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Abstract

In this paper, we study the convergence of a sequence of fuzzy sets on R™ which
in monotone w.r.t. a pseudo order <x induced by a closed convex cone K. Our
study is carried out by restricting the class of fuzzy sets into the subclass in which
<k becomes a partial order and a monotone convergence theorem is approved.
This restricted subclass of fuzzy sets is created and characterized in the concept of
a determining class. '
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1. Introduction and notations

In our previous paper [3], we have introduced a pseudo order, < , in the class of fuzzy
sets, which is natural extension of fuzzy max order (cf. [2], [6]) in fuzzy numbers on R and
induced by a closed convex cone K in R"™. For a lattice-structure of the fuzzy max order,
see [1], [10]. Here, we study the convergence of a sequence of fuzzy sets on R™ which is
monotone w.r.t. a pseudo order <. Our study is done by restricting the class of fuzzy
sets into the subclass in which <x becomes a partial order and a monotone convergence
‘theorem is approved. This restricted subclass of fuzzy sets is created and characterized
in the concept of a determining class.

In the remainder of this section, we will give some notations and review a vector
ordering of R™ by a convex cone. In Section 2, a pseudo order of fuzzy sets on R
is reviewed referring to our previous paper [3]. In Section 3, we introduce a concept
determining class and give a convergence theorem for convex compact subclass R™. These
results are applied to obtain a monotone convergence theorem for fuzzy sets on R™ in
Section 4.

Let R be the set of all real numbers and R® an n-dimensional Euclidean space. We
write fuzzy sets on R™ by their membership functions § : R" — [0,1] (see Novék [5] and
Zadeh [9]). The a-cut (a € [0,1]) of the fuzzy set § on R" is defined as

§o = {z € R"|3(z) > a} (@>0) and 3§ :=cl{z € R"|3(z) >0},
where ¢l denotes the closure of the set. A fuzzy set § is called convex if

sz + (L=N)y) > 38(=x)A3(y) z,yeR, A€ [0,1],
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where a A b = min{a,b}. Note that § is convex iff the a-cut §, is a convex set for all
a € [0,1]. Let F(R™) be the set of all convex fuzzy sets whose membership functions
§ : R* — [0,1] are upper-semicontinuous and normal (sup,cg~ §(z) = 1) and have a
compact support. When the one-dimensional case n = 1, the fuzzy sets are called fuzzy
numbers and F(R) denotes the set of all fuzzy numbers.

Let C(R™) be the set of all compact convex subsets of R™, and C,(R") be the set of all
rectangles in R”. For § € F(R"), we have §, € C(R") (a € [0,1]). We write a rectangle
in C,.(R™) by

[z, 9] = [21,31] X [22, 9] X -+ X [Zn, Y]
for z = (21,22, - ,2Zn), ¥ = (Y, Y2, "+ ,Yn) € R* with z; < y; (¢ = 1,2,--- ,n). For the
case of n = 1, C(R) = C,(R) and it denotes the set of all bounded closed intervals. When
§ € F(R") satisfies 5, € C.(R") for all a € [0,1], § is called a rectangle-type. We denote
by F.(R™) the set of all rectangle-type fuzzy sets on R"™. Obviously F.(R) = F(R).

The definitions of addition and scalar multiplication on F(R™) are as follows: For
m, 7 € F(R") and A > 0,

(1) (e @)a)i= s (i) A,

x1,22€R"; z1+z2=2

g [ m(z/XN) fA>0 n
(1.2) (Am)(z) = { Iy (z) fA=0 (z € R"),
where I;y(-) is an indicator. By using set operations A+ B := {z+y |z € A,y € B} and
M = {)\z | z € A} for any non-empty sets A, B C R, the following holds immediately.

(1.3) (M4 R)q = Ma + e and (M), = A, (e € [0,1]).

Let K be a non-empty cone of R™. Using this K, we can define a pseudo-order relation
<k onRbyz <y yiff y—z € K. Let R} be the subset of entrywise non-negative elements
in R”. When K = R7, the order <y will be denoted by <, and z %, y means that z; <y,
forall i =1,2,--- ,n, where z = (z1,Z9, - , Zp) and y = (Y1, %2, ,¥n) € R™

2. A pseudo-order on F(R")

In this section, we review a pseudo order introduced by [3]. Henceforth we assume that
the convex cone K C R" is given. A pseudo order <x on C(R™) is defined, whose idea is
based a set-relation treated in [4], as follows.

For A, B € C(R"), A <k B means the following (C.a) and (C.b) :

(C.a) For any z € A, there exists y € B such that z <x y.

(C.b) For any y € B, there exists z € A such that z <g .

When K = R?, the relation <x on C(R™) will be written simply by <, and for
(2,5], [2',1/] € Co(RP), [2,5] <o [#',1/] means & <, o' and y <, ¥/

Using a pseudo order < x on C{R"), a pseudo order < on F(R") is defined as follows.
For 3,7 € F(R"), § <g 7 means the following (F.a) and (F.b):
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(F.a) For any z € R™, there exists y € R™ such that ¢ < y and 5(z) < 7(y).
(F.b) For any y € R", there exists z € R™ such that z <x y and 3(z) > 7(y).

In (3], for §,7 € F(R"), it is shown that § < 7 if and only if 3, <g 7o on C(R") for
all a € [0, 1]. Define the dual cone of a cone K by

Kt:={acR"|a-z>0foralzeK},

where z - y denotes the inner product on R" for z,y € R". For a subset A C R"™ and
a € R™, we define

(2.1) a-A={a-z|ze A} (CR).

