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Abstract: This paper is dealing with the upper and lower approximation models for representing the given
pheno-menon in a fuzzy environment as data analysis. The upper and lower approximation models can be
derived ffom the given data with the possibility and necessity concepts, respectively. Thus, the given
phenomenon can be analyzed as two approximation models which represent the upper and lower analyses
for the given data. The modalities ofthe upper and lower models have been illustrated in regression analysis
and also in the identification methods of possibility distributions. The comparison of the concepts of
possibility data analysis and rough sets is shown clearly. A measure similar to the accuracy measure of
rough sets is used to clariffi the difference between the data structure and the assumed model.

1. Introduction

As we know, multivariate data analysis is a main tool for analyzing the uncertainty in the real world
based on probability theoIy. Possibility data analysis is an altemative based on possibility distributions.
Multivariate data analysis considers the uncertainty as probability phenomena while possibility data analysis
considers that as possibility phenomena. Possibility theory based on possibility $\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}\dot{\mathrm{n}}\mathrm{b}\mathrm{u}\iota \mathrm{i}\mathrm{o}\mathrm{n}\mathrm{S}$ has been
proposed by Zadeh [1] and advanced by Dubois and Prade [2]. There are many applications of possibility
theoIy in various fields. For example, possibility linear regression $[3, 4]$ and possibility $\mathrm{p}\mathrm{o}\mathrm{I}\mathrm{t}\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{i}_{0}$ selection [5]
have been formulated by using exponential possibility distributions on a multi-dimensional space. The theory
of exponential possibility distributions has been proposed by Tanaka and Ishibuchi [6].

Based on possibilities which are more flexible than probabilities, the upper and the lower approximation
models can be obtained for representing the given phenomenon. These two models can be derived from the
given data with the possibility and necessity concepts, respectively. This modalities of the upper and lower
models have been illustrated in interval regression analysis and also in the identification methods of
possibility distributions. The upper and lower models are closely comected to the rough sets concept [7].
Pawlak [8] has introduced approximation data analysis based on rough sets. Rough sets can be described as
approximate inclusion of sets and provide a systematic framework for the study ofthe problems arising from
imprecise and insufficient knowledge. The comparison of concepts of possibility data analysis and rough sets
is shown clearly in this paper. A measure similar to the accuracy measure of rough sets is used to clarify the
difference between the data strucmre and the assumed model.

2. Upper and lower models for interval regression

Interval regression [9] is regarded as the simplest version of possibility regression analysis and thus easily
applicable in many umcertain real-life phenomena. If the given output values are intervals, we can formulate
two estimation models, i.e., the upper and lower approximation models based on the inclusion relations
between the given interval outputs and the estimated intervals.

2.1. Two approximation models

An interval linear system can be wnitten as
$Y=A_{0}+A_{1}x_{1}+\cdots+A_{n^{X}\hslash}=Ax$ (1)

where $x=$ $(1, x_{1}, \ldots , x_{n})^{t}$ is an input vector, $A=(A_{\langle)}, \ldots , A_{n})$ is an interval coefficient vector, and $Y$ is the
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corresponding estimated interval. An interval coefficient $A_{\mathrm{i}}$ is denoted as $A_{j}=(a_{i}, C;)$ where $a_{j}$ is a center
and $c_{j}$ is a radius. Thus, an interval coefficient $A_{j}$ can also be expressed as
$A_{j}=\{u|a_{j}-c_{i}\mathrm{s}u\mathrm{S}aj+C_{j}\}=\mathrm{f}\circ-Caji’ i+C_{j}1$ . (2)

By interval arithmetic, the regression $\mathfrak{m}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{l}(1)$ can be expressed as
$\mathrm{Y}(x_{j})=(a_{0}, c_{0})+(a_{1}, C_{\mathrm{I}})X_{j1}+\cdots+(a,, c_{n})xjn$

(3)
$=(a^{t}x_{j}, C^{t}|X_{j}|)$

where $a=(a_{\{)},$
$\ldots$ , $a,\mathrm{J}^{t},$ $c=(c_{()}, \ldots , c_{n})^{t}$ and $|x_{j}|=(1,$ $|x_{j1}|,$

$\ldots$ , $|x_{jn}|)^{l}$ . Here $a^{t}x_{j}$ and $c^{t}|x_{j}|$ represent a
center and a radius of the estimated interval $Y(x_{j})$ respectively.

