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REMARKS ON NONSMOOTH DYNAMIC VECTOR OPTIMIZATION
PROBLEMS

#8 EAM (SHAO Yi-Hang)

1. Introduction. This paper deals with vector optimization problems. By con-
vention, throughout this paper we will use the following notations. For y = (y1,-, ),
z= (21, *,2) € R", we say that

(i) y < z,if and only if y; < z; for any 7 € {1,---,n},
(ii) y < z if and only if y; < z; for any i € {1,---,n} with y # 2,

(ii) y < z if and only if §; < 2 for any i € {1,---,n}.

Recently, many papers have been devoted to optimality conditions for the vector-
valued programming and optimal control problems under some smooth or convex
assumptions (see (2], [6], [7], [9], [10]). In [11], we derived the Kuhn-Tucker type
proper-efficiency conditions for vector optimal control problems in general case. In this
paper we use analogous method to discuss weak-efficiency and efficiency conditions for
the following problem,

(P): minimize . F(x,u) = (Fi(z,u), -, Fe(z,u))
subject to: &(t) = ®(t,z(t),u(t)) a.e.,
z(0)e D, wu(t)eU(t) a.e.,
G(z,u) := (Gi(z,u), -+, Gi(z,u)) < 0

where
Fi(z,u) = /01 Fit,2(t),u(t))dt + fi(z(1)) for i € I := {1, -, k}
Gi(z,u) = /01 G,(t, z(t),u(t))dt + g;(z(1)) for ¢ € J := {1, -, };

z(-) € AC([0,1],R™) and u(-) € M([0,1],R"); F;, G, : [0,1] x R™ x R® — R, f;,
g; :R™ - Rforvel, jeJand :[0,1]x R™ x R™ — R™ are given functions; D is
a subset of R™ and U() : [0,1] — 28" is a set-valued function. Here, AC([0,1], R™) is
the space of absolutely continuous functions on [0,1] with value in R™, M([0,1}, R")
is the space of Lebesgue measurable functions on {0,1] with value in R".

For this optimal control problem (P), we say that (z,u) is an admissible process
ift Fi(+,2(-),w(-)) and G;(-,z(-), u(-)) are integrable for every : € I and j € J, (z,u)
satisfies state equation &(t) = ®(t, 2(¢), u(t)) a.e. with =(0) € D, w(t) € U(t) a.e. and
G(z,u) < 0. The first component of a process (z,u) is called a state and the second
is called a control. We denote by Q the set of all adiissible processes of (P). The
optimal solutions for (P) are defined in the following meaning.

Definition I: (2., u.) € {0 is said to be
(i) a weakly-efficient solution for (P) if there exists no (z,u) € £ such that

Flz,u) € F(Tu,us);
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(i) an efficient solution for (P) if there exists no (z,u) € @ such that
F(z,u) < F(Tuy ).

Definition 2: (2., u.) € is called alocal weakly-efficient solution of type (I) (vesp.
(11)) for (P) if and only if there is no (z,u) € Q with [lz — 2.]|;~ <€ for some ¢ > 0
(resp. with z(t) € z.(t) + €B,, and u(t) € u.(t) + By, for some € > 0, where B™ and
B™ are unit closed balls of R™ and R", respectively) such that F(z,u) < F(z.,u.).

The main method to obtain optimality conditions for multiobjective optimization
problems is based on a replacement of the multiobjective problems by single-objective
(scalar) optimization problems. The following results give the relationship between
(P) and scalar optimization problems.

Lemma 1: (z.,u.) € Q is a weakly-efficient (local weakly-efficient) solution of
(P) if and only if (z.,u.) is an optimal (local optimal) solution of the following scalar
optimization problem,

min: maz (Fi(z,0) - (o))
s.t.: (z,u) € Q.

Proof. By the definitions, it is easy to see that (z.,u.) is a weakly efficient of (P)
if and only if there is no (z,u) € Q satisfying

maz (Fi(@,u) = Fi(2s, 1)) < 0.
Thus, this lemma hold. a

Lemma 2: (6, Lemma 3.1]) (z«,ux) € Q is an efficient solution of (P) if and
only if (4, u.) is an optimal solution of the following scalar optimal control problem
(P;) for each i € I. ‘

(P;): minimize : Fi(z,u)
subject to: (z,u) €
Fi(z,u) — Flza,us) <0 j € I/{i}.

