors is ( 67/83 ) .

5.2 A 2-2-00 Decision Model

Now we consider the corresponding infinite-stage problem on the two-state and two-action
model:

E;rl 1: i ﬁn_lrn]
el subject to (1) 7 €Il (23)
ET [z ﬂ"‘an]

n=1

F'(z) Maximize

where 3 = 0.8. Then the recursive equation for the corresponding parametric problem

u(z;\) = Max [r(w,u) AR(z,u) + 8 uly; Np(yle, u)} , (24)

u€A yes
z€eS, e R
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together with the suffixed notations

u(A) == u(sy;A),  v(A) = u(se; A)

k

Ty = T(Sia a'k)’ Rf = R(Si’ a'k)7 pz = p(sjlsia ak)

reduces to:

u(N) = [rl— AR+ B(phu()) +plyv(W)] V [r2 = MRS + B(phu(A) + phe(V)]  (25)
o(A) = [r} = AR+ B(phu(N) + phv(V)] V [13 = ARS + B(p3,u(N) + phv(V))]

f

Then Eq.(25) reduces to:

u(A) = [0 -2+ g (%u(/\) + %v()\))] % [1 - A+ g—u(,\)] _

o) = [-1-3r+ 2o v - 20+ (e + )]
namely

(10X — 3u() + 20(N)] V [5 — 5A —u(N)] = 0
[=5 — 15X — u(A\)] V [10 — 10X + u()) — 20(\)] = 0.

This system of two function equations has the following unique solution:

( 5
15 5
u(d) = 5 — 10, ___5_5)\5() v(A) = 4 7—10)\7 *55)\50
5 — BA, 0< A< %—-%x\, 0 <A< o0

Then the desired optimal policy 7*(X) = A(®)(\) where

_ | hlsi;A)
PA) = { (s N ] )
is specified as follows : :
( T
n , —00 <AL —=
ax
h(X) = < Z; , —gg,\go | (27)
% , 0< A<
\ - a2 o

a

By applications of Dinkelbach’s Algorithm from 7 = A(®) with h = [ 4
1

}, we have the

following optimal solutions:
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CASE(I) Algorithm II for z; = s;.

— h{™ ¢ I, with by = | “* |. Th _ flmis) _ 153 3
1. Select my = hy ™" € 15 with by [ ay ] . Then A(y dmis) | —40/3 8

2. Solve Pr(—g) and select optimal solution 7wy = hgm) e II,; with hy = Zl . Then

2 .
3 35 To; 8 5 1

f(ma;81) — Aayg(ma; 1) =5 — (—g) <10 = T # 0. Hence A(g) = {;Eﬂ—j,gj—)) =10°-3

3. Solve Pr(%) and select optimal solution 73 = hg°°) € II,; with hy = 32 . Then
2 -

1 9 f(m3;81) o -
181) — A :81)=H—=.5== .H =it = - =],
f(m3; 81) @9(73; 51) 5 o 2 # 0. Hence As) g(ma;51) 5
4. Solve Pr(1) and select optimal solution 7* = K> € I, with h, = [ 22 ] .
2

5. Then f(n*;s1) — Az)g(n*;s1) =5—1-5=0. Thus 7* = 73 is an optimal at s; and A =1
is the desired maximum value.

CASE(ITI) Algorithm I for z; = s5.

() : . _flryse) =5 1
1. Select w1 = hy ' € Il with hy = [ a ] . Then Ay = dris) 15 =3
1
2. Solve Pr(mg) and select optimal solution m = AY? € I, with hy = Zl . Then
2
15 1 65 f(mg;82) 15/2 3
f(ma; 82) — Aayg(ma; 52) 5 ( 3) 10 5 # 0. Hence Ag) 3(2: 5) 10 1

1 T
3. Solve Pr{ = } and select optimal solution 73 = A e Il with hg = % | Then flms; s2) —
2 3 as
15 3 15 15 flmgsy)  15/2 .
A ; =———+—=—==(0.H A3y = == = 1.
@9(m3; 52) 2 4 2 8 7 PLCe A g(ms;s0)  15/2 ]
4. Solve Pr(1) and select optimal solution 7* = h™ € I, with h, = 32 .
2
1 1 -
5. Then f(m*;s2) — A3)9(7";82) = ?5 -1 35— = 0. Thus 7* = 73 is also an optimal at s, and

A@g) = 1 is also the desired maximum value.

a2

On the other hand, applications from m = h{®) with h = [ } yields the following results:

a,
CASE(III)  Algorithm II for z; = s;.

; 5

1. Select 11 = h € T, with hy = | 2 | Then Ay = L05%) _ 2
“ g(m;s) 5
the desired maximum value is 1. Thus the policy =, is also optimal at s;.

= 1. From CASE(I),

2. Solve Pr(1) and select optimal solution my = hg"") € Il with hy = [ 22 } . Then f(mq;s1) —
2

A)g(me; 81) =5—1-5= 0. Thus 7* = 7, is optimal at s; and Ay = 1 is the desired maximum
value.
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CASE(IV) Algorithm II for z; = s,.

flmse) =5 1

1. Select m = A{™ € I, with by = | °2 |. Then Ay = S0 = —— = —=.
etect mq 1 € g w 1 oy en Aq) g(']l']_; 82) 15 3
a2
Hereafter CASE(II) follows. Thus, 7* = m3 is also an optimal at s, and Az)-= 1 is also the
desired maximum value. Thus the policy 7y is not optimal at s,.

1
2. Solve Pr (~§) and select unique optimal solution my = h§°°’ € Il with hy = [ o ]

Therefore, the resulting stationary policy n* = h§°°) with hy = [ ZQ ] is optimal (for both
: 2

! ) . Furthermore, the stationary policy 7** = i)

states) and the optimal ratio vectors is ( 1

with hg = { 2

] is optimal at ss.
ai
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