The equation (2.1) means the projection of A on the extended line of the vector a if
a-a=1. It is trivial that a- A € C(R) if A € C(R") and a € R".

Lemma 2.1([3]). Let A,Be€C(R"). A<x BonCR") ifandonlyif a-A <;a B
on C(R) for all a € K, where <, is the natural order on C(R).

For a € R* and § € F(R"), we define a fuzzy number a - § € F(R) by

(2.2) a-3(z):= sup min{e, 1,5, (2)}, ze€R
a€l0,1]
where 1p(-) is the classical indicator function of a closed interval D € C(R).
We define a partial relation <,; on F(R) as follows ([6]): For 5,7 € F(R), § < T
means that 5, <1 7o for all « € [0, 1].
The following theorem gives the correspondence between the pseudo-order <y on
F(R™) and the fuzzy max order <), on F(R).

Lemma 2.2([3]). For,7 € F(R"), § xx ¥ ifand only if a-5 5y a-7 foralla € K.

Let p, be the Hausdorff metric on C(R™), that is, for A,B € C(R"), pn(4,B) =
max d(a,B) Vv max d(b, A), where d is a metric in R" and d(z,Y) = IIél}I/l d(z,y) forz € R®
ac S y

and Y € C(R"). It is well-known that (C(R"), p,) is a complete separable metric space. A
sequence {D;}3, C C(R™) converges to D € C(R") w.r.t. p, if pp(De, D) — 0 as £ — oo.

Definition(Convergence of fuzzy set, [8]).
For {3}, € F(R™) and 7 € F(R"), § converges to ¥ w.r.t. p, If pn(8e,0:Ta) — 0 as
{ — oo except at most countable o € [0, 1].

In the sequel, the monotone convergence theorems for fuzzy sets are given under the
concept of the above convergence.
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3. Sequences in C(R")

In this section, restricting C(R") into the subclass by use of the concept of determining
class, we prove the monotone convergence theorem for C(R").

Let £ C C(R™) and A C R™. Then we say that £ is determined by Aifa-D =a- F
fora € Aand D, F € £ implies D = F'.

Note that £ determined by some A C R" is closed w.r.t. p,. Obviously, C.(R") is

determined by {ej,eq,---,e,}. Also, by the separation theorem, C(R") is determined
R™.

Theorem 3.1.  Let K be a closed convex cone of R™. Suppose that £ C C(R™) is
determined by K*. Then, the pseudo order < is a partial one in the restricted class L.

Proof. It suffices to show that <y is antisymmetric in £. Let D, F" € £ satisfy that
D <k Fand F <3 D. By Lemma 2.1, aD < aF and aF <, aD for alla € K*. Since <
ia a partial order, aF' = aD for all ¢ € K, which implies F' = D from the determining
property of K*. Q.E.D.

The sequence {Dg}°; C C(R™) is said to be bounded w.r.t. =<y if there exists
F,D € C(R™) such that F' g Dy <g D for all £> 1 and said to be monotone w.r.t. <g
if Dy <g Dy <g +--. Then, as an application of Theorem 3.1, we have the following,
whose proof is omitted.

Theorem 3.2. Let K be a closed convex cone of R* with K*N(R" )° # (. Suppose that
£ C C(R") is determined by K*. Then, any sequence {D,};2, C £ which is monotone
and bounded w.r.t. <y converges w.r.t. p,, where A° is a set of inner points in A.

The following results are concerned with the scalarization method.

Corollary 3.1. Let K = {)\a| A > 0} for some a € R%. Then, any sequence in C(R")
with monotonicity and boundedness w.r.t. <k converges w.r.t. py.

Corollary 3.2.  Any sequence in C,.(R"™) with monotonicity and boundedness w.r.t. <,
converges w.r.t. pn.

4. Sequences in F(R")

In this section, applying the results in Section 3, we give the monotone convergence
theorem in F(R"). Let £ C F(R") and A C R™. Then we say that £ is determined by A
if a5 = aF for all a € A and §,7 € £ implies § = 7.

Note that £ determined by some A C R" is closed in the convergence given in Defi-
nition 1. Applying Lemma 2.2, the same proof as Theorem 3.1 is useful in proving the
following.

Theorem 4.1. Let K be a closed convex cone of R*. Suppose that £ C F(R") is
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determined by K+. Then, a pseudo order <y is a partial order in the restricted class £.

In order to get the convergence theorem, we need the concept of directionality given
in [8]. Put the surface of the unit ball by U := {z € R* | ||z|| = 1}. Let V. C U. Then,
for D, D’ € C(R™) with D C D', we call D’ V-directional to D (written by D’ Dy D) if
there exists a real A > 0,y € D and z € D' such that
(i) d(z,y) = pu(D', D) and (il) z —y = Av for some v € V.

Definition 2. Let V C U C R*. For § € F(R"), 5 is called V -directional if §4 Dv S
for0<a<d <1.

Theorem 4.2. Let K be a closed convex cone of R with K+ N (R}) # (. Suppose
that £ C F(R™) is determined by K*. Then, any monotone and bounded sequence
{30}, C £ with 5, (¢ > 1) is V-directional for a finite set V converges w.r.t. pp.

Corollary 4.1. Let K = {\a | A > 0} for some a € R™. Then, any sequence{S¢} C
F(R") satisfying that it Is monotone and bounded w.r.t. <g and 5, (¢ > 1) is V-
directional for a finite set V' converges w.r.t. pn.

Corollary 4.2.  Any sequence In F,(R™) with monotonicity and boundedness w.r.t.
<, converges w.r.t. pn.
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