Lemma 3: Suppose that Q is convez set and Fi(z,u), ¢ = 1,---,k are conver
functions. Then, (z.,1.) € Q is a weakly-efficient solution of (P) if and only if (T, u.)
is an optimal solution of (P;) stated in Lemma 2 for some i € I. :

Proof. Assume that (z.,u.) is a weakly-efficient solution of (P). If for every
(P:), (Zx,ux) is not an optimal solution, i.e. for any ¢ € I there exists (zi,u;) € Q
with

Fi(zi, ui) < Fi(2a,ua)
Fi(zi,wi) — Fi(Ta,us) <0 for j € I/{i}.

Putting (zo,u0) := § Sier(@i,ui), we see that (2o,u0) € Q. Notice that Fi(z,u) is
convex, we have

, 1 . ,
Fi(zo,up) SE —f;(mj,'uj) < Fi(Tuy th).
Jel k
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Thus, F(zg, 1) € F(Ta,u), which contradicts that (2, 14) Is a weakly-efficient
solution of (P).

Conversely, let (z,,u.) be an optimal solution of (P;) for some 1 € I. If (2., u,) is
not a weakly-efficient solution of (P), then there is (z,u) € Q satisfying

Fi(z,u) < Fi(2s,us) and Fj(z,u) — Fj(zu,us) < 0 for 5 € I/{1},

which contradicts that (z.,u.) is an optimal solution of (F;). 0

2. Optimality conditions. For simplicity, throughout this section we omit the
variable ¢ when it does not cause confusion, and abbreviate the arguments (¢, z..(t), 1.(t))
to [t], for instance, we write G;i[t] = Gi(t,z.(t),1.(t)). In Theorem 1 and 2 below, the
notations 0 denote the Clarke generalized gradients and Np, N () indicate the Clarke
normal cones, while in Theorem 3 and 4, these notations stand for the subdifferentials
and the normal cones in the sense of convex analysis, respectively.

The following assumptions are required. The pair (z.,u.) in (A2) and (A3) will
be assumed to be a local weakly efficient solution of type (I) for (P).

(Al): D is closed, U(-) is a nonempty compact set-valued map and the graph
GrU is L x B measurable. ,

(A2): fi(:), 9;(-) (i € I, j € J) are Lipschitz continuous in a neighborhood of
z.(1) € R™.

(A3): For every admissible control u(-), there are real-valued measurable function
é(t) > 0 and hi(t) > 0,4 =0, -,k + I, such that

|Fi(t,z,u(t)) — Fi(t, 2, u(t))| < hi(t) |z — /| fori e I
|G(t,z,u(t)) — G;(t, 2’ u(t))| < hiyj(t) & — 2’| for j€J
|®(t, z,u(t)) — 2(¢, 2", u(t))] < hol(t) jz — 2|

whenever |z — z,(t)| < €(t), |z’ — z.(t)] < €(t), t € [0,1]; for u(-) = u.(-) these func-
tions can be chosen in such a way that €(t) = ¢ > 0 and hi(t) (: = 0, - -,k + 1) are
integrable.

(A4): Forany u(-) € U := {u(-) € M([0,1], R") : u(t) € U(t) a.e.}, Fi(t,z,u(t)) for
1€ 1, Gj(t,z,u(t)) for j € J and ®(t,z,u(t)) are measurable.

Theorem 1. Let assumptions (A1)-(A4) be satisfied. Suppose that (z.;u.) is a

local weakly efficient solution of type (I) for (P). Then, there exist X =(Ay, -+, App) >
0 and an absolutely continuous function p(-) : [0,1] — R™, such that

(1) = P(t) € 0 H(t,2.(2), p(t), ux(t),A)  ace.

