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We consider the symmetry properties of positive solutions of the equation

$\triangle u+\frac{1}{2}x\cdot\nabla u+\frac{1}{p-1}u+u^{P}=0$ in $R^{n}$ , (1.1)

where $n\geq 2$ and $p,$ $>1$ . This equation arises in the study of (forward) self-similar solutions

of the semilinear heat equation

$w_{t}=\triangle w+w^{P}$ in $R^{n}\cross(0, \infty)$ . (1.2)

It is well known that if $w(x, t)$ satisfies (1.2), then, for $\mu>0$ the rescaled functions

$w_{\mu}(X, t)=\mu^{2/(p^{-1})}w(\mu x,$ $\mu^{2}t)$

define a one parameter family of solutions to (1.2). A solution $w$ is said to be self-similar,

when $w_{\mu}(x, t)=w(x, t)$ for all $\mu>0$ . It can be easily checked that $w$ is a self-similar

solution to (1.2) if and only if $w$ has the form

$w(x, t)=t^{-1/(}P-1)u(x/\sqrt{t})$ , (1.3)

where $u$ satisfies the elliptic Eq. (1.1). Moreover, if $u$ has spherical symmetry, that is if

$u=u(r),$ $r=|x|$ , then $u$ satisfies the ordinary differential equation

$u^{\prime/}+( \frac{n-1}{r}+\frac{r}{2})u’+\frac{1}{p-1}u+u^{p}=0$ , $r>0$ . (1.4)

Such self-similar solutions are often used to describe the large time behavior of global

solutions to the Cauchy problem, see, e.g., [11, 13, 3, 14, 5, and 15], and to show nonunique-

ness of solution to (1.2) with zero initial data in a certain functional space, see [12].
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First we state the result concerning the symmetry properties of the solution of (1.1).

THEOREM 1.1. Let $u\in C^{2}(R^{n})$ be a positive solution of (1.1) such that

$u(x)=o(|x|-2/(p-1))$ as $|x|arrow\infty$ . (1.5)

Then $u$ must be radially symmetric about the $\mathrm{o}r\dot{\eta}gin$.

The proof of Theorem 1.1 is based on the moving planes argument. This technique was

developed by Serrin [18] in PDE theory, and extended and generalized by Gidas, Ni, and

Nirenberg $[9, 10]$ . We remark that with a change of variables we are still able to prove a

radial symmetry result for Eq. (1.1).

Let us consider the problem

$\{$

$u^{\prime/}+( \frac{n-1}{r}+\frac{r}{2})u’+\frac{1}{p-1}u+|u|^{p-1}u=0$ , $r>0$ ,

$u’(0)=0$ and $u(\mathrm{O})=\alpha\in R$ .
(1.6)

The problem (1.6) has been investigated extensively in [12, 16, 20, and 2]. We denote by
$u(r;\alpha)$ the unique solution of (1.6). We recall that $u(r;\alpha)$ has the following properties:

(i) $\lim_{rarrow\infty}r^{2/(p1}-)u(r;\alpha)=L(\alpha)$ exists and is finite for every $\alpha\in R$ (see [12, Theorem 5]);

(ii) if $L(\alpha)=0$ , then there exists a constant $A\neq 0$ such that

$u(r;\alpha)=Ae^{-}r-p1)r^{2}/42/(-n\{1+O(r^{-2})\}$ as $rarrow\infty$

(see [16, Theorem 1]);

(iii) if $p\geq(n+2)/(n-2)$ , then $u(r;\alpha)$ is positive on $[0, \infty)$ and $L(\alpha)>0$ for every $\alpha>0$

(see [12, Theorem 5]);

(iv) if $(n+2)/n<p<(n+2)/(n-2)$ , then there exists a unique $\alpha>0$ such that $u(r, \alpha)$

is positive on $[0, \infty)$ and $L(\alpha)=0$ (see [20, Theorem 1] and [2, Theorem 1.2 and Corollary

1.3]).

