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Characterizations of chaotic order associated with
Kantorovich inequality

FREMK B (L 5L (Takeaki Yamazaki)
FREMK B HIH BZR (Masahiro Yanagida)

This paper is based on the following preprint:

T.Yamazaki and M.Yanagida, Characterizations of chaotic order associated with Kan-
torovich inequality, to appear in Scientiae Mathematicae.

Abstract

- By using the order preserving operator inequality shown in [11] which is associated
with Kantorovich inequality, we shall give some characterizations of chaotic order.

1 Introduction

An operator means a bounded linear operator on a complex Hilbert space H. An
operator T is said to be positive (denoted by T' > 0) if (T'z,z) > 0 for all z € H. Also, an
operator T is strictly positive (denoted by T > 0) if T is positive and invertible.

A > B > 0 ensures AP > BP for any p € [0,1] by well-known Léwner-Heinz theorem.
However, it is also well known that A > B > 0 does not always ensure AP > BP? for any
p > 1. Related to this result, the following result is given in [5]. -

Theorem A ([5]). If A> B >0 and MI > B > mI > 0, then
P
(ﬁ) AP > B? forp> 1.
m

Recently, more precise estimation than Theorem A was given in [11] as follows:

Theorem B ([11]). If A> B > 0 and MI > B > mI > 0, then
| M p—lr ' : : '
(%) w2 kammpar 2B forp21, (L1)

where

p— 1)p—1 (MP — mP)P
pP (M — m)(mMP — Mmp)p=1’

Ky(m, M,p) = | (12)

Theorem B is related to both Holder-McCarthy inequality [13] and Kantorovich in-
equality: If A is an operator on a Hilbert space H such that MI > A > mlI > 0, then
(A™'z,z)(Az,z) < (m+M)%/4mM holds for every unit vector z in H. Many authors in-

vestigated a lot of papers on Kantorovich inequality, among others, there is a long research
series of Mond-Pecari¢, some of them are [14] and [15]. :

The following Theorem F is an extension of the Lowner-Heinz theorem:
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Theorem F (Furuta inequality [7]). pt (I+r)g=p+r
If A> B >0, then for each r > 0,

()  (B54PB%): > (BEB"BE)s

and

(i)  (ATAPAR)d > (A5 BPA%)s

hold forp > 0 and ¢ > 1 with (1+r)g > p+r.  (0,~7)

FIGURE

We remark that Theorem F yields Léwner-Heinz theorem when we put r = 0 in (i)
or (ii) stated above. Alternative proofs of Theorem F are given in [3][12] and also an
elementary one-page proof in [8]. It is shown in [17] that the domain drawn for p,q and r
in the Figure is best possible one for Theorem F.

Ando [1] shows that log A > log B (so called chaotic order) is equivalent to (B 5,4?3’%)% >
B? for all p > 0. By using Theorem F, a generalization of Ando’s characterization is given
as follows:

Theorem C ([4][6][9]). Let A and B be positive and invertible operators on a Hilbert
space H. Then the following assertions are mutually equivalent:

(i) log A > log B.
(ii) (B5APB%)é > B" forallp>0andr > 0.

In this paper, we shall give some characterizations of chaotic order by applying Theo-
rem B and Theorem C.

2 Results

Theorem 1. Let A and B be positive and invertible operators on a Hilbert space H sat-
isfying log A > log B and MI > B > mI > 0. Then

p ‘
(—%—) AP > Ky(m,M,p+1)A? > B? for p >0, (2.1)

where K (m, M, p) is defined in (1.2).

Theorem 1 can be considered as an extension of Theorem A: Moreover, we obtain a
new characterization of chaotic order as follows:

Theorem 2. Let A and B be positive and invertible operators on a Hilbert space H sat-
isfying M1 > B > mI > 0. Then the following assertions are mutually equivalent:

(i) log A > log B.

(m? + M?)?

i AP > BP for all p > 0.
4mp MP



As a generalization of both Theorem 1 and (i) == (ii) of Theorem 2, we show the .

following result.

Theorem 3. Let A and B be positive and invertible operators on a Hilbert space H sat-
isfying log A > log B and MI > B > mI > 0. Then

K, (mr,Mr, 1+ p)A” > BP forp>0andr> 0, (2.2)

r
where I{_+(m,M;p) is defined in (1.2).