(2) p(0) € Np(2.(0)), —p(1) €3 Mdfi(ex(1)+ Y My ;0g;(2.(1))

i€l jelJ

(3) H(t,2.(2), p(1), wa(t), ) = mag H(t,2.(8),p(2),»,4) e

(4 i ([ Gt ) =0 for e



where H(t,z,p,u,A) 1= (p, ®(t,z,u)) — 3 A\ F(t,z,u)— 2 At Gilt, ¢, u)
i€l i€
Proof. We consider the following problem,
(P)  min: To(y) :=maz {y:(1) + fi(e(1)) - Fizs, u)}

s.t.: Lo(y,u) := z(t) — z(0) — j: O(t,z(t),u(t))dt = 0
Li(y, ) := wilt) - /Ot Fi(t,2(t),u(t))dt =0 i€l

t
L () = vias(0) - [ Gilta(®,udt =0 jeJ

Li(y) := yrti(1) + g;(2(1)) <0 - jeJ
y() € S: u’() € uy

where y(-) := (z(:),41(-),* * et (:)) € C([0,1], R™t*¥*H) is the state and u(.) €
M([0,1], R™) is the control, S := {z € C([0,1], R™) : z(0) € D} x C([0,1], R?*).

Let ;. (t) := fy Fi[t)dt for i € I and Yiks). () 1= fs G,[t]dt for § € J. Thus, by
Lemma 1, we see that y. 1= (2., %, * -, Y(r41),) corresponding u, minimizes T'o(y)
over all admis‘sible processes (y,u) for (P') with ¢ being sufficiently close to z, in the
norm of L*. _

By [4, Theorem 2], we see that there exist Lagrange multipliers § := (6o, -, &) >
0, z* € C*([0,1], R™), and y* € C*([0,1],R) =1, -,k + I not all zero such that

(5) 0€ Byﬁ('y,,,y*,u*,n) + NS('.U*)

(6) E(yhy*)u*vﬁ) :min 'C(y*"y*)u"“.')
uel

(7) §;Ti(m) =0 jelJ

where L(y,y",u, K’) = Z 6T (y) + <:1) » Lo(y," )) + Zfzfll {v7, i(yvu)) .
According to the fmmulab of the Clarke gradients (see [3]), we see that
(i) For any £ € 8Tg(v.), there are X; > 0, v; € 8f;(z.(1)) for i € I with el Ai=1
such that for any y € C([0, 1], R"*+%¥)
y) =y A+ > i (vi, (1))
i€l i€l
for every £ € YL_, 6;T(v), there exist Vit € 0gj(z.(1)) for 7 € J such thaf f01 any

y € C([0,1], R™+2¥)
) =) Emi()+ Y 85 (ks 2(1)) .
Jel J€S

Analyzing as in [4], we have the following.
(ii) The above multipliers z*, y{, -+ -, y3, can be expressed by pairs of the nonneg-
ative Radon measure and RddOIl -integrable functions (p;, &), ¢ = 0, - -, 2k. For every

£ €9, ((:c*, Lo(za,ua)) + E’“” (y*, Li(z, u*))) , there is a Lebesgne measurable fune-
tion n(-) with

e o, ((/ god,m,@[t]>+):</ tidus, Fi(t, 2a(2), u,,(t))>
5[ Ceriins Gt 0, ))))

J€J

(8)
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such that for any y € C([0,1], R"J‘rﬁ?k),

Sk g
0= [ )= 20 0ot 3 [ &) s~ [ 2

(iii) For each £ € Ng(y.), there is @ € Np(z.(0)), such that
(€,y) = (a,2(0))  for any y € C([0, 1], R"**).

Combining (i), (ii) and (iii), from (5) we see that there are A;, i = 1,---,1; v;,
=1, k4 I (pi &), i= 0, -k + 1, 7 and a stated above such that

0=3 SoXeyi(1)+ Y Euass(D+ Y Soki (vi2(D) + 3 865 (v (1)) +
i€l jed iel i€l
+

> [ ) duit [ a0~ 2(0) 600 o~ [ ) e+ (o 2(0)

for any z € C([0,1], R") and y; € C([0,1],R), i =1,-- -,k + L.
Setting \; = 8p); for i € I, Aitji= 6 for j € J and p(t) := ft Eodysg, from the
above equation, we see that