By virtue of Theorem 1.1 we obtain the following:

COROLLARY 1.1. (i) Assume that $p\geq(n+2)/(n-2)$ . Then there exists no positive

solution $u$ of (1.1) satisfying (1.5).

(ii) Assume that $(n+2)/n<p<(n+2)/(n-2)$ . Then there exists a unique positive

solution $u(x)$ satisfying (1.5). Moreover, the solution $u$ is radially symmet$7\dot{\mathrm{V}}C$ about the

origin.
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Remark. The result (i) is differently proven by [3, Proposition 4.3] based on the Pohozaev

identity.

Following the notations in [3] and [14], we define

$L^{2}(K)= \{u:R^{n}arrow R;\int_{R^{n}}|u|^{2}K(x)dX<\infty\}$ and

$H^{1}(K)= \{u : R^{n}arrow R;\int_{R^{n}}(|u|^{2}+|\nabla u|^{2})K(X)dX<\infty\}$ ,

where $K(x)=\exp(|X|^{2}/4)$ . Escobedo and Kavian have shown in [3, Proposition 3.5] that

if $1<p<(n+2)/(n-2)$ and if $u\in H^{1}(K)$ is a solution of (1.1), then $u\in C^{2}(R^{n})$ and

satisfies $u(x)=O(\exp(-|x|^{2}/8))$ as $|x|arrow\infty$ . As a consequence of Corollary 1.1, we obtain

the following:

COROLLARY 1.2. Assume that $(n+2)/n<p<(n+2)/(n-2)$ . Then the problem

$\{$

$\triangle u+\frac{1}{2}x\cdot\nabla u+\frac{1}{p-1}u+u^{p}=0$ in $R^{n}$ ,

$u\in H^{1}(K)$ and $u>0$ in $R^{n}$ ,
(1.7)

has a unique solution.

Let us consider the Cauchy problem

$\{$

$w_{t}=\triangle w+w^{p}$ in $R^{n}\cross(0, \infty)$ ,

$w(x, 0)=\mathcal{T}w0$ in $R^{n}$ ,
(1.8)

where $w_{0}\in L^{2}(K)\cap L^{\infty}(R^{n}),$ $w_{0}\geq 0$ , and $\tau>0$ is a parameter. We denote by $w(x, t;\tau)$

the unique solutions of (1.8) (see [15]). Combining the result by Kawanago [15, Theorem

1] and Corollary 1.2, we obtain the following, where the asymptotic behavior of $w(\cdot, t;\tau)$

as $tarrow\infty$ becomes clearer.

COROLLARY 1.3. Assume that $(n+2)/n<p<(n+2)/(n-2)$ . Then there exists

a unique $\tau_{0}>0$ such that the solution $w(x, t;\tau)$ is a global solution if $\tau\in(0,$ $\tau_{0]}$ , and

$w(x, t;\tau)$ blows up in finite time if $\tau\in(\tau_{0}, \infty)$ . $M_{oreo}ver_{J}w(x, t;\tau 0)$ satisfies

$\lim_{tarrow\infty}||t^{1/(p-1})w(\cdot, t;\tau_{0})-u_{0}(\cdot/\sqrt{t})||_{L^{\infty}(R^{n})}=0$ ,

where $u_{0}$ is a unique solution of the problem (1.7).
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Next we consider the existence of nonradial solutions of (1.1). Let $p>(n+2)/n$ and let
$U(r)$ be a positive solution of (1.4) $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{S}}\mathrm{f}\mathrm{y}\mathrm{i}\mathrm{n}\mathrm{g}$

$U’(0)=0$ and $\lim_{rarrow\infty}r2/(p-1)U(r)>0$ . (1.9)

The existence of such $U$ is obtained by [12, Theorem 5]. Define $\ell=\ell(U)>0$ as

$\ell=\lim_{arrow r\infty}r^{2/(}-1)Up(r)$ . (1.10)

