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This paper will be appeared in other journal. Let $\mathcal{H}$ be a separable, infinite di-
mensional, complex Hilbert space, and let $\mathcal{L}(\mathcal{H})$ denote the algebra of all bounded
linear operators on $\mathcal{H}$ . An arbitrary operator $T$ in $\mathcal{L}(\mathcal{H})$ has a unique polar decom-
position $T=UP$ , where $P=(T^{*}T)^{\frac{1}{2}}=|T|$ and $U$ is a partial isometry with initial
space the closure of the range of $|T|$ and final space the closure of the range of $T$ .
Associated with $T$ there is a related operator $\tilde{T}=|T|^{\frac{1}{2}}U|\tau|^{\frac{1}{2}}$ , sometimes called
the Aluthge transform of $T$ because it was studied in [1] in the context that $T$ is a
p-hyponormal operator (to be defined below). In this note we derive some spectral
connections between an arbitrary $T\in \mathcal{L}(\mathcal{H})$ and its associated Aluthge transform
$\tilde{T}$ that enable us, in particular, to generalize an $\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{t}_{-\mathrm{S}}\mathrm{u}\mathrm{b}\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}$ -theorem of
Berger [2] to that context. We will also show that the hyperinvariant subspace
problems for hyponormal and p–hyponormal operators are equivalent.

The following lemma is completely elementary, but sets forth basic relations
between $T$ and $\tilde{T}$ that will be useful throughout the paper.

Lemma 1.1. Let $T=U|T|$ (polar decomposition) be an arbitrary operator in
$\mathcal{L}(\mathcal{H})$ and let $\overline{T}=|T|^{\frac{1}{2}}U|\tau|^{\frac{1}{2}}$ be its Aluthge transform. Then

(1) $|T|^{\frac{1}{2}}\tau=\tilde{\tau}|T|^{\frac{1}{2}}$ ,

and

(2) $T(U|T|^{\frac{1}{2})}=(U|T|^{\frac{1}{2})\tilde{T}}$ .

In $particular_{\mathrm{z}}T$ is a quasiaffinity ( $i.e_{\mathrm{Z}}.T$ is one-to-one and has dense range) if and
only $if|T|$ is a quasiaffinity and $U$ is a unitary operator, so $\tilde{T}$ is a quasioffinity if $T$

is. $Moreover_{y}$ in this $case_{;}T$ and $\tilde{T}$ are quasisimilar. Furthermore, $T\dot{i}\circ$ ? nvertible
if and only if $\tilde{T}is_{f}$ and in this case, $T$ and $\tilde{T}$ are similar.

Remark 1.2. Consider the Hilbert space $\mathcal{H}=L^{2}([0,1], \mu)$ , where $\mu$ is Lebesgue
measure, and let $\{e_{n}\}_{n=1}^{\infty}$ be any orthonormal basis for $\mathcal{H}$ such that $e_{1}$ is the
constant function 1. Let $U\in \mathcal{L}(\mathcal{H})$ be defined by $Ue_{n}=e_{n+1},$ $n\in \mathrm{N}$ , so $U$ is
a unilateral shift, and consider $T=U(M_{x})^{2}$ , where $M_{x}$ is multiplication by the
position function. Then $T$ is clearly not a quasiaffinity, but an easy calculation
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shows that $\tilde{T}=M_{x}UM_{x}$ is a quasiaffinity. Thus the corresponding implication in
Lemma 1.1 only goes one way.

Our first theorem shows that there is an intimate spectral connection between
(an arbitrary operator) $T$ and its associated $\overline{T}$ . As usual, we write $\sigma(T),$ $\sigma_{p}(T)$ ,
and $\sigma_{ap}(T)$ for the spectrum, point $\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{C}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{m}.$’ and approximate point spectrum of
$T$ , respectively.