Theorem 3 implies Theorem 1 when we put r = 1 in Theorem 3. And also Theorem 3
yields (i) = (ii) of Theorem 2 when we put r = p in Theorem 3. Related to K (m, M, p)
in (1.2), we obtain the following proposition. ' ‘

Proposition 4. Let K, (m,M,p) be defined in (1.2). Then

F(p,r,m,M) = I(+ (mraMr’p+r)

r

is an increasing function of p, r and M, and also a decreasing function of m for p > 0,
r>0and M >m > 0. And the following inequality holds:

M 4 ) . - L
(—1;1—) > Ky (m’,M’",p_::r) >1 foranyp>0,r>0and M >m>0. (23)

By considering Proposition 4, we obtain a more precise characterization of chaotic
order than Theorem 2.

Theorem 5. Let A and B be positive and invertible operators on a Hilbert space H sat-
isfying MI > B > mI > 0. Then the following assertions are mutually equivalent:
(i) log A > log B.

(i) Mn(p)A? > B? holds for all p > 0, where h = % > 1 and

Mi(p) = ———. 2.4

. ( ) elog(hﬁz:f) @4
(h— 1)AFT | U,

We remark that M (1) = oTogh is called Specht’s ratio [2][16].

3 Proof of results

Proof of Theorem 1. Put r = 1 in (ii) of Theorem C, then log A > log B ensures the

following inequality:

(B%A”B%)F:TT > B forp>0.

21
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Put A; = (BAPBY)#7 and B, = B, then A, and By satisfy A; > By > 0 and M >
B; > m > 0. Applying Theorem B to A; and B;, we have BRI
M 1 P

p1—1 . o
(—) (BEAPBE)WT > K (m,M,p))(B APBE)5¥T > B

m (3.1)

for p > 0 and p; > 1.

Put p; =p+ 1> 1in (3.1) and multiply B3 on both sides, then we have

P .
(%{—) AP > Ky (m,M,p+ 1)AP > B? for p > 0. (2.1)
Hence the prodf of Theorem 1 is complete. ) - ]

In order to give a proof of Theorem 2, we need the following lemma.

Lemma 6. If m >0 and M > 0, then

1
. (mp+Mp)2 ; _
: ;l)l—%{ 4mpMP =1

Proof. Noting that

we have

Proof of Theorem 2.
(a) Proof of (i) = (ii). Put r = p in (ii) of Theorem C, then log A > log B ensures
the following inequality:

(B54PB%)2 > B for p> 0.

Put A, = (B54?B%)? and B; = BP, then A, and B satisfy A, > B; > 0 and M? >
B; > mP > 0. Applying Theorem B to A; and B,, we have

K, (mP, MP,p,)(BEAPB%)7 > (BP)» for p> 0 and p; > 1. (3.2)
Put p; =2 > 1in (3.2) and multiply B on both sides, then we have
Ky(mP,MP?,2)A? > B? for p > 0.

(m? + M7)?

"Hence the proof of (i) = (ii) is complete since K, (mP, MP 2) = Py
m
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(b) Proof of (ii)) => (i). Taking logarithm of both sides of (ii) since log¢ is an operator
monotone function, we have

| (m? + M?)*\ #
lqg { (W A .Z logB forallp>0. (33)
Letting p — +0 in (3.3), we have log A > log B by Lemma 6. ]

Proof of Theorem 3. By Theorem C, log A > log B is equivalent to the following inequal-
ity: ‘

(B5APBE)# > B  forp>0andr > 0.

Puf Ay -—_V(BgA”Bg)i"-rFF and B; = B", then A; and Blvs'a.tisfy Ay > By > 0 and
M™ > By > m" > 0. Applying Theorem B to A; and B;, we have

Ki(m™,M",p)AY > B for py > 1. - (34)

Put p, = P? > 1in (3.4), then we have

Ky (mM P:f r_) B5 APB5 > BPtT. . (35)

By multiplying B% on both sides of (3.5), we have
K+(m’,M',1+I;)>A”2 B? for p> 0 and 7 > 0. (2.2)

Hence the proof of Theorem 3 is complete. O

We prepare the following four lemmas to give a proof of Proposition 4.

