Sequences of Fuzzy Sets on \mathbb{R}^n

千葉大学教育学部蔵野正美(Masami KURANO)千葉大学理学部安田正實(Masami YASUDA)千葉大学理学部中神潤一(Jun-ichi NAKAGAMI)北九州大学経済学部吉田祐治(Yuji YOSHIDA)

Abstract

In this paper, we study the convergence of a sequence of fuzzy sets on \mathbb{R}^n which in monotone w.r.t. a pseudo order \leq_K induced by a closed convex cone K. Our study is carried out by restricting the class of fuzzy sets into the subclass in which \leq_K becomes a partial order and a monotone convergence theorem is approved. This restricted subclass of fuzzy sets is created and characterized in the concept of a determining class.

Keywords: Pseudo-order, fuzzy max order, multidimensional fuzzy sets, monotone convergence theorem, determining class, rectangle-type fuzzy sets.

1. Introduction and notations

In our previous paper [3], we have introduced a pseudo order, \leq_K , in the class of fuzzy sets, which is natural extension of fuzzy max order (cf. [2], [6]) in fuzzy numbers on $\mathbb R$ and induced by a closed convex cone K in $\mathbb R^n$. For a lattice-structure of the fuzzy max order, see [1], [10]. Here, we study the convergence of a sequence of fuzzy sets on $\mathbb R^n$ which is monotone w.r.t. a pseudo order \leq_K . Our study is done by restricting the class of fuzzy sets into the subclass in which \leq_K becomes a partial order and a monotone convergence theorem is approved. This restricted subclass of fuzzy sets is created and characterized in the concept of a determining class.

In the remainder of this section, we will give some notations and review a vector ordering of \mathbb{R}^n by a convex cone. In Section 2, a pseudo order of fuzzy sets on \mathbb{R}^n is reviewed referring to our previous paper [3]. In Section 3, we introduce a concept determining class and give a convergence theorem for convex compact subclass \mathbb{R}^n . These results are applied to obtain a monotone convergence theorem for fuzzy sets on \mathbb{R}^n in Section 4.

Let \mathbb{R} be the set of all real numbers and \mathbb{R}^n an *n*-dimensional Euclidean space. We write fuzzy sets on \mathbb{R}^n by their membership functions $\tilde{s}: \mathbb{R}^n \to [0,1]$ (see Novák [5] and Zadeh [9]). The α -cut ($\alpha \in [0,1]$) of the fuzzy set \tilde{s} on \mathbb{R}^n is defined as

$$\tilde{s}_{\alpha} := \{x \in \mathbb{R}^n \mid \tilde{s}(x) \ge \alpha\} \ (\alpha > 0) \quad \text{and} \quad \tilde{s}_0 := \operatorname{cl}\{x \in \mathbb{R}^n \mid \tilde{s}(x) > 0\},$$

where cl denotes the closure of the set. A fuzzy set \tilde{s} is called convex if

$$\tilde{s}(\lambda x + (1 - \lambda)y) \ge \tilde{s}(x) \wedge \tilde{s}(y) \quad x, y \in \mathbb{R}^n, \ \lambda \in [0, 1],$$

where $a \wedge b = \min\{a, b\}$. Note that \tilde{s} is convex iff the α -cut \tilde{s}_{α} is a convex set for all $\alpha \in [0, 1]$. Let $\mathcal{F}(\mathbb{R}^n)$ be the set of all convex fuzzy sets whose membership functions $\tilde{s} : \mathbb{R}^n \to [0, 1]$ are upper-semicontinuous and normal $(\sup_{x \in \mathbb{R}^n} \tilde{s}(x) = 1)$ and have a compact support. When the one-dimensional case n = 1, the fuzzy sets are called fuzzy numbers and $\mathcal{F}(\mathbb{R})$ denotes the set of all fuzzy numbers.

Let $\mathcal{C}(\mathbb{R}^n)$ be the set of all compact convex subsets of \mathbb{R}^n , and $\mathcal{C}_r(\mathbb{R}^n)$ be the set of all rectangles in \mathbb{R}^n . For $\tilde{s} \in \mathcal{F}(\mathbb{R}^n)$, we have $\tilde{s}_{\alpha} \in \mathcal{C}(\mathbb{R}^n)$ ($\alpha \in [0,1]$). We write a rectangle in $\mathcal{C}_r(\mathbb{R}^n)$ by