Assume that input- output data $(x_{j}, \mathrm{Y}_{j})$ are given as
$(_{X_{j}};\mathrm{Y})j=(1, x\ldots, x;j1’ j’\iota \mathrm{Y}_{j})_{j=},l,\ldots,p$, (4)

where $x$ , is the j-th input vector, $Y_{j}$ is the corresponding inteIval output that consists of a center $\}_{j}’$ and a
radius $e_{j}$ denoted as $Y_{j}=(\nu_{J}, e_{j})$, and $p$ is a data size. From the data set expressed by (4) we consider two
$\mathrm{a}\mathrm{p}.‘ \mathrm{p}\mathrm{r}\mathrm{o}\mathrm{x}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ models
$Y(X_{j})=A+A+\cdots+Axj\mathrm{o}1^{X_{j1}}\dot{\hslash}jn’=_{1,\ldots,p}$ , (upper model) (5)
$1_{\mathrm{r}}’\mathrm{t}X)j=A.A_{*}0^{+}\iota X_{j1^{+}}\ldots+A.xnjn’ i^{=1},\ldots,P$ , (lower model) (6)

where the interval coefficients $A_{j}$ and $A_{*_{\mathrm{i}}}$ are denoted as $A_{j}=(a_{i}^{**}, c_{i})$ and $A_{*_{\mathrm{i}}}=(a., c.)\mathrm{r}i$’respectively. The
upper and lower models can be viewed as the possibility and necessity models, respecuvely. The upper and
lower models are defined as follows. The estimated interval $\mathrm{Y}^{*}(x_{j})$ by the upper model always includes the
observed inteIval $x_{j}$, whereas the estimated interval $\mathrm{Y}_{*}(x_{j})$ by the lower model should be included in the
observed interval $Y,\cdot$ These relations can be expressed as follows:

$Y.\cdot(X_{j})\supseteq \mathrm{Y}\Leftrightarrow \mathrm{Y}(X_{j})\subseteq^{\mathrm{r}_{j}}\mathrm{G}j\mathrm{f}^{a^{l*_{t}}}y_{j}-e\leq a.x_{j,1}-|.,\}^{\}}ax_{j}+_{c^{t}}yjj+_{C}\mathrm{r}\cdot|_{j}lt+e\leq a_{X}\chi_{j}|*l*t|X-JC|x_{J}|j\leq yC^{\iota}|X_{j}|\leq y_{j}-eJ^{+}JeX_{j}j’$

,

$(7)(8)$

$\mathrm{Y}_{*}(X_{j})\subseteq\gamma_{j}\subseteq\gamma(_{X_{j})}2.$ (9)

The relations given by (7)$-(9)$ are graphically shown in Figure 1.

Figure 1. Relations among the upper, lower approximations, and the given interval.

Our main concem is to obtain intelval coefficients $A_{\mathrm{i}}$ and $A_{\mathrm{r}_{\dot{i}}},$ $i=0,$
$\ldots,$

$n$ based on the above mentioned
mutual relations. The followings are LP problems to obtain two approximation models:
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Upper Approximation model;

$a^{*},c^{*}\mathrm{M}\mathrm{i}\mathrm{n}$

$J^{*}= \sum_{j=\iota}^{P}c’.X_{j}$

subject to $\mathrm{Y}^{\iota}(x_{j})\supseteq Y_{j},$ $j=1,$ $\ldots$ , $p$ , (10)

$c_{\mathrm{i}}^{*}\geq 0$ , $i=0,$
$\ldots,$

$n$ .
Lower Approximation model;

$\alpha.,c\mathrm{M}\mathrm{a}\mathrm{x}$. $J_{*}= \sum_{j=\iota}^{\rho}\epsilon^{t}.x_{j}$

subject to $\mathrm{Y}_{*}(x)J\subseteq \mathrm{Y}_{j},$ $j=1,$ $\ldots,$ $p$ , (11)

$c_{*_{j}}\geq 0$ , $i=0,$ $\ldots,$
$n$ .

where the constraint conditions in (10) and (11) refer to (7) and (8), respectively.
To obtain the upper and lower approximation models simultaneously, the following unified LP problem

can be considered (see Ishibuchi and Tanaka [9]):