. 1 1 .
Nui(1) + j </ 5idu‘-,g,-> dt=0 (Vy € AC withyi(0) =0, i€ 1UJ),
0 t
k41 1 1
(@, 2(0) + 3 X (vi,2(1) +/ (;;(t) -/ ndr,a‘c> dt=0 (Ve AC)
=1 0 t

These yield that (refer to the proof of {4, Theorem 3))

/&dﬂt: 1 @:17,k+l
(9) ki
B(t) = —n(t) ae, p(0) = @, p(1) = = > A
=1

Therefore, (9), (8) and (7) imply (1), (2) and (4)

Here, if § = 0, then (A1, -+, Aeqr) = (4, - -, 95 4y) = 0. From (1) and (2), we can
get p(+) = 0. Thus, y* = 0 which contradicts that § and y* are not all zero. Hence, we
have (A1, -, Agst) > 0.

On other hand, By (6) and (9), we see that

1 1
/ H(t, 2., p, U, A)dt =maz / H(t,z,,p,u, N)dt.
0 ueld Jg

Discussing as in the proof of [4, Theorem 3], we can obtain (3). o

According to the results of [8], we see that the above necessary conditions (1)-
(4) (Maximum Principle-type) may fail to be sufficient conditions for weak-efficient
solutions of (P) even in the “convex” case given below. Next, we give another type
necessary weakly-efficiency conditions for (P), which is an exteusion of [8]. In the “con-
vex” case, the latter necessary conditions are necessary-sufficient for weakly-efficiency
under Slater constraint qualifications. Moreover , these conditions are also necessary-
sufficient for efficient solutions of (P) under further assumptions.
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We impose the following assumption, in which the process (z., u.) will be assumed
to be a weakly-efficient solution of type (II) for (P).

(A5): Fi(-,z,u), Gi(-,z,u), t = 1,-- - k, ®(-,z,u) are Lebesgue measurable, and
* there exist € > 0 and h;(t) € L}([0,1],R), i = 0,-- -,k + I, such that

[Fi(t,z,u) — (ta; W) <hit) (o — 2|+ |lu—|) foriel
Gotrnn) - Gtoan i < hasl) (o~ 814 ) fon 3 € 7
(B2, 5, u(t)) - (2,5, 0] < ho(t) (Jo - o] + Ju — )

whenever ¢,z € z.(t) + €B,, u,u € u.(t) + €B,, a.e..

Theorem 2: Assume that (A1), (A2) and (A5) be satisfied. Let (¢.,u.) be a local
weakly efficient solution of type (II) for (P). Then there exist A =(Aq - -, Agpt) > 0,
an absolutely continuous function p(-) : [0,1] — R™ and an integrable function ((-) :
[0,1}) - R™ such that

(10) (=5(8),C(1)) € By H(t,24(2), p(D), ua(8), ) ace.

(11) p(0) € Np(z4(0)), —p(1) €3 Midfi(eu(1))+ D Met;095(z+(1))

el JEJ
(12) ((t) € NU(t)(u,,(t)) a.e.
(13) i ([ G+ gi(eu0)) =0 forje

where H(t,z,p,u, ) is defined in Theorem 1.
Proof. 1t is obvious that the scalar optimization problem in Lemma 1 can be
rewritten as follows ‘
(Ph: minimize: T(y(D) = maz {5(1) + fi(s(1)) - Fi(owr ),
Yk+(1) + 95(2(1))}
subject to: z(t) = ®(t,2(¢),u(t)) a.e.
1%:(t) = F;(t,2(¢), u()) a.e. rel
Yk4i(t) = Gi(t, z(t), u(t)) ae. 1€I
z{(0) € C, 4%(0) =0 1=1,---,2k,
u(t) € U(t) a.e.

where y := (z,y1, -, yax) € AC([0,1]}, R™*2%) is the state and u € M([0,1], R") is
the control. :

Define y, as in proof of Theorem 1. By Lemma 1, we see that (y,,u,) is a minimizer
over all admissible process for (P!) with z(t) € ©.(t) + €B,,, u(t) € u,(t)+€B,, a.c. for
some € > 0. Thus, by {8, Proposition 6.1}, there exist an absolutely continuous function
P =(p,p1,", Pr+1) and an integrable function ¢ such that (12) and the following hold