Lemma 7. For each h > 1,

t

f(t) =log (ht_1> L (3.6)

is a convez function fort > 0.

ht—1
¢

Proof. Put z(t) = , then f(t) = log{z(t)} and

1 _ w(t)x”(t) - {ml(t)}2
FO=""Gayr

so that f”(t) > 0 for ¢ > 0 is equivalent to the following (3.7) since {z(t)}* > 0:

z(t)z"(t) - {ac'(t)}2 >0 fort>0. (3.7)
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By calculation on differential calculus and refinement, we have
(t) = {2 ()} = = (B — 1+ th¥ logh)(h' — 1 — th¥ log h
£(0)a"(1) ~ (2'())? = (' = 1+ th log h)(h' ~ 1 - thi log h),

so that (3.7) is equivalent to the following (3.8) because h* — 1+ thzlogh > 0 for b > 1
and t > 0:

h'—1—thilogh>0 forh>1andt>0. (3.8)
Put y(t) = h' -1 - th% log h. Then y(0) = 0 and
y'(t) = k% log h(h? — 1 — log h%),

so that y/(¢) > 0 for h > 1 and ¢t > 0. Therefore y(t) > 0 for h > 1 and ¢t > 0, which is
equivalent to (3.8). Consequently, the proof of Lemma 7 is complete. a

Lemma 8. Let h > 1. Then

1
r hPTT — 1\
g(p,r,h) = (mﬁ) (3.9)
is an increasing function of p and r for p > 0 and r > 0.
Proof. Define f(t) as in Lemma 7, i.e.,
| ht -1
f(t) =log ( ; ) : (3.6)
Then by (3.9),
og (h?"” — 1) log (h’ - 1)
+r r +r)—Jir
log{g(p, 1)} = ——2 L0 =0 g
: p P
(a) Proof of the result that g(p,r, h) is increasing for p > 0.
Let p; > pz > 0 and r > 0. Since f(t) is convex for ¢ > 0 by Lemma 7,
0f(t1) + (1 - 0)f(t2) > f(6t1 + (1 - 6)t2) (3.11)

holds for 8 € [0,1],¢; > 0 and ¢2 > 0. Putﬂzzf6[0,1],t1=p1+r>0and to=r>0,
1
then

0t1+(1—0)t2=p—2(p1 +7')+ (1—'&)7':]72-}-7‘. (312)
h h
By (3.11) and (3.12), we have -

P2 i+ 1) + (1 - Pz) F(r) 2 f(p2 1),
Pi y41



so that

for ) = 1) | fleatr) - )

3.13
D P2 ( )

By (3.10) and (3.13), g(p,r, h) is increasing for p > 0.

(b) Proof of the result that g(p,r, h) is increasing for r > 0.

Let ry > ry > 0and p > 0. Since f(t) is convex for¢t > 0 by Lemma 7, f"(t) > 0, so that
f'(t) is increasing, that is, f'(t+r1) — f'(t +r3) > 0. Therefore s(t) = f(t+r1) — f(t+r2)
is increasing for ¢ > 0. Then we have f(p+r;) — f(p+r2) = s(p) > s(0) = f(r1) — f(r2),
that is,

fo+m) = f(r1) | flp+rs) = flra)

3.14
p p ( . )
By (3.10) and (3.14), g(p, r, ) is increasing for r > 0.
Consequently the proof of Lemma 8 is compléte. _ O
Lemma 9. Forp>1andt > 1,
P_ —
ptP~1 > %——11 > pt%l. : (3.15)

Proof. To prove the first inequality of (3.15), define h(t) = ¢*. Since h(t) is a convex
h(t) - h(1)
t—1
first inequality of (3.15). On the other hand, the second inequality of (3.15) is equivalent

to the following: ' ' :

function of ¢t for p > 1, we have A'(t) > for t > 1, which is equivalent to the

Pt 4 pt —1>0 forp>landt> 1. (3.16)

So we have only to prove (3.16). Put f(t) =tP — pt’%—l + ptL;l — 1. Then f(1) =0 and

. f’(t) :.A‘ptp_':l — "@—éﬂt%l— + p(p~ 1)t?i;—3-
(3.17)