$a.,c^{*},$

$a.,c \mathrm{M}\mathrm{i}\mathrm{n}.\sum_{j=1}^{\rho}C^{1}.X_{j}-\sum_{j=1}^{p}c^{f}.xj$

$\mathrm{s}\mathrm{u}\mathrm{b}.|_{6\mathrm{C}}\iota$ to $\mathrm{Y}^{*}(x_{j})\supseteq \mathrm{Y}_{j}$ ,

$Y.(x_{j})\subseteq Y_{j}$ , $j=1,$ $\ldots,$ $p$

(12)
$a_{j}.+C_{*_{j}}\leq a_{j}.+c_{j}^{\}$,
$a_{i}.-C_{i}^{*}\leq aii-C_{\mathrm{r}_{i}}$,

$C_{j}^{*},$ $C_{*}j\geq 0$, $i=0,$
$\ldots,$

$n$ .

This LP problem is combining (10) and (11) in considering inclusion relations $A_{\mathrm{i}}\supseteq A_{*},$ $i=0,$
$\ldots,$$ni$ between

the upper and lower regression coefficients. By adding $A_{\mathrm{i}}\supseteq A.,$$i=\mathrm{O}\mathrm{i}’\ldots$ , $n$ in LP problem (12), we obtain
two models satisfying $Y^{*}(x)\supseteq \mathrm{Y}_{*}(x)$ for any $x$.

Now suppose we have data sets $(x_{j}^{O}, Y\eta=j\mathrm{t}1,p_{j1}, \ldots,\mathrm{P}_{j};nY_{j}^{\sigma}),$ $i^{=1},$
$\ldots,$ $P$ which satisfies a following

linear system:

$\mathrm{r}^{Ooo}(X_{jj1^{+}n}^{O})=A_{0}+A1^{XA^{o_{x}}}\ldots+jn’ j=1,$
$\ldots,$ $p$ . (13)

Then we obtain the following equalities
$A^{\mathit{0}}=A^{t}=A.$, $\mathrm{Y}^{o}(X)=\mathrm{Y}^{\mathrm{r}}(\mathrm{X})=\mathrm{Y}_{*}(x)$ (14)

by solving the upper approximation model (10) and the lower approximation model (11) (soe Tanaka et al.
[3] $)$ .

Unfortunately, the lower approximation model is not always guaranteed if we fail to assume a proper
regression model. In case of no solution for linear regression with the lower approximation model, we can
take a following polynomial:

$\mathrm{Y}=F(_{X)}=A0+\sum A\chi li+\sum A_{\{}.\mu fl_{j}+\sum A_{j}X_{\mathrm{i}}Xxfl’ k^{+}’\ldots$(15)

Since a polynomial such as (15) can represent any function, the center of the lower approximation model
$\mathrm{Y}_{\mathrm{g}}(x_{j})$ can meet the center of the obseIved output $Y_{j}$ . Thus, one can obtain an optimal solution in the lower

approximation model by increasing the number of tenns of the polynomial (15) until a solution is found.
The existence of the lower approximation model can be interpreted as the fact that the assumed model is
somewhat reliable. Ifwe find alower model, since there always exists an optimal solution for the upper model,

the measure of fitness $\varphi$ can be introduced as

$\varphi=_{p=1}^{1\sum_{j}\frac{C_{*}^{t}|X_{j}|}{c^{t}|x|j}}$. (16)
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where $0\leq\varphi\leq 1$ . This measure of fimess $\varphi$ indicates how approximately the upper and lower models are
assumed to the given data. It is desirable to assume regression models which give higher value of $\varphi$ . If the
given input-output data satisfy a linear system (13), then we can obtain the upper and the lower models which
are identical. In this case the measure of fitness $\varphi$ becomes 1.

Now assuming that an analyst may consider a tolerance limit $\omega$ such that $\varphi_{Y}\geq\omega$ , we propose a new
algorithm which gives two approximate models for the interval regression analysis.