(14) ) (— ( )7y(t t)) € ayp u)H(tay*(t) —(t),'u.*(t)) a.e.
(15) O €N, () x ... x (0 (-(0)
e —

2k
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(16) ‘ — (1) € 0T (y(1))

where (43,5, 3= {9, 8(6,0)) + 3 (00 Pt 1) + = (puaasGilty2,)
First, let us discuss inclusion (16) NO‘SI(,L that for evely 1€ Iand € J,

Li(y(1)) := wi(1) + filz(1)) — Fi(@a, ),
L(w(1)) := vy (1) + g5(2(2))

only contains the arguments  and y;, and I;(y.(1)) = I'(¥.(1)) = 0. So by the formulas
of the Clarke gladlentb there are v; € 3, fi(z.(1)) for ¢ € I, y44; € 8.9i(z4(1)) for
J € J and (A, Agqs) > 0 such that

(17) —p(D) =) Ay, —p(l) =N, i=1,-- k+1.
iel

where we can set A\; = 0 for j € {5 € J : G;(z.,u.) < 0}.

Thus, (11) a.nd (13) follow from (15) and (17).

On the other hand, since H does not contain the arguments y;, 2 = 1,-- - k + [,
(14) implies that p,()._O t=1,---,k+ 1 Thus, p;(-) = =X, i = 1,- k+land

(_' P (t),i(t),((t)) € a(m,ﬁ,u) (( (t) @[t ) - Z Ai F Z )\k.*.,G,[i) a.e.

el el

From this inclusion, by the definition of the Clarke generalized gradients, we can easily
deduce (10).

Next, we proceed to the optimality conditions for the following problem.

(P*): min: F(z,u)
s.t.: 2(t) = A(t)z(t) + B(t)u(t)) + b(t)  a.e.
z(0) € D, u(t) € U(t) a.e.
G(z,u) <0

where z(-) € AC([0,1], R™) and u(-) € L*([0,1], R"), F and G are given above, A(-) :
[0,1] — R™*", B(:):[0,1] — R™*™ are integrable, b(-) : [0,1] — R™ is measurable.

We impose the following hypotheses:

(H1): For every i € I, Fi(-,2(-),u(-)) and G;i(-,z(-),u(-)) are integrable for any
(z,u) € AC x L.

(H2): F(t,-,-) for i € I and Gi(t,-,-) for j € J are convex lower semicontinuous,
and there are v;(t) € L*([0,1],R™*") and w;(t) € LY([0,1],R), s = 1,---,k + I
such that for any « € R™, uw € R", Fi(t,z,u) > {vi(t),(x,u)) + w;(t) for i € I and
Gi(t,z,u) > (vj(t), (,u)) + wi(t) for j € J ae..

(H3): The functions f;(-) for i € I and g;(-) for j € J are proper convex and lower
semicontinuous.

(H4): The set C is convex, U(t) is convex a.e., and there is p(t) € L} such that
lu| < p(t) for any u € U(t) a.e..

(H5): There exists an admissible process (z;,u;) for (P*), such that G;(z;, u;) —
Gi(zx,u.) < 0 for any j € {5 € J: G;(z.,us) = 0}.

Here, (z.,u.) will be assumed to be an admissible process for (P*).



Theorem 3: Assume that (H1)-(H5) and (A1) be satisfied. An admissible process
(24, ux) s a weakly-efficient solution for (P*) if and only if there exist A = (A -
oy Aggt) 2 0 with (A -+, M) > 0, p(-) € AC([0,1], R™), and {(-) € L*([0,1], R™) such
that ' :

(18) (B(2) + p(t)A(2), p(t) B(2) — ((2)) € Ba,) (Z NE[t+ ) /\k+jGj[t]) a.e.

i€l jed

(19) 2(0) € Ne(2.(1)), —p(1) €)X Mdfi(ea(D)+ 3 Mny09i(2(1))

iel Jj€J
(20) ((t) € Ny(u(t))  ae,
(21) nios ([ Giltat 4 0,600 =0 forje s

Proof. [Necessity] By Lemma 3, we know that there exists ¢ € I such that (z,,u.)
is an optimal solution for the following scalar optimal control problem,

minimize : Fi(z,u)
subject to: &(t) — A(t)z(t) — B(t)u(t) - b(t) =0  a.e.
Gi(z,u) <0 j€J
Flow)<0 eI/l
z € {z € AC([0,1],R™): z(0) € D}
€ C:={ue L'[0,1],R"): u(t) € U(t) a.e.}.