Put g(t) = 5 P—;’—lt-i— 'P;—l, then ¢'(¢) = P—;—lt%l —bp—glz Oforp>1landt > 1, and
also g(1) = 0. Therefore g(t) > 0 for p > 1 and ¢t > 1, so that f'(t) = ptagig(t) > 0 for

p>1landt > 1by (3.17). Hence f(t) > 0 for p > 1 and ¢ > 1, which is equivalent to
(3.16). Consequently the proof of Lemma 9 is complete. O

25



26

Lemma 10. Forp>0,r >0 and h > 1,
h>glp,r k) 2 A1, (3.18)

where g(p,r,h) is as in Lemma 8, i.e.,

1
r hPTT — 1\
hy={————1 . .
s = () (3.9)
Proof. Replace p with L’:r— 2> 1in Lemma 9, we have the following inequality.
etr_y
tr
(p+r)t52 Z(p+r)t£‘ forp>0,r>0andt> 1. (3.19)
T t—-1 r
Put ¢t = A" > 1in (3.19). Then we have
| hPtr -1
hpr—:T‘_hr—:Tzhg forp>0,r>0andh>l,. (320)
therefore we have (3.18) by taking ;7 exponent of each side of (3.20). g
Proof of Proposition 4. Put h = An’f— > 1 and g(p, r’, h) is as in Lemma 8, i.e.,
1
r hPFT _1\?r
g(pyr,h) = (]‘H_—T—h‘;j_—i—) : (3.9)
Then
: Z '
R)r PHr _ ptry1tE
X, (m,,M,,pw) L@ e s
(14 2)MFr (Mr — mr) (mr Mp+r — Mrmptr)r

5 ptr _ 1)1+E
)(p> (RP*r — 1) _ byh=Moy
r p+r (hr _ 1) (hp+r - hr), m
ro O RPY 1\ 7 p hPtr—1 N (3.21)
p+r hT -1 p+r hP -1

P .
o, ) - g(r,p, h)} by (3.9).

— 41

By Lemma 10, we have the following (3.22).

1
h> 7 -g(p,ryh) - g(r,p,h) > 1 for p > 0 and r > 0. (3.22)

By (3.21) and (3.22), we have (2.3), i.e.,

M P
(E) > K, <m’,Mr,p:fr)z1 forany p>0,r>0and M >m >0. (2.3)



(a) Proof of the result that F(p,r,m,M) = K, (m", M", p—:’—’-) is increasing for p > 0
and r > 0.

- By Lemma 8, g(p,r,h) is increasing for 'p > 0 and 7 > 0. Then we obtain that
g(p, r,h)-g(r,p, h) is increasing for p > 0 and r > 0. By (3. 21) and (3 22), F(p,r,m,M) =
Kq(m™,M", B0 is mcreasmg forp>0and r > 0. ' SR

(b) Proof of the result that, F(p,r,m,M ): Ky(m",M", ’#) zs an increasing function

of M and also a decreasing function of m for M > m > 0.
Firstly, for s > 0,

(2.0w) = L i)’

oo™/ T\ T+t i -1
(e e o1Ng (3.23)
T \pt+r -1/

= {g(p, r, h)}s y

s’s’

1 S
so that g(p,r,h) = {g B L h® }-‘ for s > 0. Then for s > 1, we have

1 ‘ 4
o (0, 220) = L gy gt} by 2

S CRIC ORI T

Y
< {ls -g(p, 7, %) - g(r, p, hs)} by the result of (a)

h
s—1
) since h® = h M,'
m

(3.24)

p+r
T

=K, ( , (RFTIM)T,

so that Ky (m”, M, Bt is an increasing function of M for M > m > Osince h*"1M > M.
On the other hand, by the same way as (3.24) we have

p
ey (00 2E0) < {8 st At w)} = gy (@my o 22T,

r

h11—vi Hence K4 (m", M", ) is a decreasing function of m for M >m>0
since m > h'™*m

since h® =

By (a) and (b), the proof of Proposition 4 is complete. ‘ ‘ a
We need the following lemmas to give a proof of Theorem 5.
Lemma 11. Let M > m > 0, p > 0 and Ky (m, M,p) be defined in (1.2). Then

lim K (m", M" 1+p) = Mi(p),

r—+40

where h = -%— > 1, and M}, (p) is defined in (2.4).