Algorithm obtaining two approximation models:

Step 1: Take a linear fmction as regression model: $Y=A_{\{)}+ \sum A,x_{i}$ . (17)

Step2: Solve the lower approximation model (11). Ifthere is an optimal solution in the model (11), go to Step
4. Otherwise, go to Step 3.
SteP 3: Increase the number of terms of the $\mathrm{p}\mathrm{o}\mathrm{l}\mathrm{y}\mathrm{n}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{a}1_{\mathrm{S}}$ , i.e., $\mathrm{Y}=A_{\mathit{0}}+\sum A_{ji}x+\sum A_{j}x_{i^{X}j}\text{ノ}$ (18)

Go to Step 2.
Step 4: Solve the unified LP problem(12) and calculate the measure offitness $\varphi$ of the two models. If $\varphi\geq a?$,

then go to Step5 (We already have the optimal upper model $\mathrm{Y}^{u}(x)$ and the optimal lower model $Y_{\mathrm{K}}(x)$

satisfying $Y^{*}(\mathrm{x})\supseteq Y_{*(}X)$ for any $x$). Otherwise, go to Step 3.
Step5: End the procedure.

2.2. A numerical example

The data set of crisp inputs and inteIval outputs is shown in Table 1. The proposed algorithm is applied to
obtain two approximate interval regression models under the assumption of $a$) $=0.25$ as a tolerance limit.

Using a linear regression model, we obtained the following upper and lower models
$\gamma^{*}(X)=(-0.6563,2.7813)+(2.2813,0.5938)_{X}$ (19)

$Y_{*}(x)=(0.8125, \mathrm{o})+(1.7422, \mathrm{o}.0547)_{X}$ (20)

(a) $V=A_{\{)}+A_{1}x(\varphi_{r^{=0}}.0458)$
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(b) $Y=A_{(\}}+A_{1}x+A_{\sim},x^{2}(\varphi_{Y}=0.3281)$

Figure 2. Obtained upper and lower models for the given data set.

which are depicted in Figure 2 (a) where the outer two lines represent the upper model and the inner two lines
represent the lower model. But the measure of fitness is $\varphi(=0.0458)<\omega(=0.25)$ . Thus we rejected the
obtained models. Therefore we increase the number of terms of the polynomials as (18). By solving the
unified LP problem(12), we obtained the upper model $\mathrm{Y}^{*}(x)$ and the lower model $\mathrm{Y}_{*}(x)$ denoted as

$Y^{*}(x)=(3.7118,0.8507)-(0.1958,0.3625)x$
(21)

$+\mathrm{t}^{0.234}0,0.0368)X2$

$Y_{l}(x)=(3.3417,0.4806)+(0.0597,0.1347)X$
(22)

$+(0.1972,0)\chi 2$

which are depicted in Figure 2 (b). The measure of fitness is greater than the tolerance limit, i.e.,
$\varphi(=0.3281)>a)(=0.25)$ . Thus we accept(21) and (22) as optimal models which satisfy $\mathrm{Y}^{\mathrm{r}}(x)\supseteq Y_{\iota}(x)$ for
any $x$.

3. Identification methods of upper and lower possibility distributions

Let us begin with the given data $(x_{j}, h_{j}),$ $0=1,$ $\ldots$ , $p$) where $x_{j}=(X_{j1}, \ldots, X_{jn})$ is a vector and $h_{j}$ is an
associated possibilistic grade given by expert knowledge. Assume that $h_{j},$ $(j=1, \ldots, p)$ are expressed by a
possibilily distribution $A$ defined as

$\Pi_{A}(x_{j})=\exp\{-(x_{j}-a)tD-1(x_{j}-a)A\}=(a, D_{A})_{e}$, (23)

where $a=$ $(a_{\iota}, \ldots , a_{n})$ is a center vector and $D_{4}$ is a symmetric positive definite matrix, denoted as $D_{A}>0$ .
Given the data, the problem is to detemline an exponential possibility distribution of (23), i.e., a center

vector $a$ and a symmetric positive definite matrix $D_{A}$ . According to two different viewpoints, the upper and
lower possibility distributions are introduced in this section. The upper and lower possibility distributions
denoted as $\Pi_{u}\mathrm{a}\mathrm{n}\mathrm{d}\Pi_{l}$, respectively should be assumed to satisfy the inequality $\Pi_{u}(x)\geq\Pi_{l}(X),$ $\forall X$ with
considering some similanities between our proposed methods and rough sets.