Theorem 1.3. For every $T$ in $\mathcal{L}(\mathcal{H}),$ $\sigma(T)=\sigma(\tilde{T}),$ $\sigma ap(_{\vee}\tau)=\sigma_{a}(\tilde{\tau})_{r}\sigma_{p}(pT)=$

$\sigma_{p}(\tilde{T}),$ $\sigma_{ap}(T^{*})\backslash (0)=\sigma_{ap}((\tilde{T})*)\backslash (0)$ , and $\sigma_{p}(T^{*})\backslash (0)=\sigma_{p}((\tau)*)\backslash (0)$ .

We remark here that the example given in Remark 1.2 shows that all the
spectral equalities in Theorem 1.3 are best possible.

For an operator $A\in \mathcal{L}(\mathcal{H})$ , we write, as usual, $\sigma_{e}(A),$ $\sigma_{l\mathrm{e}}(A)$ , and $\sigma_{re}(A)$ for
the essential (Calkin), left essential, and right essential spectra of $A$ , respectively.
Recall that $\lambda\in\sigma_{le}(A)$ if and only if there exists an orthonormal sequence $\{e_{n}\}$ in
$\mathcal{H}$ such that $\lim_{narrow\infty}||(A-\lambda)e_{n}||=0$ , or, equivalently, if and only if there exists
a sequence $\{f_{n}\}$ of unit vectors in $\mathcal{H}$ such that $\{f_{n}\}$ converges weakly to zero and
$\lim_{narrow\infty}$

.
$||(A-\lambda)f_{n}||=0$ . .

Corollary 1.4. For any $T\in \mathcal{L}(\mathcal{H})$ with associated Aluthge transform $\tilde{T}$ , we
have $\sigma_{e}(T)=\sigma_{e}(\tilde{T}),$ $\sigma\iota_{e}(T)=\sigma_{l}e(\tilde{T})$ , and $\sigma_{re}(T)\backslash (0)=\sigma re(\tilde{\tau})\backslash (\mathrm{o})$ .

We turn now to the intimate connection between the invariant subspace lattices
of an arbitrary operator $T$ and its associated $\tilde{T}$ . As usual, we write Lat $(A)$ for the
invariant subspace lattice of an arbitrary operator $A\in \mathcal{L}(\mathcal{H})$ . If $T\in \mathcal{L}(\mathcal{H})$ is not
a quasiaffinity, then $0\in\sigma_{p}(T)\cup\sigma_{p}(T^{*})$ , so trivially $T$ has a nontrivial invariant
subspace. Thus when investigating the relation between $\mathrm{L}\mathrm{a}\mathrm{t}(T)$ and $\mathrm{L}\mathrm{a}\mathrm{t}(\tilde{T})$ , it
suffices to consider the case that $T$ is a quasiaffinity.

The following is an improvement of [5, Theorem 2].

Theorem 1.5. Let $T=U|T|$ (polar decomposition) be an arbitrary quasiaffin-
ity in $\mathcal{L}(\mathcal{H})$ . Then the mapping

$\phi$ : $Narrow(|T|^{\frac{1}{2}\wedge^{\subset})^{-}}, N\in \mathrm{L}\mathrm{a}\mathrm{t}(T)$ ,

maps $\mathrm{L}\mathrm{a}\mathrm{t}(T)$ into Lat $(\tilde{T}))$ and moreover if (0) $\neq\lambda^{\subset}\neq \mathcal{H}$ , then

(0) $\neq\phi(N)=(|\tau|\frac{1}{2}\Lambda^{\subset})-\neq \mathcal{H}$ .

Moreover the mapping

$\psi$ : $\mathcal{M}arrow(U|T|^{\frac{1}{2}}\mathcal{M})^{-}$ , $M\in \mathrm{L}\mathrm{a}\mathrm{t}(\tilde{T})$ ,

maps Lat $(\tilde{T})$ into Lat $(T)$ , and if $(\mathrm{O})\neq M\neq \mathcal{H}$ , then

(0) $\neq\psi(\mathcal{M})=(U|\tau|\frac{1}{2}\mathcal{M})^{-}\neq \mathcal{H}$ .
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Consequently, $\mathrm{L}\mathrm{a}\mathrm{t}(T)$ is nontrivial if and only if $\mathrm{L}\mathrm{a}\mathrm{t}(\tilde{T})$ is nontrivial.