$$[x,y] = [x_1,y_1] \times [x_2,y_2] \times \cdots \times [x_n,y_n]$$

for $x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$ with $x_i \leq y_i$ $(i = 1, 2, \dots, n)$. For the case of n = 1, $\mathcal{C}(\mathbb{R}) = \mathcal{C}_r(\mathbb{R})$ and it denotes the set of all bounded closed intervals. When $\tilde{s} \in \mathcal{F}(\mathbb{R}^n)$ satisfies $\tilde{s}_{\alpha} \in \mathcal{C}_r(\mathbb{R}^n)$ for all $\alpha \in [0, 1]$, \tilde{s} is called a rectangle-type. We denote by $\mathcal{F}_r(\mathbb{R}^n)$ the set of all rectangle-type fuzzy sets on \mathbb{R}^n . Obviously $\mathcal{F}_r(\mathbb{R}) = \mathcal{F}(\mathbb{R})$.

The definitions of addition and scalar multiplication on $\mathcal{F}(\mathbb{R}^n)$ are as follows: For $\tilde{m}, \tilde{n} \in \mathcal{F}(\mathbb{R}^n)$ and $\lambda \geq 0$,

(1.1)
$$(\tilde{m} + \tilde{n})(x) := \sup_{x_1, x_2 \in \mathbb{R}^n; \ x_1 + x_2 = x} \{ \tilde{m}(x_1) \wedge \tilde{n}(x_2) \},$$

(1.2)
$$(\lambda \tilde{m})(x) := \begin{cases} \tilde{m}(x/\lambda) & \text{if } \lambda > 0 \\ I_{\{0\}}(x) & \text{if } \lambda = 0 \end{cases} (x \in \mathbb{R}^n),$$

where $I_{\{\cdot\}}(\cdot)$ is an indicator. By using set operations $A+B:=\{x+y\mid x\in A,y\in B\}$ and $\lambda A:=\{\lambda x\mid x\in A\}$ for any non-empty sets $A,B\subset\mathbb{R}^n$, the following holds immediately.

$$(1.3) (\tilde{m} + \tilde{n})_{\alpha} := \tilde{m}_{\alpha} + \tilde{n}_{\alpha} \text{ and } (\lambda \tilde{m})_{\alpha} = \lambda \tilde{m}_{\alpha} \quad (\alpha \in [0, 1]).$$

Let K be a non-empty cone of \mathbb{R}^n . Using this K, we can define a pseudo-order relation \preceq_K on \mathbb{R} by $x \preceq_K y$ iff $y-x \in K$. Let \mathbb{R}^n_+ be the subset of entrywise non-negative elements in \mathbb{R}^n . When $K = \mathbb{R}^n_+$, the order \preceq_K will be denoted by \preceq_n and $x \preceq_n y$ means that $x_i \leq y_i$ for all $i = 1, 2, \dots, n$, where $x = (x_1, x_2, \dots, x_n)$ and $y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$.

2. A pseudo-order on $\mathcal{F}(\mathbb{R}^n)$

In this section, we review a pseudo order introduced by [3]. Henceforth we assume that the convex cone $K \subset \mathbb{R}^n$ is given. A pseudo order \leq_K on $\mathcal{C}(\mathbb{R}^n)$ is defined, whose idea is based a set-relation treated in [4], as follows.

For $A, B \in \mathcal{C}(\mathbb{R}^n)$, $A \leq_K B$ means the following (C.a) and (C.b):

- (C.a) For any $x \in A$, there exists $y \in B$ such that $x \preccurlyeq_K y$.
- (C.b) For any $y \in B$, there exists $x \in A$ such that $x \preceq_K y$.

When $K = \mathbb{R}^n_+$, the relation \leq_K on $\mathcal{C}(\mathbb{R}^n)$ will be written simply by \leq_n and for $[x,y], [x',y'] \in \mathcal{C}_r(\mathbb{R}^n), [x,y] \leq_n [x',y']$ means $x \leq_n x'$ and $y \leq_n y'$.

Using a pseudo order \leq_K on $\mathcal{C}(\mathbb{R}^n)$, a pseudo order \leq_K on $\mathcal{F}(\mathbb{R}^n)$ is defined as follows. For $\tilde{s}, \tilde{r} \in \mathcal{F}(\mathbb{R}^n)$, $\tilde{s} \leq_K \tilde{r}$ means the following (F.a) and (F.b):

- (F.a) For any $x \in \mathbb{R}^n$, there exists $y \in \mathbb{R}^n$ such that $x \leq_K y$ and $\tilde{s}(x) \leq \tilde{r}(y)$.
- (F.b) For any $y \in \mathbb{R}^n$, there exists $x \in \mathbb{R}^n$ such that $x \preceq_K y$ and $\tilde{s}(x) \geq \tilde{r}(y)$.

