0000000000
10790 1999 0 215-223 7 215

Possibility Data Analysis with Rough Sets Concept
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Abstract : This paper is dealing with the upper and lower approximation models for representing the given
Ppheno-menon in a fuzzy environment as data analysis. The upper and lower approximation models can be
derived from the given data with the possibility and necessity concepts, respectively. Thus, the given
phenomenon can be analyzed as two approximation models which represent the upper and lower analyses
Jor the given data. The modalities of the upper and lower models have been illustrated in regression analysis
and also in the identification methods of possibility distributions. The comparison. of the concepts of
possibility data analysis and rough sets is shown clearly. A measure similar to the accuracy measure of
rough sets is used to clarify the difference between the data structure and the assumed model.

1. Introduction

As we know, multivariate data analysis is a main tool for analyzing the uncertainty in the real world
based on probability theory. Possibility data analysis is an alternative based on possibility distributions.
Multivariate data analysis considers the uncertainty as probability phenomena while possibility data analysis
considers that as possibility phenomena. Possibility theory based on possibility distributions has been
proposed by Zadeh {1] and advanced by Dubois and Prade [2]. There are many applications of possibility
theory in various fields. For example, possibility linear regression [3, 4] and possibility portfolio selection. [5]
have been formulated by using exponential possibility distributions on a multi-dimensional space. The theory
of exponential possibility distributions has been proposed by Tanaka and Ishibuchi [6].

Based on possibilities which are more flexible than probabilitics, the upper and the lower approximation
models can be obtained for representing the given phenomenon. These two models can be derived from the
given data with the possibility and necessity concepts, respectively. This modalities of the upper and lower
models have been illustrated in interval regression analysis and also in the identification methods of
possibility distributions. The upper and lower models are closely connected to the rough sets concept [7].
Pawlak [8] has introduced approximation data analysis based on rough sets. Rough sets can be described as
approximate inclusion of sets and provide a systematic framework for the study of the problems arising from
imprecise and insufficient knowledge. The comparison of concepts of possibility data analysis and rough sets
is shown clearly in this paper. A measure similar to the accuracy measure of rough sets is used to clarify the
difference between the data structure and the assumed model.

2. Upper and lower models for interval regression

- Interval regression [9] is regarded as the simplest version of possibility regression analysis and thus easily
applicable in many uncertain real-life phenomena. If the given output values are intervals, we can formulate
two estimation models, i.e., the upper and lower approximation models based on the inclusion relations
between the given interval outputs and the estimated intervals.

2.1. Two approximation models

An interval linear system can be written as

VY=A+Ax + - +Ax,=Ax 1)
where x=(1, x,, ..., x,)" is an input vector, A =(A,, ..., A,) is an interval coefficient vector, and Y is the
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corresponding estimated interval. An interval coefficient A, is denoted as A, = (a,, c;) where a; is a center
and c; is a radius. Thus, an interval coefficient A, can also be expressed as

Aiz{utai—cisusa,+ci}:fa,-—ci,aﬁc,-]. (2)
By interval arithmetic, the regression model (1) can be expressed as

Y(xj) = (a()v CO) + (alr cl)le +oeee t (am Cn) 'xjn
— t 1
_(axj,c|xj|)

3)

i
where a=(a ...,a,)", ¢=(cy...,c,) and |xj|=(1,|xj1 | ...,[xj,, ) Here a'x, and c'lle represent a

center and a radius of the estimated interval Y (x ) respectively.
Assume that input- output data (x;, Y)) are given as

Y=L x,0x, Y, j=1..p C)]

where x, is the j-th input vector, Y, is the corresponding interval output that consists of a center y, and a
radius e, denoted as Y, =(y;, ¢,), and p is a data size. From the data set expressed by (4) we consider two
approximation models .

Y (x)=Ay+Ax,+ +A4,x, j=1..p, (upper model) ®)
Yx)=A. +A.x, + +A4,x,, j=1..,p (lower model) (6)

where the interval coefficients 4; and 4, are denoted as 4; =(q;, ) and 4,,= (a.,, c.,), respectively. The
upper and lower models can be viewed as the possibility and necessity models, respectively. The upper and
lower models are defined as follows. The estimated interval Y (x)) by the upper model always includes the
observed interval Yj, whereas the estimated interval Y.(x) by the lower model should be included in the

observed interval Y, These relations can be expressed as follows:

* 1 > 1
a’x-c Ileﬁ)/j—ej,

V'x)oYl o 7

&)=, yj+ej.<.a"xj+c"|xj| M
~e <alx —~clix |,

Y*(xj)gYJ.@ y.l J J I J| (8)
a{x}.+c§|x}.| Syj+ej

Y.x)C¥,C ¥ (x). ©

The relations given by (7)-(9) are graphically shown in Figure 1.

