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Operators: their Aluthge transforms and invariant
subspaces

Il Bong Jung, Eungil Ko, and Carl Pearcy

This paper will be appeared in other journal. Let H be a separable, infinite di-
mensional, complex Hilbert space, and let £(7) denote the algebra of all bounded
linear operators on H. An arbitrary operator T in L(H) has a unique polar decom-
position T' = UP, where P = (T*T)7 = |T| and U is a partial isometry with initial
space the closure of the range of |T'| and final space the closure of the range of T'.
Associated with T there is a related operator T = |T|zU|T|2, sometimes called
the Aluthge transform of T because it was studied in [1] in the context that T'is a
p-hyponormal operator (to be defined below). In this note we derive some spectral
connections between an arbitrary 7' € L£L(H) and its associated Aluthge transform
T that enable us, in particular, to generalize an invariant-subspace-theorem of
Berger [2] to that context. We will also show that the hyperinvariant subspace
problems for hyponormal and p-hyponormal operators are equivalent.

The following lemma is completely elementary, but sets forth basic relations
between T and T that will be useful throughout the paper.

Lemma 1.1. Let T = U|T| (polar decomposition) be an arbitrary operator in
L(H) and let T = |T|2U|T|z be its Aluthge transform. Then

(1) | ITPT = T|T|?,
and
(2) T(UIT|?) = (UIT|*)T.

In particular, T is a quastaffinity (i.e., T is one-to-one and has dense range) if and
only if |T| is a quasiaffinity and U is a unitary operator, so T is a quasiaffinity if T
is. Moreover, in this case, T and T are quasisimilar. Furthermore, T' is mvertzble
if and only if T is, and in this case, T and T are similar.

Remark 1.2. Consider the Hilbert space H = L*([0,1], 1), where p is Lebesgue
measure, and let {e,}52; be any orthonormal basis for H such that e; is the

constant function 1. Let U € L(H) be defined by Ue, = e,11, n € N, so U is
a unilateral shift, and consider T' = U(M,)?, where M, is multiplication by the
position function. Then T is clearly not a quasiaffinity, but an easy calculation



shows that T = M,UM, is a quas1afﬁn1ty Thus the correspondmg 1mphcatlon in
Lemma 1.1 only goes one way.

Our first theorem shows that there is an intimate spectral connection between
(an arbitrary operator) T and its associated T. As usual, we write o(T), a,(T),
and o4,(T') for the spectrum, point spectrum and approximate point spectrum of
T, respectively.

Theorem 1.3. For every T in L(H), o(T) = o(T), 0up(T) = oup(T), 0p(T) =
oo(T), 0ap(T*\(0) = 0ap((T))\(0), and o,(T*)\(0) = o, ((T)")\(0).
We remark here that the example given in Remark 1.2 shows that all the
spectral equalities in Theorem 1.3 are best possible.

For an operator A € L(H), we write, as usual, 0.(A), 01(A), and o,.(A) for
the essential (Calkin), left essential, and right essential spectra of A, respectively.
Recall that A € oj(A) if and only if there exists an orthonormal sequence {e,} in
H such that lim,_. ||(A — A)en|| = 0, or, equivalently, if and only if there exists
a sequence { f,} of unit vectors in H such that {f.} converges weakly to zero and

I [[(A — A full = 0.

Corollary 1.4. For any T € L(H) with associated Aluthge transform T, we
have 0o(T) = 0o(T), 01e(T) = o1e(T), and o,..(T)\(0) = a,.(T)\(0).

We turn now to the intimate connection between the invariant subspace lattices
of an arbitrary operator T and its associated T. As usual, we write Lat(A) for the
invariant subspace lattice of an arbitrary operator A € L(H). If T' € L(H) is not
a quasiaffinity, then 0 € 0,(T) U 0,(T™), so trivially T has a nontrivial invariant
subspace. Thus when investigating the relation between Lat(T') and Lat(T), it
suffices to consider the case that T is a quasiaffinity.

The following is an improvement of [5, Theorem 2].

‘Theorem 1.5. Let T = U|T| (polar decomposztzon) be an arbitrary quasmﬁ‘ln-
ity in L(H). Then the mapping

¢ N — (ITEN), N € Lat(T),
maps Lat(T) into Lat(T), and moreover if (0) # N # H, then

(0) # $(N) = (ITIZN)™ # H.
Moreover the mapping
| ¥ M — (UITPM)", M € Lat(T),
maps Lat(T) into Lat(T), and if (0) # M # H, then

(0) # Y(M) = (UIT|FM)™ # H.



Consequently, Lat(T) is nontrivial if and only if Lat(T ) is nontrivial.