In [3], for $\tilde{s}, \tilde{r} \in \mathcal{F}(\mathbb{R}^n)$, it is shown that $\tilde{s} \preceq_K \tilde{r}$ if and only if $\tilde{s}_{\alpha} \preceq_K \tilde{r}_{\alpha}$ on $\mathcal{C}(\mathbb{R}^n)$ for all $\alpha \in [0, 1]$. Define the dual cone of a cone K by

$$K^+ := \{ a \in \mathbb{R}^n \mid a \cdot x \ge 0 \text{ for all } x \in K \},$$

where $x \cdot y$ denotes the inner product on \mathbb{R}^n for $x, y \in \mathbb{R}^n$. For a subset $A \subset \mathbb{R}^n$ and $a \in \mathbb{R}^n$, we define

$$(2.1) a \cdot A := \{a \cdot x \mid x \in A\} \ (\subset \mathbb{R}).$$

The equation (2.1) means the projection of A on the extended line of the vector a if $a \cdot a = 1$. It is trivial that $a \cdot A \in \mathcal{C}(\mathbb{R})$ if $A \in \mathcal{C}(\mathbb{R}^n)$ and $a \in \mathbb{R}^n$.

Lemma 2.1([3]). Let $A, B \in \mathcal{C}(\mathbb{R}^n)$. $A \preceq_K B$ on $\mathcal{C}(\mathbb{R}^n)$ if and only if $a \cdot A \preceq_1 a \cdot B$ on $\mathcal{C}(\mathbb{R})$ for all $a \in K^+$, where \preceq_1 is the natural order on $\mathcal{C}(\mathbb{R})$.

For $a \in \mathbb{R}^n$ and $\tilde{s} \in \mathcal{F}(\mathbb{R}^n)$, we define a fuzzy number $a \cdot \tilde{s} \in \mathcal{F}(\mathbb{R})$ by

$$(2.2) a \cdot \tilde{s}(x) := \sup_{\alpha \in [0,1]} \min\{\alpha, 1_{a \cdot \tilde{s}_{\alpha}}(x)\}, \quad x \in \mathbb{R}.$$

where $1_D(\cdot)$ is the classical indicator function of a closed interval $D \in \mathcal{C}(\mathbb{R})$.

We define a partial relation \leq_M on $\mathcal{F}(\mathbb{R})$ as follows ([6]): For $\tilde{s}, \tilde{r} \in \mathcal{F}(\mathbb{R}), \ \tilde{s} \leq_M \tilde{r}$ means that $\tilde{s}_{\alpha} \leq_1 \tilde{r}_{\alpha}$ for all $\alpha \in [0, 1]$.

The following theorem gives the correspondence between the pseudo-order \leq_K on $\mathcal{F}(\mathbb{R}^n)$ and the fuzzy max order \leq_M on $\mathcal{F}(\mathbb{R})$.

Lemma 2.2([3]). For $\tilde{s}, \tilde{r} \in \mathcal{F}(\mathbb{R}^n)$, $\tilde{s} \preceq_K \tilde{r}$ if and only if $a \cdot \tilde{s} \preceq_M a \cdot \tilde{r}$ for all $a \in K^+$.

Let ρ_n be the Hausdorff metric on $\mathcal{C}(\mathbb{R}^n)$, that is, for $A, B \in \mathcal{C}(\mathbb{R}^n)$, $\rho_n(A, B) = \max_{a \in A} d(a, B) \vee \max_{b \in B} d(b, A)$, where d is a metric in \mathbb{R}^n and $d(x, Y) = \min_{y \in Y} d(x, y)$ for $x \in \mathbb{R}^n$ and $Y \in \mathcal{C}(\mathbb{R}^n)$. It is well-known that $(\mathcal{C}(\mathbb{R}^n), \rho_n)$ is a complete separable metric space. A sequence $\{D_\ell\}_{\ell=1}^{\infty} \subset \mathcal{C}(\mathbb{R}^n)$ converges to $D \in \mathcal{C}(\mathbb{R}^n)$ w.r.t. ρ_n if $\rho_n(D_\ell, D) \to 0$ as $\ell \to \infty$.

Definition(Convergence of fuzzy set, [8]).