We investigate the Cauchy problem for Eq. (1.2) with

$w(x, 0)=w0\in L1(1_{0}\mathrm{C}Rn)$ , (1.11)

where
$0\leq w_{0}(X)\leq\ell|x|^{-}2/(p-1)$ , $w_{0}\not\equiv 0$ , $x\in R^{n}\backslash \{0\}$ . (1.12)

Relation (1.11) is taken in the sense of $L_{1\mathrm{o}\mathrm{c}}^{1}(R^{n})$ , that is,

$\int_{K}|w(x, t)-w_{0}(x)|dxarrow 0$ as $tarrow \mathrm{O}$

for any compact subset $K$ of $R^{n}$ . We note that $w_{0}\in L_{1_{\mathrm{o}\mathrm{C}}}^{1}(R^{n})$ if (1.12) holds with $p>$

$(n+2)/n$ .

THEOREM 1.2. Let $p>(n+2)/n$ . Assume that (1.12) holds, where $\ell$ is the constant
in (1.10). Then there exists a positive $\mathit{8}olutionw\in C^{2,1}(R^{n}\mathrm{x}(0, \infty))$ of (1.2) and (1.11).
Assume, furthermore, that $w_{0}\in C(R^{n}\backslash \{0\})$ , then $w$ satisfies

$w(x, t)arrow w_{0}(x)$ as $tarrow \mathrm{O}$ uniformly in $|x|\geq r$ for every $r>0$ . (1.13)

Moreover, $w$ is self-similar if $\mu^{2/(p-1}w_{0}()\mu x)=w_{0}(x)$ for every $\mu>0$ .

COROLLARY 1.4. Let $p>(n+2)/n$ . Assume that $A$ : $S^{n-1}arrow R$ is continuous and

satisfies
$0\leq A(\sigma)\leq\ell,$ $A\not\equiv \mathrm{O}$ , $\sigma\in S^{n-1}$ . (1.14)

Then there exist8 a positive self-similar solution $w\in C^{2,1}(R^{n}\mathrm{x}(0, \infty))$ of (1.2) satisfying
(1.11) and (1.13) with $w_{0}(x)=A(x/|x|)|X|^{-}2/(p-1)$ .

Recall that self-similar solutions $w$ to (1.2) have the form (1.3) with $u$ satisfwing (1.1).
Therefore, $w(\sigma, t)=r^{2/(p1}-)u(r\sigma)$ for $\sigma\in S^{n-1}$ , where $r=1/\sqrt{t}$ . Then we obtain the
following corollary, which shows that condition (1.5) in Theorem 1.1 is crucial.
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COROLLARY 1.5. Let $p>(n+2)/n$ . Assume that $A$ : $S^{n-1}arrow R$ is continuous and

satisfies (1.14). Then there exists a positive non-radial solution $u$ of (1.1) satisfying

$r^{2/(p-1})u(r\sigma)arrow A(\sigma)$ as $rarrow\infty$ uniformly in $\sigma\in S^{n-1}$ .

Remark. (i) If $1<p\leq(n+2)/n$ , no time global, non-negative, and nontrivial solution

exists in (1.2) (see, e.g., [7], [19]). Therefore, (1.1) admits a positive solution only if

$p>(n+2)/n$ .

(ii) We find that the solution $w$ of (1.2) and (1.11) obtained in Theorem 1.2 is a minimal

solution of the integral equation

$w(x, t)– \int_{R^{n}}\Gamma(x-y:t)w_{0}(y)dy+\int_{0}^{t}\int_{R^{n}}\Gamma(x-y:t-S)[w(y, S)]^{p}dyds$ ,

where $\Gamma(x:t)=(4\pi t)^{-n/1}2e-x|^{2}/4t$ . See the proof of Theorem 1.2 below.

(iii) Galaktionov and Vazquez [8] studied the Cauchy problem (1.2) and (1.11) with

singular initial values for the case $p>n/(n-2)$ .
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