0000000000
10830 1999 0 181-186 181

Radial symmetry of self-similar solutions for semilinear heat equations
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We consider the symmetry properties of positive solutions of the equation

1 1 ;
Au+§a:-Vu+p_1u+up:0 in R, (1.1)

where n > 2 and p > 1. This equation arises in the study of (forward) self-similar solutions

of the semilinear heat equation
wy = Aw+w?  in R" x (0,00). v (1.2)
It is well known that if w(z,t) satisfies (1.2), then, for p > 0 the rescaled functions
wy(,t) = 2 "D (pz, 1%t)

define a one parameter family of solutions to (1.2). A solution w is said to be self-similar,
when wy(z,t) = w(z,t) for all p > 0. It can be easily checked that w is a self-similar

solution to (1.2) if and only if w has the form
w(z,t) =t/ Py (m/\/i-i) , (1.3)

where u satisfies the elliptic Eq. (1.1). Moreover, if u has spherical symmetry, that is if

u = u(r), 7 = |z|, then u satisfies the ordinary differential equation

-1 1 ,
u”+(nr +g>u’+p_1u+up=0, r > 0. (1.4)

Such self-similar solutions are often used to describe the large time behavior of global
solutions to the Cauchy problem, see, e.g., [11, 13, 3, 14, 5, and 15}, and to show nonunique-

ness of solution to (1.2) with zero initial data in a certain functional space, see [12].
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First we state the result concerning the symmetry properties of the solution of (1.1).

THEOREM 1.1. Let u € C?(R™) be a positive solution of (1.1) such that
u(z) = o(|z|"¥® V) as |2| — oco. (1.5)

Then u must be radially symmetric about the origin.

The proof of Theorem 1.1 is based on the moving planes argument. This technique was
developed by Serrin [18] in PDE theory, and extended and generalized by Gidas, Ni, and
Nirenberg [9, 10]. We remark that with a change of variables we are still able to prove a
radial symmetry result for Eq. (1.1).

Let us consider the problem

u"+<n;1+z)u’+ u+ [uflu=0, r>0,

2 p—1 (1.6)
wW(0)=0 and u(0)=a€ R.

The problem (1.6) has been investigated extensively in [12, 16, 20, and 2]. We denote by
u(r; ) the unique solution of (1.6). We recall that u(r; «) has the following properties:

(1) limy oo 72 ® Dy(r; o) = L(a) exists and is finite for every a € R (see [12, Theorem 5]);
(ii) if L(a) = 0, then there exists a constant A # 0 such that

u(rya) = Ae™" 4D 1 L O(r )} as T — o0

see [16, Theorem 1]);
iii) if p > (n+2)/(n — 2), then u(r; @) is positive on [0,00) and L(«) > 0 for every a > 0
see [12, Theorem 5));
iv) if (n+2)/n <p < (n+2)/(n — 2), then there exists a unique @ > 0 such that u(r; «)

is positive on [0, 00) and L(a) = 0 (see [20, Theorem 1] and [2, Theorem 1.2 and Corollary
1.3]).

By virtue of Theorem 1.1 we obtain the followirig:

(
(
(
(

COROLLARY 1.1. (i) Assume that p > (n+2)/(n —2). Then there ezxists no positive
solution u of (1.1) satisfying (1.5).
(i) Assume that (n+2)/n < p < (n+2)/(n —2). Then there exists a unique positive

solution u(zx) satisfying (1.5). Moreover, the solution u is radially symmetric about the

ortgin.
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Remark. The result (i) is differently proven by [3, Proposition 4.3] based on the Pohozaev
identity.

Following the notations in [3] and [14], we define
LIA(K)={u: R" — R;/ |u|?K (z)dx < 0o} and
R’ﬂ,

HY(K) = {u: R" > R; /R (jul? + |VuP)K (z)dz < oo},

where K(z) = exp(|z|?/4). Escobedo and Kavian have shown in 3, Proposition 3.5] that
if1<p<(n+2)/(n—2) and if u € H'(K) is a solution of (1.1), then u € C?(R") and
satisfies u(z) = O(exp(—|x|?/8)) as |z] — oco. As a consequence of Corollary 1.1, we obtain

the following:

COROLLARY 1.2. Assume that (n+2)/n < p < (n+2)/(n—2). Then the problem

Au+jz-Vu+ Zqu+u =0 inR",

(1.7)

we HY(K) and u>0in R",

has a unique solution.
Let us consider the Cauchy problem

wy = Aw+wP in R" x (0,00),
(1.8)

w(z,0) = Twp in R,

where wy € L2(K) N L*®(R™), wy > 0, and 7 > 0 is a parameter. We denote by w(z,t;7)
the unique solutions of (1.8) (see [15]). Combining the result by Kawanago [15, Theorem
1] and Corollary 1.2, we obtain the following, where the asymptotic behavior of w(-,t;7)

as t — oo becomes clearer.

COROLLARY 1.3. Assume that (n+2)/n < p < (n+2)/(n —2). Then there exists
a unique Ty > 0 such that the solution w(z,t;T) is a global solution if T € (0,7, and
w(z, t;7) blows up in finite time if T € (19, 00). Moreover, w(z,t; 7o) satisfies

lim Htl/(p_l)’QU(',t;TO) — Ug (/\/Z)”

- t—o0

=0,
L*(R™)

where ug s a unique solution of the problem (1.7).
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Next we consider the existence of nonradial solutions of (1.1). Let p > (n+2)/n and let

U(r) be a positive solution of (1.4) satisfying

U'(0)=0 and lim r¥®Yy(r) > 0. (1.9)

T—00

The existence of such U is obtained by [12, Theorem 5]. Define £ = £(U) > 0 as

¢ = lim r?®-Dy(r), (1.10)

7—00

We investigate the Cauéhy prbblem for Eq. (1.2) with
w(z,0) = wo € L1 (RY), (1.11)
where
0 < wp(z) < Lz|"P V| wy#£0, ze R\ {0} (1.12)

Relation (1.11) is taken in the sense of L1

loc

(R™), that is,
/ lw(z,t) —wo(z)|de -0 as t—0
K

for any compact subset K of R". We note that wy € LL (R") if (1.12) holds with p >
(n+2)/n.

THEOREM 1.2. Let p > (n+ 2)/n. Assume that (1.12) holds, where ¢ is the constant
in (1.10). Then there ezists a positive solution w € C*1(R™ x (0,00)) of (1.2) and (1.11).
Assume, furthermore, that wo € C(R™\ {0}), then w satisfies

w(z,t) = wo(z) ast— 0 uniformly in |z| > 7 for every r > 0. (1.13)
Moreover, w is self-similar if p* ®=Ywy(uz) = wy(z) for every p > 0.
COROLLARY 1.4. Let p > (n+2)/n. Assume that A : S*' — R is continuous and

satisfies
0<A(0)<t A#0, ocesS L (1.14)

Then there ezists a positive self-similar solution w € C*H(R™ x (0,00)) of (1.2) satisfying
(1.11) and (1.13) with wo(z) = Az /|z|)|z| =%/ -1,

Recall that self-similar solutions w to (1.2) have the form (1.3) with u satisfying (1.1).
Therefore, w(o,t) = r®Dy(ro) for o0 € S*!, where r = 1/v/f. Then we obtain the

following corollary, which shows that condition (1.5) in Theorem 1.1 is crucial,
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COROLLARY 1.5. Let p > (n+2)/n. Assume that A : S ! — R is continuous and

satisfies (1.14). Then there exists a positive non-radial solution u of (1.1) satisfying

742/(p—1)u(,,‘0) - A(G) as v — oo uniformly in o € Sr1,

Remark. (i) If 1 < p < (n+ 2)/n, no time global, non-negative, and nontrivial solution
exists in (1.2) (see, e.g., [7], [19]). Therefore, (1.1) admits a positive solution only if
p>(n+2)/n. ’

~ (i) We find that the solution w of (1.2) and (1.11) obtained in Theorem 1.2 is a minimal

solution of the integral equation

wet) = [ ey u)dy+ [ [ T —y:o—s)uly,o)lPdyds,

where ['(z : t) = (4wt)""/2e~1oP"/%  See the proof of Theorem 1.2 below.
(iii) Galaktionov and Vazquez [8] studied the Cauchy problem (1.2) and (1.11) with

singular initial values for the case p > n/(n —2).
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