Y'ix)| ¥, |Y.(x)

Figure 1. Relations among the upper, lower approximations, and the given interval.

Our main concern is to obtain interval coefficients A and 4.,, i=0, ..., n based on the above mentioned
mutual relations. The followings are LP problems to obtain two approximation models:
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Upper Approximation model;
b
Min J'=2 ¢"x;
a*, c* J=1

subjectto Y (x)2Y, j=1,..,p, l (10)
c;20, i=0,..,n
Lower Approximation model;
p
Max Jt = z C'.xj
as, Cx J=1
subjectto Yux)C Y, j=1,..,p, an

cqz0, i=0,..,n

where the constraint conditions in (10) and (11) refer to (7) and (8), respectively.
To obtain the upper and lower approximation models simultancously, the following unified LP problem
can be considered (see Ishibuchi and Tanaka [9]):
14 4
Min X ¢'x;— X cix;
a*,c*, as,ce J7) ' J=1
subjectto Y (x)2Y,
Y(x)CVY, j=1,..,
PEY d (12)
s+ Cysa; +cg,
a: _C: sa*i— Csi,
¢ ,cqz0, 1i=0,..,n

This LP problem is combining (10) and (11) in considering inclusion relations 47 24,,i=0, ..., n between
the upper and lower regression coefficients. By adding A 24,,i=0, ..., n in LP problem (12), we obtain
two models satisfying ¥ (x) 2 Y.(x) for any x.

Now suppose we have data sets &% Y= (1,%9,...%; Y9, j=1,..., p which satisfies a following
linear system:

Yo =A0+ A%, + - +A%,, j=1,...p (13)

Then we obtain the following equalities
A%=A"=A, Yx)=Y(x)=Y.(x) (14)

by solving the upper approximation model (10) and the lower approximation model (11) (see Tanaka et al.
BD.

Unfortunately, the lower approximation model is not always guaranteed if we fail to assume a proper
regression model. In case of no solution for linear regression with the lower approximation model, we can
take a following polynomial:

Y=F(x)=A,+2 Agi+2Angj+2AUgixka+---, (15)

Since a polynomial such as (15) can represent any function, the center of the lower approximation model
Y.(x,) can meet the center of the observed output Y. Thus, one can obtain an optimal solution in the lower
approximation model by increasing the number of terms of the polynomial (15) until a solution is found.
The existence of the lower approximation model can be interpreted as the fact that the assumed model is
somewhat reliable. If we find a lower model, since there always exists an optimal solution for the upper model,
the measure of fitness ¢ can be introduced as

p=1% x| ' (16)

PR
j=1¢ xj
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where 0< @ <1. This measure of fitness ¢ indicates how approximately the upper and lower models are
assumed to the given data. It is desirable to assume regression models which give higher value of ¢. If the
given input-output data satisfy a linear system (13), then we can obtain the upper and the lower models which
are identical. In this case the measure of fitness ¢ becomes 1.

Now assuming that an analyst may consider a tolerance limit @ such that @y 2@, we propose a new
algorithm which gives two approximate models for the interval regression analysis.

Algorithm obtaining two approximation models :

Step 1: Take a linear function as regression model: ¥ =A,+ 2 Ax;. 17)
Step 2: Solve the lower approximation model (11). If there is an optimal solution in the model (11), go to Step
4. Otherwise, go to Step 3.

Step 3: Increase the number of terms of the polynomials, i.e., ¥ =Ay+ 2 Ax, + 2 Ayxx; . (18)
Go to Step 2.

Step 4: Solve the unified LP problem (12) and calculate the measure of fitness ¢ of the two models. If ¢ >,
then go to Step 5 (We already have the optimal upper model Y (x) and the optimal lower model Y.(x)
satisfying Y (x) 2 Y.(x) for any x). Otherwise, go to Step 3.

Step5: End the procedure.

2.2. A numerical example

The data set of crisp inputs and interval outputs is shown in Table 1. The proposed algorithm is applied to
obtain two approximate interval regression models under the assumption of @ = 0.25 as a tolerance limit.

Table 1. Data set.