For $\{\tilde{s}_{\ell}\}_{\ell=1}^{\infty} \subset \mathcal{F}(\mathbb{R}^n)$ and $\tilde{r} \in \mathcal{F}(\mathbb{R}^n)$, \tilde{s}_{ℓ} converges to \tilde{r} w.r.t. ρ_n if $\rho_n(\tilde{s}_{\ell,\alpha}, \tilde{r}_{\alpha}) \to 0$ as $\ell \to \infty$ except at most countable $\alpha \in [0,1]$.

In the sequel, the monotone convergence theorems for fuzzy sets are given under the concept of the above convergence.

3. Sequences in $\mathcal{C}(\mathbb{R}^n)$

In this section, restricting $\mathcal{C}(\mathbb{R}^n)$ into the subclass by use of the concept of determining class, we prove the monotone convergence theorem for $\mathcal{C}(\mathbb{R}^n)$.

Let $\mathfrak{L} \subset \mathcal{C}(\mathbb{R}^n)$ and $A \subset \mathbb{R}^n$. Then we say that \mathfrak{L} is determined by A if $a \cdot D = a \cdot F$ for $a \in A$ and $D, F \in \mathfrak{L}$ implies D = F.

Note that \mathcal{L} determined by some $A \subset \mathbb{R}^n$ is closed w.r.t. ρ_n . Obviously, $\mathcal{C}_r(\mathbb{R}^n)$ is determined by $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$. Also, by the separation theorem, $\mathcal{C}(\mathbb{R}^n)$ is determined \mathbb{R}^n .

Theorem 3.1. Let K be a closed convex cone of \mathbb{R}^n . Suppose that $\mathfrak{L} \subset \mathcal{C}(\mathbb{R}^n)$ is determined by K^+ . Then, the pseudo order \preccurlyeq_K is a partial one in the restricted class \mathfrak{L} .

Proof. It suffices to show that \preccurlyeq_K is antisymmetric in \mathfrak{L} . Let $D, F \in \mathfrak{L}$ satisfy that $D \preccurlyeq_K F$ and $F \preccurlyeq_k D$. By Lemma 2.1, $aD \preccurlyeq_1 aF$ and $aF \preccurlyeq_1 aD$ for all $a \in K^+$. Since \preccurlyeq_1 is a partial order, aF = aD for all $a \in K^+$, which implies F = D from the determining property of K^+ . Q.E.D.

The sequence $\{D_\ell\}_{\ell=1}^{\infty} \subset \mathcal{C}(\mathbb{R}^n)$ is said to be bounded w.r.t. \preccurlyeq_K if there exists $F, D \in \mathcal{C}(\mathbb{R}^n)$ such that $F \preccurlyeq_K D_\ell \preccurlyeq_K D$ for all $\ell \geq 1$ and said to be monotone w.r.t. \preccurlyeq_K if $D_1 \preccurlyeq_K D_2 \preccurlyeq_K \cdots$. Then, as an application of Theorem 3.1, we have the following, whose proof is omitted.

Theorem 3.2. Let K be a closed convex cone of \mathbb{R}^n with $K^+ \cap (\mathbb{R}^n_+)^o \neq \emptyset$. Suppose that $\mathfrak{L} \subset \mathcal{C}(\mathbb{R}^n)$ is determined by K^+ . Then, any sequence $\{D_\ell\}_{\ell=1}^\infty \subset \mathfrak{L}$ which is monotone and bounded w.r.t. \preceq_K converges w.r.t. ρ_n , where A^o is a set of inner points in A.

The following results are concerned with the scalarization method.

Corollary 3.1. Let $K = \{\lambda a \mid \lambda \geq 0\}$ for some $a \in \mathbb{R}^n_+$. Then, any sequence in $\mathcal{C}(\mathbb{R}^n)$ with monotonicity and boundedness w.r.t. \leq_K converges w.r.t. ρ_n .

Corollary 3.2. Any sequence in $C_r(\mathbb{R}^n)$ with monotonicity and boundedness w.r.t. \leq_n converges w.r.t. ρ_n .

4. Sequences in $\mathcal{F}(\mathbb{R}^n)$

In this section, applying the results in Section 3, we give the monotone convergence theorem in $\mathcal{F}(\mathbb{R}^n)$. Let $\tilde{\mathfrak{L}} \subset \mathcal{F}(\mathbb{R}^n)$ and $A \subset \mathbb{R}^n$. Then we say that $\tilde{\mathfrak{L}}$ is determined by A if $a\tilde{s} = a\tilde{r}$ for all $a \in A$ and $\tilde{s}, \tilde{r} \in \tilde{\mathfrak{L}}$ implies $\tilde{s} = \tilde{r}$.

