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THE UNIQUE EXISTENCE OF A CLOSED
ORBIT OF FITZHUGH-NAGUMO SYSTEM

Eiﬁ?@ligﬁ - FK ‘3 (Makoto Hayashi)

'1. Introduction

Our purpose is to give a parameter range for which the ordinary differential equa-
tions governing the FitzHugh-Nagumo system have a unique non-trivial closed orbit.
It is wider than those already known. '

‘To explicate the ion mechanism for the excitation and the conduction of nerve
Hodgkin and Huxley([H-H]) developed the system of four nonlinear ordinary dif-
fefential equations as a model of nerve conduction in the squid giant axon(Loligo).
R. FitzHugh([Fi]) and J. Nagumo et al.([Na]) simplified the system by introducing

the following two dimensional autonomous system of ordinary differential equations:

u')—v—lw‘q’—i— +1
{'_ g Y (FHN)

v = p(a —w — bv),
where the dot () denotes differetiation and a, p, b are real constants such that
[C1] a € R, p>0, 0<b< 1.

The variable w corfesponds to th‘e potential difference throﬁgh the axon merhbrane
and v répreéents the potassim activation. The quantity I is the current thrbugh the
membrane. The system (FHN) for special values of I has been investigated by using
numerical methods and phase space analysis in [Fi] or [Na].

The system (FHN) has a unique equilibrium point (z,ys) for each I € R, where

o1 = 3131+ a/8) + /AT + afb)? + 4(1/6 — D}/2

+{HBU + afb) — V(T + afB)E +4(1/6 —1)°}/2
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and »
Yyr — (a—xf)/b.

Instead of the parameter I we introduce a new parameter 7. By the transformation
n=zr,z=w-nandy=v—a/b+n/b+pb(w—n), the system (FHN) is transformed
to the following system:
1
&=y~ {—x"’+77962+(772 +pb~1)$}

3 (FNS)

b 1
y = —% {x3 + 3nz? + 3(n? + 5 l)x}

The system (FNS) is called the FitzHugh nerve system and has a unique equilibruim
point E(0,0). We shall give some results for the system (FNS) is equivalent to the
system (FHN).

Note that, if pb > 1, then the system (FNS) has no non-trivial closed orbits. Thus

instead of [C1l], we can assume the condition
[C2] a € R, 0<b<l, 0<p<1/b.

It was studied in such papers as [H1], [K-S] and [Su] for the system (FNS) with the
condition [C2]. Let o = /1 — pb. The following is our main result.

Theorem. The system (FNS) has a unique non-trivial closed orbit if n? < n2.

This result improves those given in [K-S] and [H1]. In fact, the result that ‘If either
n* <47'nk or {pb®> — 7b+6 < 0 and n® < nZ}, then the system (FNS) has a unique
non-trivial closed orbit’ was given in [K—S]. In [H1] the result that ‘There is a positive
constant 7; < 1o such that the system (FNS) has a unique non-trivial closed orbit

for |n| < m’ was given. Therefore the result of the above theorem is clearly stronger
than those in [K-S] and [H1].

2. Lemmas

In this section we prepare some lemmas to be used in the next section to prove the

Theorem. We consider the Liénard system of the following form

{i:y~ﬂ@

y = —g(x)a

(1)
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where F is continuously differentiable and g is continuous. We assume the following

conditions for the system (1):

[C3]  =zg(z)>0ifz#0,
[C4] There exist a; < 0 and a3 > 0 such that F(a;) = F(az) =0,

zF(z) <0 for a; < z < az, F(z) is nondecreasing for z < a; and z > as,

T

©5]  tm [ {F(©)+19(e)l} de = oo.

z—too Jq
To prove the Theorem we shall use the following three lemmas.

Lemma 1. Assume that the system (1) satisfies the conditions [C3], [C4], [C5] and

besides
. F(z) .
[C6] G(a1) > G(az) and there exists a constant o > 0 such that G (2) is
z
nondecreasing for x € (a1,z1) U (az,+00); moreover, there exists a constant
. F
§ > 0 such that e ((x)) is strictly increasing in x with 0 < |z| < 4,
afy ;

where G(z) = f: g(€)d€é and z; < 0 is a number satisfying the equation G(az) =
G(:cl)

Then the system (1) has a unique non-trivial closed orbit.

Proof of Lemma 1. Under the conditions [C3], [C4] and [C5] the system (1) has at
least one non-trivial closed orbit. See [H1]. Moreover, by [Ze], under the conditions

[C3], [C4] and [C6] the system (1) has at most one non-trivial closed orbit. [

We can assume that the condition n? < n2 in the Theorem holds with n > 0. The

proof for the case < 0 is essentially the same.