No.(1) 1 2 3 4 5
Input (x) 1 2 3 4 5
Output(y) [2.5,5] [3.5,5] [3,6.5] [5,8] [5,10]

No.(j) 6 7 8 9 10
Input (x) 6 7 8 9 10

Output(y) [8,13] [12,19] [13,18] [16,28] [17,26]

Using a linear regression model, we obtained the following upper and lower models
Y7 (x) = (- 0.6563, 2.7813) + (2.2813, 0.5938)x a9

Y.(x) =(0.8125, 0) + (1.7422, 0.0547)x 20y

30
25
20
15

10

@ Y=A,+Ax(p,~0.0458)
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®) Y=A,+Ax+Ax?(p,~0.3281)
Figure 2. Obtained upper and lower models for the given data set.

which are depicted in Figure 2 (a) where the outer two lines represent the upper model and the inner two lines

represent the lower model. But the measure of fitness is ¢ (=0.0458) < @ (=0.25). Thus we rejected the

obtained models. Therefore we increase the number of terms of the polynomials as (18). By solving the

unified LP problem (12), we obtained the upper model Y (x) and the lower model Y.(x) denoted as
Y™ (x)=(3.7118,0.8507) — (0.1958,0.3625)x

+(0.2340,0.0368):2

Y. (x)=(3.3417,0.4806) + (0.0597,0.1347)x
+(0.1972,0%¢

which are depicted in Figure 2 (b). The measure of fitness is greater than the tolerance limit, ie.,
@ (=0.3281)> @ (=0.25). Thus we accept (21) and (22) as optimal models which satisfy ¥ “(x) 2 Y.(x) for
any x.

2y

(22)

3. Identification methods of upper and lower possibility distributions

Let us begin with the given data (x,5), (G=1,..., p) where x =(x,, ....x,) is a vector and 4 is an
associated possibilistic grade given by expert knowledge. Assume that 4, (j =1,..., p) are expressed by a
possibility distribution 4 defined as

I (x)=exp{-(x,~a)'D;'(x,~ @)} = @, D), 23

where a=(a,, ..., a) is a center vector and D, is a symmetric positive definite matrix, denoted as D, > 0.

Given the data, the problem is to determine an exponential possibility distribution of (23), i.e., a center
vector @ and a symmetric positive definite matrix D,. According to two different viewpoints, the upper and
lower possibility distributions are introduced in this section. The upper and lower possibility distributions
denoted as 77, and I7, respectively should be assumed to satisfy the inequality IZ,(x)>I7(x), Vx with
considering some similarities between our proposed methods and rough sets. ‘

The center vector @ can be approximately estimated as
a=x, 24)

whose /= k}y{% h, and the associated possibility degree # J is revised to be 1. Taking the transformation

y,=X;—a, a possibility distribution with the zero center vector is as follows:
I(y)=exp(-yD,'y)=0,D), (25)

where D, is denoted as D, and D, corresponding to /7, and 77, respectively.
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3.1. Upper and lower distributions by the integrated model

The upper and lower distributions are used to reflect two kinds of distributions from the upper and lower
directions.

Let us identify the upper and lower possibility distributions with the following assumptions whose
meanings are illustrated in Figure 3.

1) Maximize IZ(y) x " x II(y) subject to IZ(y)<h, j=1,..., p. (Lower distribution)
2)Minimize [7,(y)x " x T (y,) subject to 17 (y)2h, Jj=1,.., p. (Upper distribution)
3) 11, =11(y). (Relation of upper and lower distributions)
The upper and lower distributions can be simultaneously obtained by the following optimization problem.

) p
My Dy~ LDy,
“ j= j=
subject to y'D,'y, <-Inh,
D'y 2-Inh, j=1,..,p, _ (26)
D, -D,>0,
D,>0.

It is obvious that (26) is a nonlinear optimization problem which is difficult to be solved.

To cope with this difficulty, we will use principle component analysis (PCA) to rotate the given data by the
linear transformation T to obtain a positive definite matrix easily. The columns of T are characteristic vectors
of matnx L= [o,] of given data, where o, is defined by the following formulation.

o, —{;‘, (% —a)(x, — a)h}/g:h 27
H
A
I7 7 |
'y
4

Figure 3. Graphic explanation of upper and lower distributions.