Remark 1.6. If T in Theorem 1.5 is mvert1ble then T and T are similar (see
Lemma 1.1), and thus have isomorphic invariant subspace lattices. Whether this
is true for an arbitrary noninvertible quasiaffinity 7', the authors have not been
able to determine. Note that Theorem 1.5 implies that if one is trying to solve the
invariant subspace problem for a particular quasiaffinity T € L£(H), it suffices to
show that T has a nontrivial invariant subspace. -

Definition 1.7 [1,6]. Suppose T' € L(H) and satisfies (T*T)? > (TT*)? for
some p in the interval (0,40c0). Then T is called a p-hyponormal operator. If
p= 2, T is sometimes called semi-hyponormal [1] and if p = 1, T' is hyponormal.

There is a vast literature concerning p-hyponormal operators (for 0 < p <
1) in which various special cases of Theorem 1.3 are proved (for p-hyponormal
operators). For our purposes, we need only the follovvmg consequences of Lowner’s
inequality [8].

Remark 1.8. If T € L(H) is a p-hyponormal operator for some p in the
interval (0, +00), then T is also g-hyponormal for every 0 < g < p. In particular,
an operator that is a p-hyponormal operator for some p > 1 is also hyponormal.
Thus the interest in p-hyponormal operators has been concentrated mainly (but
not exclusively; cf., for example, [4]) on those p-hyponormal operators for which
0<p<1.

The following lemma was proved in [1] in the special case in which the partial
isometry U in the polar decomposition 7' = U|T| is a unitary operator, but the
proof carries over to the general case. We introduce the proof here for conveniences.

Lemma 1.9([1]). Suppose that T = U|T| (polar decomposition) is an arbitrary
p-hyponormal operator in L(H) for some p € [1,1]. Then its Aluthge transform T
is a hyponormal operator. ‘ -

The following lemma was also proved in [1] in case T = U|T'| with U a unitary
- operator, but once again, the proof can be made to work in general.

Lemma 1.10([1]). Suppose T = U|T| (polar decomposztzon) is an arbitrary
p-hyponormal operator in L(H) for some p in the mterval (0, ) Then T is a

(p + 5)-hyp0n0rmal operator and the Aluthge transform T of T is a hyponormal
operator. '

If U is a bounded open set in the complex pldne C, recall that a subset A C U
is said to be dominating for U if every bounded function h(z) holomorphic on U
satisfies '

sup |h(z)| = sup |h(2)|.

z€U zEUNA

First we recapture the following corollary.



Corollary 1.11[5, Theorem 3] Suppose T = UP (polar decomposition) is
an arbitrary p-hyponormal operator for some p € (0,+00), and suppose that there
exists a nonempty open set U in C such that o(T)NU is dominating for U. Then
T has a nontrivial invariant subspace. ‘ o

The following theorem generalizes a surprising theorem of Berger [2] for hy-
ponormal operators to the context of p-hyponormal operators. ‘

Theorem 1.12. Let T € L(H) be an arbitrary p-hyponormal operator for
some p € (0,+00). Then there exists a positive integer K such that for all positive
integers k > K, T* has a nontrivial invariant subspace.

Recall that a subspace M of H is a nontrivial hyperinvariant subspace for an
operator T' € L(H) if (0) # M # H and M is invariant under every operator in
the commutant {S € L(H) : ST = TS} of T. We write Hlat(A) for the lattice of
hyperinvariant subspaces of an operator A € L(H). If 0 # T € L(H) and T is not
a quasiaffinity, then 0 € 0,(T) Uo,(T™*) and Hlat(T) # {(0), H} for trivial reasons.
Then when investigating the relation between Hlat(T) and Hlat(T), it suffices to
that the case in which T is a quasiaffinity.

Theorem 1.13 Let T € L(H) be an arbitrary nonzero quasiaffinity. Then
T has a nontrivial hyperinvariant subspace if and only if its Aluthge transform T
does. Thus the hyperinvariant subspace problem for p-hyponormal operators (any
p € (0,400)) is equivalent to the hyperinvariant subspace problem for hyponormal
operators.

Recall that T € L(H) is a log-hyponormal operator if T is invertible and
log(TT*) < log(T*T). Note that any invertible p-hyponormal operator is log-
hyponormal.

Theorem 1.14 Suppose T = UP (polar decomposition) is an arbitrary log-
hyponormal operator, and suppose that there exists a nonempty open set U in C
such that o(T)NU is dominating forU. Then T has a nontrivial invariant subspace.

Recall that T € L(H) is an co-hyponormal operator if T' is n-hyponormal for
any natural number n. Note that any oo-hyponormal operator is p-hyponormal
for any positive real number p. : k

We now close the paper as the following problem.

Problem 1.15 Suppose T 1is an arbitrary oo-hyponormal operator. Does T
have a nontrivial invariant subspace.
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