Remark 1.6. If $T$ in Theorem 1.5 is invertible, then $T$ and $\overline{T}$ are similar (see
Lemma 1.1), and thus have isomorphic invariant subspace lattices. Whether this
is true for an arbitrary noninvertible quasiaffinity $T$ , the authors have not been
able to determine. Note that Theorem 1.5 implies that if one is trying to solve the
invariant subspace problem for a particular quasiaffinity $T\in \mathcal{L}(\mathcal{H})$ , it suffices to
show that $\tilde{T}$ has a nontrivial invariant subspace. .

Definition 1.7 $[1,6]$ . Suppose $T\in \mathcal{L}(\mathcal{H})$ and satisfies $(T^{*}T)^{p}\geq(TT^{*})^{p}$ for
some $p$ in the interval $(0, +\infty)$ . Then $T$ is called a $p$-hyponormal operator. If
$p= \frac{1}{2},$ $T$ is sometimes called semi-hyponormal [1] and if $p=1,$ $T$ is hyponormal.

There is a vast literature concerning p–hyponormal operators (for $0<p<$
1) in which various special cases of Theorem 1.3 are proved (for rhyponormal
operators). For.our purposes, we need

$.$

$0.\mathrm{n}1\mathrm{y}$ the
$\mathrm{f}\mathrm{o}\mathrm{l}1_{0}..\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{g}_{1}$

co
$\backslash$

nse..quences of L\"owner’s
$\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}.[8]$ .

Remark 1.8. If $T\in \mathcal{L}(\mathcal{H})$ is a p-hyponorin$\mathrm{a}1$

’

operator for some $p$ in the
interval $(0, +\infty)$ , then $T$ is also $q$-hyponormal for every $0<q\leq p$ . In particular,
an operator that is a p-.hyponormal operator for some $p>1$ is also hyponormal.
Thus the interest in p–hyponormal operators has been concentrated mainly (but
not

$\mathrm{e}\mathrm{x}\mathrm{c}\mathrm{l}\mathrm{u}\mathrm{s}\mathrm{i}_{\mathrm{V}}\mathrm{e}11^{\cdot}.\mathrm{y}$
; cf., for example, [4] $)$ on

$\mathrm{t}\mathrm{h}\mathrm{o}.\mathrm{s}\mathrm{e}p- \mathrm{h}\backslash .\mathrm{y}$
ponormal operators for which

$0<p\leq 1$ .

The following lemma was proved in [1] in the special case in which the partial
isometry $U$ in the polar decomposition $T=U|T|$ is a unitary operator, but the
proof carries over to the general case. We introduce the proof here for conveniences.

Lemma $1.9([1])$ . Suppose that $T=U|T|$ (polar decomposition) is an $arbitrar\underline{y}$

$p$ -hyponormal operator in $\mathcal{L}(\mathcal{H})$ for some $p \in[\frac{1}{2},1]$ . Then its Aluthge transform $T$

is a hyponormal operator.

The following $\dot{1}\mathrm{e}\mathrm{m}\mathrm{m}\mathrm{a}$ was also proved in [1] in case $T=U|T|$ with $U$ a unitary
operator, but once again, the proof can be made to work in general.

Lemma $1.10([1])$ . Suppose $T=U|T|$ (polar decomposition) is an arbitrary
$p$ -hyponormal operator in $\mathcal{L}(\mathcal{H})$ for some $p$ in the interval $(0, \frac{1}{2})$ . Then $\tilde{T}$ is a

$(p+ \frac{1}{2})$ -hyponormal operator and the Aluthge $trans.formT\approx of$
$\tilde{T}$ is a hyponormal

operator.