The center vector $a$ can be approximately estimated as
(24)

$a=x_{i}$

whose $h_{j}={\rm Max} h_{k}k=1,\ldots,p$ and the associated possibility degree $h_{j}$ is revised to be 1. Taking the transformation

$\gamma_{j}=x_{j}-a$ , a possibility distribution with the zero center vector is as follows:

$\Pi_{A}(_{J_{j}})=e\mathrm{x}\mathrm{p}(-y_{J}’D-\mathrm{I}yAj)=(\mathrm{o}, D_{Ae})$, (25)

where $D_{A}$ is denoted as $D_{u}\mathrm{a}\mathrm{n}\mathrm{d}D_{l}$ corresponding to $\prod_{u}\mathrm{a}\mathrm{n}\mathrm{d}\Pi_{l}$ , respectively.
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3.1. Upper and lower distributions hy the integrated model

The upper and lower distributions are used to reflect two kinds of dismibutions from the upper and lower
directions.

Let us identify the upper and lower possibilily $\mathrm{d}\mathrm{i}_{\mathrm{S}\mathrm{t}\dot{\Pi}}\mathrm{b}\mathrm{u}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}\mathrm{S}}$ with the following assumptions whose
meanings are illustrated in Figure 3.
1) Maximize $\Pi_{l}(y_{1})\mathrm{x}\ldots \mathrm{x}\Pi_{l}$ ($yJ$ subject to $\Pi_{l}[\mathcal{Y}_{j}$) $\leq h_{j},$ $j=1,$ $\ldots$ , $p$ . (Lower distribution)
2) Minimize $\prod_{u}(\nu_{1})\mathrm{X}\ldots \mathrm{x}\prod_{u}(\mathcal{V}_{\rho})$ subject to $\prod_{u}(y_{j})\geq h_{j},$ $j=1,$ $\ldots,$ $p$ . (Upper distribution)
$3) \prod_{u}\mathfrak{c}_{\mathcal{Y}})\geq\Pi,[y$). (Relation of upper and lower $\mathrm{d}\mathrm{i}_{\mathrm{S}\mathrm{t}\dot{\Pi}}\mathrm{b}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}s$ )

The upper and lower distributions can be simultaneously obtained by the following optimization problem.

$M_{u}f \dot{f}_{l}\sum_{j^{=}1}^{p}yD^{-1}ylj-\sum_{j}iy’,D_{u}^{-}J=p11\mathcal{Y}_{j}$

subject to $y’,JJ_{uj}^{-1}y\leq-\ln h_{j}$ ,

$y^{t},D^{-1},y_{j}\geq-\ln h_{j}$ , $j=1,$ $\ldots,$ $p$, (26)

$D_{u}-D_{l}\geq 0$,
$D_{l}\geq 0$ .

It is obvious that (26) is a nonlinear optimization $\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\mathfrak{m}$ which is difflcult to be solved.
To cope with this difficulty, we will use principle component analysis (PCA) to rotate the given data by the

linear transformation $T$ to obtain a positive definite matrix easily. The columns of $T$ are characteristic vectors
ofmatrix $\Sigma=[\sigma_{\ddot{y}}]$ of given data, where $\sigma_{ij}$ is defined by the following formulation.

$\sigma_{\mathrm{i}i}=\{\mathrm{a}_{\simeq}(X-a)hj(X_{b}-a_{j}PP)h\}/_{R}k=h_{k}$ . (27)

$\mu$

Figure 3. Graphic explamtion of upper and lower distributions.

Using the linear transformation, the data $\{y_{/}\}$ can be transformed into $\{z_{j}=T^{t}y_{j}\}$ . Then we have

$\Pi_{A(\mathrm{Z}_{j}})=\exp(-zT^{t-1}tDr_{Z})jAj$ . (28)

According to the feature ofPCA, $YD_{A}^{-\iota}\iota$ is assumed to be a diagonal matrix as follows:

$T^{r}D_{A}-1\tau=C_{A}=$ (29)
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Denote $C_{A}$ as $C_{u}\mathrm{a}\mathrm{n}\mathrm{d}C_{l}$ for the upper and lower possibility distribution cases, respectively. The
corresponding diagonal elements in $c_{u}\mathrm{a}\mathrm{n}\mathrm{d}c_{l}$ are denoted as $c_{ui}$ andcu’ $(i=1, \ldots , n)$, respectively. The
integrated model can be rewnitten as follows:

$\Psi_{u}^{i}p_{l}$

$\sum_{j=1}^{p}z_{j}^{l}c_{l}z_{r^{-}}\sum_{j=1}pZ_{j}^{t}CZyj$

subject to $z_{Jj}^{t}C_{u}z\leq-\ln h_{j}$,

$z_{j}^{t}C\beta_{j}\geq-\ln h_{j}$, $j=1,$ $\ldots,$ $p$, (30)

$C_{ui}\geq \mathcal{E}$ ,

$c_{li}\geq C_{yj}$ , $i=1,$
$\ldots,$

$n$ ,

where $c_{li}\geq c_{ui}\geq\epsilon>0$, $(i=1, \ldots , n)$ make $D_{u}\mathrm{a}\mathrm{n}\mathrm{d}D_{l}$ positive definite, and $D_{u}-D_{l}$ semi-positive definite.
Thus, we have

$D_{u}=\mathrm{r}c_{u}-1\tau^{t}$,
(31)

$D_{f}=TC^{-\iota}Tlt$ .

Similar to regression analysis, we can define the measure of fimess $\eta$ as

$\eta=_{p_{j=})}\perp\sum_{1}\frac{\Pi_{l}(X}{\prod_{u}(X}\llcorner j)$ . (32)

3.2. A numerical example

The data in the possibility $\mathrm{p}\mathrm{o}\mathrm{I}\mathrm{f}\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{o}$ problem are given in the following table.

Table 2. Retum rate on two securities and possibility degrees.

From the proposed approach explained in Section 3.1, we obtained
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$a=$ (0.154, 0.176),

$D_{u}=$ ,

$D_{l}=$ .

(33)

Using the formulation (30) and (31), we obtained the two possibility distributions as shown in Figure 4 where
the outer ellipse is the upper possibility distribution and the inner ellipse is the lower one for $h=0.5$ ,
respectively. From (33), we obtained $\eta=0.226$ .

$,\mathrm{c}2$

Figure 4. The upper and lower possibility distributions.

4. Similarities between propose4 models and rough sets

Let a set $X\subset U$ be given. Then an upper approximation of $X$ in $A$ denoted as $A^{*}(X)$ means the least
definable set containing $X$ , and a lower approximation of $X$ in $A$ denoted as $\mathrm{A}_{*}(\chi)$ means the greatest
definable set contained in $X$ . The upper approximation $A(X)$ and the lower approximation $A_{\mathrm{r}}(X)$ can be
defined as

$A^{\cdot}( \eta=\bigcup_{\neq\emptyset}E_{i}E_{i^{\cap}}X , A.[X)=\mathrm{u}Eff_{i}\subseteq Xi$ ’ (34)

where $E_{j}$ is the i-th $\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{a}\iota \mathrm{y}$ set in $A$ . An accuracy measure of a set $X$ in the approximation space
$A=(U, R)$ is defined as

$\alpha_{A}(X)=\frac{\mathrm{C}\mathrm{a}\mathrm{r}\mathrm{d}(A.(x))}{\mathrm{C}\mathrm{a}\mathrm{r}\mathrm{d}(A(x))}$. (35)

where Card $(A.(X))$ is the cardinality of $A_{*}(x)$ . When the classification $C(U)=\{X_{1}, \ldots , X_{n}\}$ is givek, the
accuracy ofthe classification $C(U)$ is defined as

$\beta_{A}(U)=\mathrm{c}_{\mathrm{a}\mathrm{r}}q\mathrm{u}A.(r)j)/\mathrm{c}_{\mathrm{a}\mathrm{r}q}\mathrm{u}A(X_{j}))$ (36)

whose concept is used to define the measure of fimess in interval regression analysis and the identification
methods of exponential Possibiliq dismbutions. Furhermore, the upper and lower approximations of $X$ ,
$A_{\iota}(\chi)$ and $A^{*}(X)$ are corresponding to the upper and lower approximation models in regression analysis and
in the identification methods ofpossibility distributions. Thus, we can summarize the similarities between our
models and rough sets in Table 3.
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5. Concluding remarks

In the foregoing research, we are going to formulate portfolio selection problems, DEA (Data Envelopment
Analysis), and possibility decision problems with the upper and lower models. It is emphasized that the upper
and lower models can really represent possibility phenomena which are a kind of umcertainty.

Table 3. Similarities of the concepts between the proposed models and rough sets.
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