27
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Proof. Define g(p,r,h) as in Lemma 8, i.e.,

1
: r hPtT —1\r
g(p,r,h) = (p+rﬁ) - (3.9)
As in the proof of Proposition 4, we have
v oaer PHT 1 P
K, (m M ’pr ):{E-g(p,r,h)-g(r,p,h)} . (3.21)
We define f(t) as follows: |
f(t) = log(ht - 1). (3.25)
Then
htlogh e ‘
HOE o1 log hrt-1, (3.26)
so that

1
P+r —_ r p+r _ _ p_
lim log (h____l) T (] 1) — log(h? - 1)

r—+40 h? —1 r—=+40 r
_ o flp+r) - fp)
o
= f(p)

P
—logh®™=T by (3.26),

Il

‘ 1 3
hPtr — 1\ T P . ) r h" -1
therefore lim | ——— = h#-1, Since lim (1+ r = e and lim
r—++0\ hP -1 r—+0 P r—+4+0 T

log h, we have

1 1
. . (kT —1 ¢ \P  [(hP—1\» 1 P
,2‘209@"’”’)—,‘_‘,‘1‘0( P h'"—l) —(m) -<rzg";l“> (3.27)
and -
| p \Emtr o NE s |
rl—lvr-rflog(r’p’h)zrl—gﬁo(p+r) (hP—l) 2_6,‘-,_' (3:28)

Applying (3.27) and (3.28) in (3.21), we have

- o P i Lo i)
rl-1->r5r10K+ (m , M7, . )— lim {h g(p,r,h) g(r,p,h)} by (3.21)

r—+40
! ! i by (3.27) and (3.28
_.};’-.loghm’%. - y(..)an(. )
hFP=T
_eloghﬁ’%f'

Hence the proof of Lemma 11 is complete. : ‘a



Lemma 12. Let h > 1 and M,(p) be defined in (2.4). Then

Jm {M(p)}> = 1.
9(p)

—_ If is easil obfained that
elog g(p) Y

Proof. Put g(p) = hm’%‘, then My (p) =

1
1 — hlogh —
Jim g(p) = hiee¥ = e

and

h? —1 —phPlogh) ., _»_
/ — -
g(p) = { w7~ 1)? }hhr Tlogh.

Then ¢'(p) is bounded as p — +0 since

. h?—1—phPlogh ——phl"{Alog;h}2 S
pl:)rzo o1 = p1_1+r_r'_10 2(h> — Dhvlogh by L’Hospital’s theorem
.. —plogh -
= A 3tk = 1)
-1
5

Then we have

)}# = lim log g(p) — log {logg(p)} - 1

pl—l)ri-lo IOg{Mh (P p—+0 P
/
() { 1 } :

= lim =%~ <¢{1 - — by L’Hospital’s theorem
Terog(p) U logglp) ) Y TP

=0,

so that lix:_lo{Mh(p)}% = 1. Hence the proof of Lemma 12 is complete. a
p—r

Proof of Theorem 5. :
(a) Proof of (i) = (ii). By Theorem 3, log A > log B implies

Ky (m7, M7, 1+ g) AP > BP forp>0andr> 0. (2.2)

Letting r — +0 in (2.2), we have M, (p)A? > BP? for p > 0 since Ky(m",M",1+ &) —
M; (p) as r — +0 by Lemma 11.

(b) Proof of (i1) = (i). By taking logarithm of both sides of (ii), we have
log({Mp(p)}7 A) > log B for p> 0. (3.29)

Then letting p — +0 in (3.29), we have log A > log B since {Mh(p)}% — 1asp— +0 by
Lemma 12. ’

Hence the proof of Theorem 5 is complete. O
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4 Concluding Remarks

Remark 1. Let A and B be positive and invertible operators on a Hilbert space H. We
consider an order A% > B® for § € (0, 1] which interpolates usual order A > B and chaotic
order log A > log B continuously. The following result is easily obtained by Theorem B.

Proposition 13. Let A and B be positive and invertible operators on a Hilbert space H
satisfying A®* > B® for 5 €(0,1] and MI > B > mI > 0, then

I(+( M‘s,g)AP >BP  forp> 3§,

where K4 (m, M, p) is defined in (1.2).