If $\mathcal{U}$ is a bounded open set in the complex plane $\mathrm{C}$ , recall that a subset A $\subset \mathcal{U}$

is said to be dominating for $\mathcal{U}$ if every bounded function $h(z)$ holomorphic on $\mathcal{U}$

satisfies
$\sup_{\mathcal{Z}\in u}|h(z)|=z\in \mathcal{U}\sup_{\Lambda\cap}|h(z)|$ .

First we recapture the following corollary.
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Corollary 1.11[5, Theorem 3] Suppose $T=UP$ (polar decomposition) is
an arbitrary $p$-hyponormal operator for some $p\in(\mathrm{O}, +\infty)_{J}$ and suppose that there
exists a nonempty open set $\mathcal{U}$ in $\mathrm{C}$ such that $\sigma(T)\cap \mathcal{U}$ is dominating for $\mathcal{U}$ . Then
$T$ has a nontrivial invariant subspace.

The following theorem generalizes a surprising theorem of Berger [2] for hy-
ponormal operators to the context of p–hyponormal operators.

Theorem 1.12. Let $T\in \mathcal{L}(\mathcal{H})$ be an arbitrary $p$-hyponormal operator for
some $p\in(\mathrm{O}, +\infty)$ . Then there exists a positive integer $I\mathrm{t}’$ such that for all positive
integers $k\geq K,$ $T^{k}$ has a nontrivial invariant subspace.

Recall that a subspace $\mathcal{M}$ of $\mathcal{H}$ is a nontrivial hyperinvariant subspace for an
operator $T\in \mathcal{L}(\mathcal{H})$ if (0) $\neq M\neq \mathcal{H}$ and $\mathcal{M}$ is invariant under every operator in
the commutant $\{S\in \mathcal{L}(\mathcal{H}) : ST=TS\}$ of $T$ . We write Hlat $(A)$ for the lattice of
hyperinvariant subspaces of an operator $A\in \mathcal{L}(\mathcal{H})$ . If $0\neq T\in \mathcal{L}(\mathcal{H})$ and $T$ is not
a quasiaffinity, then $0\in\sigma_{p}(T)\cup\sigma_{p}(\tau*)$ and Hlat $(T)\neq\{(0), \mathcal{H}\}$ for trivial reasons.
Then when investigating the relation between Hlat $(T)$ and Hlat $(\tilde{T})$ , it suffices to
that the case in which $T$ is a quasiaffinity.

Theorem 1.13 Let $T\in \mathcal{L}(\mathcal{H})$ be an arbitrary nonzero quasiaffinity. Then
$T$ has a nontrivial hyperinvariant subspace if and only if its Aluthge transform $\overline{T}$

does. Thus the hyperinvariant subspace problem for $p$ -hyponormal operators (any
$p\in(0, +\infty))$ is equivalent to the hyperinvariant subspace problem for hyponormal
operators.

Recall that $T\in \mathcal{L}(\mathcal{H})$ is a $\log$-hyponormal operator if $T$ is invertible and
$\log(\tau\tau*)\leq\log(\tau*\tau)$ . Note that any invertible p–hyponormal operator is log-
hyponormal.

Theorem 1.14 Suppose $T=UP$ (polar decomposition) is an arbitrary log-
hyponormal operator, and suppose that there exists a nonempty open set $\mathcal{U}$ in $\mathrm{C}$

such that $\sigma(T)\cap \mathcal{U}$ is dominating $for\mathcal{U}$ . Then $T$ has a nontrivial invariant subspace.

Recall that $T\in \mathcal{L}(\mathcal{H})$ is an $\infty$-hyponormal operator if $T$ is $n$-hyponormal for
any natural number $n$ . Note that any $\infty$-hyponormal operator is p-hyponormal
for any positive real number $p$ .

We now close the paper as the following problem.

Problem 1.15 Suppose $T$ is an arbitrary $\infty$ -hyponormal operator. Does $T$

have a nontrivial invariant subspace.
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