Using the linear transformation, the data {y } can be transformed into {z = T'y,}. Then we have
@)= exp (-2, T'D} Tz ). (28)

According to the feature of PCA, T D;‘ 7 is assumed to be a diagonal matrix as follows:

ro'r=c,s . | | (29
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Denote C, as C,andC, for the upper and lower possibility distribution cases, respectively. The
corresponding diagonal clements in C, andC, are denoted as ¢, andc,, (=1, ..., n), respectively. The
integrated model can be rewritten as follows:

] P
Mip E z,Cz, - Z z,C,z,
=1 J=1
subject to z,C,z,<~Inh,
z,Cz,2-Inh, j=1,..,p, G0
28,
c;2c, i=1,..,n,

where ¢, 2¢,2¢>0, (i=1,...,n) make D, andD, positive definite, and D, —D, semi-positive definite.
Thus, we have

D=1C'T
u ul ’ (3 1)
D=1C,'T".
Similar to regression analysis, we can define the measure of fitness 7 as
1 $ 1) (2)

TP aTE)
3.2. A numerical example

The data in the possibility portfolio problem are given in the following table.

Table 2. Return rate on two securities and possibility degrees.

#1 #2
hi year Am.T AT&T.

0.2 1937(1) -0.305 -0.173
0.241 1938(2) 0.513 0.098
0.282 1939(3) 0.055 02
0.324 1940(4) -0.126 0.03
0.365 1941(5) -0.28 -0.183
0.406 1942(6) -0.003 0.067
0.447 1943(7) 0.428 03

0488 | 1944(8) | 0.192 0.103
0.520 | 1945(9) | 0.446 0216
0.571 | 1946(10) | -0.088 -0.046
0612 | 1947(11) | -0.127 -0.071
0653 | 1948(12) | -0.015 0.056

0.694 | 1949(13) | 0.305 0.038
0.735 | 1950(14) | -0.096 0.089
0.776 1951(15) | 0.016 0.09
0.818 | 1952(16) | 0.128 0.083
0.859 | 195317) { -0.01 0.035

09 1954(18) 0.154 0.176

From the proposed approach explained in Section 3.1, we obtained
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a=(0.154,0.176),

p =] 0.2665 0.0972
v 10.0972 0.1689 |’

D 3[0.0313 0.0165 ]

33)
I 10.0165 0.0148

Using the formulation (30) and (31), we obtained the two possibility distributions as shown in Figure 4 where
the outer ellipse is the upper possibility distribution and the inner ellipse is the lower one for # = 0.5,
respectively. From (33), we obtained 7 = 0.226.

x2

Figure 4. The upper and lower possibility distributions.
4. Similarities between proposed models and rough sets

Let a set X C U be given. Then an upper approximation of X in A denoted as A*(X) means the least
definable set containing X, and a lower approximation of X in A denoted as A.(X) means the greatest
definable set contained in X . The upper approximation A*(X) and the lower approximation A.(X) can be
defined as

AX)= v E, A.00= u E, (34)

E;cXx

EnX =@ 17

where E; is the i-th elementary set in A. An accuracy measure of a set X in the approximation space
A=(U, R) is defined as
Card (A.(X))
%X = o (A*(X))
where Card (A.(X)) is the cardinality of A.(X). When the classification C(U)={X,, ..., X,} is givez, the
accuracy of the classification C(U) is defined as

BU)= Card(JA. (X)) / Card(U A" (X)) (36)

whose concept is used to define the measure of fitness in interval regression analysis and the identification
methods of exponential possibility distributions. Furthermore, the upper and lower approximations of X ,
Au«(X) and A"(X) are corresponding to the upper and lower approximation models in regression analysis and
in the identification methods of possibility distributions. Thus, we can summarize the similarities between our
models and rough sets in Table 3.

(33)
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5. Concluding remarks

In the foregoing research, we are going to formulate portfolio selection problems, DEA (Data Envelopment
Analysis), and possibility decision problems with the upper and lower models. It is emphasized that the upper
and lower models can really represent possibility phenomena which are a kind of uncertainty.

Table 3. Similarities of the concepts between the proposed models and rough sets.

Interval regression analysis Possibility distributions Rough sets
Upper approximation model: ¥ (x) - Upper distribution: /7, (x) Upper approximation: A (X)
Lower approximation model: Y.(x) Lower distribution: J7(x) Lower approximation: A.(X)
Spread of Y™ (x): ¢ 1x| Spread of I7 (x): X% 11,(x) Cardinality of A"(X): Card (A"(X))
Spread of Y.(x): ¢ff x| Spread of I7(x): X 17(x) Cardinality of A.(X): Card (A.(X))
Inclusion relation: ¥ (x)2 7, (x) Inequality relation: /7 (x)=/I(x) Inclusion relation: AT DA%
Measure of fitness: ¢ Measure of fitness: 77 Accuracy measure of classificationC(U):
(The higher, the better.) (The higher, the better.) B,0) (The higher, the better.)
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