This means that (., u.,2.(0), z.(1)) is a minimizer for the following scalar optimiza-
tion problem.

il

minimize . Ai(z,u,a,f):

1
| Fe i+ 109)
t
subject to: Ti(z,u,a,B) := z(t) - a - / (Az4+ Bu+b)dr=0  ae.
0
1

T'y(z,u,a,B) = — a — / (Az+ Bu+b)dr =0
0
1
Aj(Z,’lL,a,,B) = / Fj(ta Z,'U,)dt + f}(ﬁ) - fj(ﬂ:*,’u*) _<. 0 for .7 € I/{%}
0
, 1
Az, 0, 0, f) = / Gty 2, u)dt + g;(B) < O for j € J
0
(z,u,0,5) € M = L}([0,1),R™) x C x D x R™,
where (z,u,a,8) € L'([0,1], R™) x L*([0,1},R") x R™ x R™
Put 8 := (z,u,, ) and 0. := (@., %, 2.(0),2.(1)). It is obvious that A;(#) is
convex, I'1(6) and T'y(#) are affine mappings. By [5, Theorem 5 p74], there exist
Ai=(Ar, o Aet)> 0, g{+) € (LY)" and 0 € R™ not all zero, such that

K+l 1
3" LA + [ (@ T1(6) dt + (0, T2(6.)
s=1 0

(22) k41 1
“min (El MO+ [ @) (o w») ,
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1 .
‘,\H,-Aj((),,) = Apyj (/u G;lt)dt + gj(fl:*(l))) =0 fOlJ eJ

Let Ip¢(#) denote the indicator function of M. Notice that the functions I Mo
Aj (7 € 1), ful (p,T1)dt, {o,I'y) are proper convex and lower semicontinuous, from
(22) we see that

‘ k+1 1
(33)  0€Y N0 0.)+0 [ (0T1(0)dt + (o, Ta(0.)) + Naa(6.)

Jj=t1

_(refer to Section 1 of Chapter 1 in [1]).

Now, we analyze (23). By the formulas of subdifferential (see [1], [5]), we have
the following conclusions.

For every ¢ € Zjﬂ AjOA;(6.), there are (p;,7;) € L with (p;(t),n;(t)) €
Oeu) Filt] and vj € 0fj(z.(1)) for j € I, (pnsjsMhay) € L with (pry;(2), e45(2)) €
O(2,u)Gilt] and vryj € 8gj(2.(1)) for § € J such that for any 8 € L1 x L! x R™ x R™

k+1

60 =3 ([ Wneb+ (a4 (3,9)).

Corresponding to any £ € Naq(6.), there are ¥ € Np(2.(0)), and {(-) € Ne(u.(-))
such that for any 6§ € L' x L' x R™ x R™, one has

(€.0) = (r,a) + [ (Gupt

Notice that fy (¢,T'1(6)) dt is affine on 6, thus 8 [! (¢, T';(6.)) dt = {£} with

(£,0) = /01 <q,z —a- /Ot(Az - B'u,)d1'> dt

for any ¢ € L! x L' x R™ x R™.
Similarly, 0 (o,T'5(60.)) = {€} with

(€,0) = <o,ﬂ -a- /Ol(Az - Bu)dt>

for any 8 € L' x L' x R™ x R™.

Then, (23) implies that there are (1;,7;), vj,5 = 1,---,k+1, v and  stated above
such that

k41 k+!