Proof. Put A; = A% and B, = B‘s then A; > B, > 0 and M® > B, > m®. By applying
Theorem B to A; and B;, we have

K+(m5,M‘s,p1)A’1" > B} for p > 1. (4.1)

Put p; =% > 1in (4.1), then we have

K( M5,§>AP>B” for p > 6. O

We show the following result to consider the relation between Proposition 13 and
Theorem 5.

Proposition 14. Let K{(m,M,p) and My(p) be defined in (1.2) and (2.4), respectively.
Then forp >0 and M > m > 0,

s P\ _
| 61_1’1201(}.( M ,5) = My(p),
where h = %’I > 1.

Proposition 14 can be proved by the same way as Lemma 11.

Proof. Define g(p,r,h) as in Lemma 8, i.e.,

1
r hPTT — 1\~
g(p,r,h) = (p_+ rﬁ) (3.9)
By (3.21), we have
- 5 5 P—8) 4
Ky (m M ,5) K, (m M "“’5‘”‘“)
(4.2)

1 Pt
:{-ﬁ-g(p——d,é,h)-g(é,p~5,h)} by (321)
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We define f(t) as follows:

f6) =log(ht =1). @)
Then
t t _
I (t) = h logh = log h#T, . (3.26)
so that
1
) h?—1 \& . log(h? — 1) —log(h?~° — 1)
al—lyn:o log (hP-J - 1) s!ﬂlo B
540 ) .
= f'(p)
= log h#-1 by (3.26),
1 : B
P _ H r; s _
therefore  lim —h—l L= hﬁf-_l. Since lim {1~ §- = l and lim h 1 =
s—+0 \ hP—8 — 1 5—=+0 p € §»+0 ¢

log h, we have

o 1 k 1 L
hP -1 & )\ h? — 1\ * 1 P
l 5,6,h) = 1 —_— = = 4.3
o g(p )= —l>+o( p hS —‘1)‘ _ (plogh) (10ghm’ﬁ) (43)
and
; 5 ‘ S h - 1 p—6\¥/ o1 \} R ’ .
sim 9(8,p—6,h) = _1;_130( p ) (hp—s—l) = (4.4)
Applying (4.3) and (4.4) in (4.2), we have
. , s
5&‘20[{*‘ (m Ma) 5) - 51_1)111 {h g(p"év 5’h) 'g((s)p_ 57’7’)} by (42)
hP ‘
1 1 R
= g he — by (4.3) and (4.4)
R
- eloghm’L-T-
Hence the proof of Proposition 14 is complete. : O

Remark 2. We summarize the results which have been obtained as follows:

Let A> 0 and MI > B > mI > 0. Then the following assertions hold:

(i) A> B implies K (m, M,p)A? > B for p> 1,
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(ii) for each § € (0,1), A° > B implies K, (m‘,M“, g) AP > BP forp > 6,
(iii) log A > log B implies M} (p)AP > BP for p > 0,

where h = & > 1, and K (m, M, p) and My (p) are defined in (1.2) and (2.4), respectively.

Proposition 14 states that as the order in the assumption of (ii) interpolates the orders
of (i) and (iii) continuously, the scalar in the consequence of (ii) also interpolates the scalar
of (i) and (iii) continuously. Therefore Theorem 5 can be considered as a natural result
which is parallel to Theorem B.

Remark 3. Very recently, the following characterization of chaotic order was obtained.

- Theorem D ([6]). If A,B > 0, then log A > log B if and only if for any & € (0,1] there
ezists an a = a5 > 0 such that (e’ A)* > B°.

On the other hand, Theorem 2 and Theorem 5 can be rewritten in the following form.

Theorem 2°. If A,B > 0, then log A > log B if and only if for any p > 0 there ezists a
Ky, > 1 such that K, =+ 1 as p —+ +0, and (K,A)? > BP.

Also we can obtain Theorem D from Theorem 2 by the almost same way to rewriting
Theorem 2 into Theorem 2’. We remark that Theorem 2 is proved by using Theorem C
and Theorem C can be proved by using Theorem F and Theorem D, so that Theorem 2
can be considered as a formal extension of Theorem D.

Remark 4. Theorem 2’ is a parallel result to the following Theorem E [10].

Theorem E ([10]). If A,B > 0, then log A > log B if and only if for any p > 0 there
ezists the unique unitary operator U, such that U, — I as p — +0, and (UpAU,)? > BP.
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