Note that $\tilde{\mathfrak{L}}$ determined by some $A \subset \mathbb{R}^n$ is closed in the convergence given in Definition 1. Applying Lemma 2.2, the same proof as Theorem 3.1 is useful in proving the following.

Theorem 4.1. Let K be a closed convex cone of \mathbb{R}^n . Suppose that $\tilde{\mathfrak{L}} \subset \mathcal{F}(\mathbb{R}^n)$ is

determined by K^+ . Then, a pseudo order \leq_K is a partial order in the restricted class $\tilde{\mathfrak{L}}$.

In order to get the convergence theorem, we need the concept of directionality given in [8]. Put the surface of the unit ball by $U := \{x \in \mathbb{R}^n \mid ||x|| = 1\}$. Let $V \subset U$. Then, for $D, D' \in \mathcal{C}(\mathbb{R}^n)$ with $D \subset D'$, we call D' V-directional to D (written by $D' \supset_V D$) if there exists a real $\lambda > 0, y \in D$ and $z \in D'$ such that

(i) $d(z,y) = \rho_n(D',D)$ and (ii) $z - y = \lambda v$ for some $v \in V$.

Definition 2. Let $V \subset U \subset \mathbb{R}^n$. For $\tilde{s} \in \mathcal{F}(\mathbb{R}^n)$, \tilde{s} is called V-directional if $\tilde{s}_{\alpha} \supset_V \tilde{s}_{\alpha'}$ for $0 \leq \alpha \leq \alpha' \leq 1$.

Theorem 4.2. Let K be a closed convex cone of \mathbb{R}^n with $K^+ \cap (\mathbb{R}^n_+)^o \neq \emptyset$. Suppose that $\tilde{\mathfrak{L}} \subset \mathcal{F}(\mathbb{R}^n)$ is determined by K^+ . Then, any monotone and bounded sequence $\{\tilde{s}_\ell\}_{\ell=1}^{\infty} \subset \tilde{\mathfrak{L}}$ with \tilde{s}_ℓ ($\ell \geq 1$) is V-directional for a finite set V converges w.r.t. ρ_n .

Corollary 4.1. Let $K = \{\lambda a \mid \lambda \geq 0\}$ for some $a \in \mathbb{R}^n_+$. Then, any sequence $\{\tilde{s}_\ell\} \subset \mathcal{F}(\mathbb{R}^n)$ satisfying that it is monotone and bounded w.r.t. \leq_K and \tilde{s}_ℓ $(\ell \geq 1)$ is V-directional for a finite set V converges w.r.t. ρ_n .

Corollary 4.2. Any sequence in $\mathcal{F}_r(\mathbb{R}^n)$ with monotonicity and boundedness w.r.t. \leq_n converges w.r.t. ρ_n .

References

- [1] W.Congxin and C.Cong, "The supremum and infimum of the set of fuzzy numbers and its application," J. Math. Anal. Appl. 210 (1997) 499-511.
- [2] N.Furukawa, "Parametric orders on fuzzy numbers and their roles in fuzzy optimization problems," Optimization 40 (1997) 171-192.
- [3] M.Kurano, M.Yasuda, J.Nakagami and Y.Yoshida, "Some pseudo order of fuzzy sets on \mathbb{R}^n ," (Preprint).
- [4] D.Kuroiwa, T.Tanaka and T.X.D.Ha, "On cone convexity of set-valued maps," Non-linear Analysis, Theory & Applications 30 (1997) 1487-1496.
- [5] V.Novák, Fuzzy Sets and Their Applications (Adam Hilder, Bristol-Boston, 1989).
- [6] J.Ramík and J.Řimánek, "Inequality relation between fuzzy numbers and its use in fuzzy optimization," Fuzzy Sets and Systems 16 (1985) 123-138.
- [7] J.Stoer and C.Witzgall, Convexity and Optimization in Finite Dimensions I (Springer-Verlag, Berlin and New York, 1970).
- [8] Y.Yoshida, M.Yasuda, J.Nakagami and M.Kurano, "A limit theorem in dynamic fuzzy systems with a monotone property," Fuzzy sets and Systems 94 (1998) 109-119.
- [9] L.A.Zadeh, "Fuzzy sets," Inform. and Control 8 (1965) 338-353.
- [10] K.Zhang and K.Hirota, "On fuzzy number lattice $(\tilde{R}, \preccurlyeq)$," Fuzzy sets and Systems 92 (1997) 113-122.