(24)'%:1 Aj /01 (> 2) + (nj,u)) di+ ; A vy, 0) + Al <q,z - /Ol(Az + Bu)dT> dt

1 1 1
- <f th,a) + <a,ﬁ - —/ (Az + Bu)dt> + (v, a) +/ (C,u)dt =0
0 0 : 0
for any (z,u,a,B8) € L' x L' x R™ x R™.
Put p(t) := [} ¢(7)dr + 0. From (24) we see that

k4l

1 [ktd . ) 1
/U <§ /\mi,z> dt — /0 (p+pA,z)dt + /0 <§ /\,'m,fu> dt _/0 (pB — (,u) dt
k+ 1
+ <§ )\il/iaﬂ> + (0,8) — </0 th,a> ~(0,a) + (1,2) = 0



for any (z,u,,8) € L' x L' x R™ x R™, which implies that

k+l k41
, P+pA=) Nipi, pB - =) A,
(25) | k+al=l =1

) =0=- ; Ajvj, p(0) = /0 q(r)dr + o ,: v

From (25), we obtain (18) and (19). ,

By ((-) € Ne¢(ux(-)), we have {(¢)(u(t) — u.(t)) < 0 for any u(-) € Y. Thus, from
the theory of measurable selection (20) follows.
. Finally, if A = 0, then (28) and (29) imply that 0 = 0 and p(:) = 0, thus A, ¢
and o all are zero. Hence, A > 0. If (Ay,-++, ) = 0, then (A, -+, Apyt) > 0. By the
Slater constraint qualifications (H5) and the conditions (18)-(21), we have that

0> Z ’\k+_'i (gj(il:,',’u,') - gj(ﬂ)*,'u,*))

jeJ
= > N[ (Giltei,w) - Glt]) dt + gi(ei(1)) - g5(w.(1))
JEI/{} (/ )
> /0 (P +p4,2; — o) + (PB ~ (,ui — ua)) dt — p(1) (2i(1) — z.(1))
= —mmmmn—mm»—LVQW—u»m
> 0,
a contradiction. Hence, (Ay,---, ) > 0.

[Sufficiency] Assume that there exist (A - =, Ax) > 0, p(-) € AC, and ((-) € L*®
satisfying (18)-(21). Notice that }°;.; Ai > 0, so we can set 3 ,.; A = 1. Let (z,u) be
an arbitrary admissible process for (P*). Using (18)-(21) again, we see that

maz{Fi(e,u) - Fi(z,u): €I}

50 ([ B s+ et~ [ i~ 1e0)
j% Akt j (j Gi(t, z,u)dt + gi(=(1)) — / t)dt — 91(23,.(1)))
+/1 (p,d “"45’5‘B‘“-b)dt—/o1 (p,&x — A, — Bu, — b) dt

= / (Z AiFi(t e, u)+ Z Mo Gilt, o, u)dt— Z A Fi[t]— Z )‘k+jGj[t]) dt

IV

iel el iel j€J
+ 2 Aifi(E))+ L Merigi(2(1))= X Aifi(za(1))~ E Argjg5(2(1))
ze{ J€J i€l ) JEJ
—-/ (P +p4,z—2.) + (pB - (,u—w,))dt - /0? (Cow — uy) dt

+10(1),2(1) - 2a(1)) ~ (5(0), 5(0) — 2.(0))

> 0.
By Lemma 1, (2., u.) is a weakly-efficient solution for (P). 0
Using Theorem 3 and Lemma 3, we can easily show that the conditions (18)-(21)

in Theorem 3 are also necessary-sufficient for efficient bOhlthI].S of (P*) under the
following Slater constraint qualifications (H6).



(H6): For every i € I, there is an admissible process (z;,u;) for (P*), such that
Fi(ziyui) ~ Fi(zw,us) < 0 for any 7 € I/{i} and G;(z;,u;) — Gj(zx,u.) < 0 for any
jEe{jeJ:Gi(zu,us) =0} ‘

Theorem 4: Assume that (H1)-(H6) and (A1) are satisfied. An admissible pro-
cess (., u«) 15 an efficient solution for (P*) if and only if there exist (Ay -+, Agqt) 2 0
with (Ay -, ) > 0, p() € AC([0,1], R™), and {(-) € L=([0,1], R") such that (18)-
(21) hold.

Remark. 1t is easy to see that the sufficiency in Theorem 3 and Theorem 4 also
hold under the following simpler assumptions: F; for ¢ € I and G for 7 € I are convex
in (z,%) and measurable in t, f; for ¢ € I and g, for j € I are convex functions, C is
convex set and U(t) is convex a.e..
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