Lemma 2. Let

() = {20 +3(3 ~ 1)}o +n{2(sd — ) + 30 + 7 ~ D}

1
—3(n* —n3)(n* + 7~ 1)

300+ o) (0 + 3 — 1)

; .
2no{2(n¢ — n?) + 3(nd + 7 1)}

- Then T'(e (n —no)) > 0 if n* < n, where e =
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"Proof of Lemma 2. If n? < n3, we have -

D(e(n - m)) = €(n — o) {203 +3(; — 1))

+ en{2(n§ —n*) + 3(ng + % =)} — o) = 3(n* = m3)(n* + % -1)
= A=) 20 +3(; — D} + 35 ~ Dt~ )+ 5~ 1) >0, O

Lemma 3. Let

o) = 2 {a* + 3ma? 4307 4§~ D)o and Gle) = [ alepi

Then G(a) — G(—a) > 0 for every a > 0.

2
Proof of Lemma 8. Since G(a) — G(—a) = épbna3 > 0, the proof is completed. [

3. Proof of Theorem

We shall prove the Theorem by using the above three lemmas. We set Fi(z) =
(1/3)z® + nz? + (n? — nd)z. Then, if n* < nd, we see easily that the system (FNS)
satisfies the conditions [C3], [C4] and [C5]. We shall check the condition [C6] in
Lemma 1. We have for n < ng

 =3n—+/12n% — 372

a = 5 <0 and a,

—3n + /1272 — 312
_ 3+ 2770 U

Then we get

b 1
G(a1) — G(az) = %{n3 +2n2 + 6(3 —1)}4/120%2 — 3n2 > 0.

. 3
If n?2 < ni, since 0 < € < 1, we have a; > 5(770 —n) > €(no —n). Let z; <0 bea
number satisfying the equation G(az) = G(z1). From the above fact, the monotonicity

of G and Lemma 3, it follows that
G(1) = Glaz) > G(e(no — 1)) 2 G(e(n — m0)).

Using the fact that a; < z1 < €(n — no) < 0, we shall show that F(z)/G*(z) is
nondecreasing for z € (ai,e(n — no)) U (az,+00). This means that F'(z)G(z) —

aF(z)g(z) > 0 for z € (a1,e(n —no)) U (az, +00).
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From the calculation in [H1] we see that the above claim means that

®(z,a)
= (3 — 4a)z* + 61(3 — 4a)2® + 3{5(3 — 4a)n® — (1 — 4a)ng +2(3 - 2a)(% — 1)}:,;2

+120{2(2 - Sa)r” — (1~ 3a)ad + 3(1 — a)( ~1) o + 180"~ + 5 ~ 11 - 22)

>0

for z € (a1,¢(n —no)) U (a2,>+oo).

Let o = Z Thus we get the following expression which is of degree 2 in z.

<I>(m,4)

= 3[{2773 +3( = 1)}a? + {208 — ) + 3008 + § ~ Ve — 367 — i) + - 1)]

= 3T'(z).

If n? < 12, from the fact that I is a function of the degree 2, the inequality I'(0) > 0
' 3

and Lemma 2, we conclude that ®(z, Z) > 0 for z € (a1, e(n — no)) U (az,+o0).

Therefore the condition [C6] in Lemma 1 is satisfied. [

4. A numerical example

We shall present the phase portrait of the following system as an example illus-
trating the application of the Theorem. We consider the system (FNS) with b = 1/2,
p=1and n® = 3/8:

1 3v6 33 2)
i="5 ( et ?T)

In this case, since n2 = 1—pb = 1/2 > n?, the system (2) satisfies the condition in the
Theorem. Thus we see that the system (2) has a unique non-trivial closed orbit(see
the Figure below). We note that this system does not satiéfy the condition in [H1)]
nor that of [K-5], either.
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<

Figure

5. Appendix

Recently, in [H-T] the result that the system (FNS) has a unique non-trivial closed
orbit if n? = n2 > % — 1 was given by using some Lyapunov-type functions.

In [Su] it was shown that the system (FNS) has no non-trivial closed orbits if it
satisfies the condition .

1 1 1
n* > ng and n* —4n’nZ +ng + 2(3 = 1n* - 4(3 — g +4(; -1)* 20

or

1 ‘ 1
2{mg + (3~ 1Y <n*{n* + 3(3 - 1)}
We do not know yet what happens in the region in the (n,7)-plane in which

n? > n2, but the condition of [Su] is not satisfied. But some numerical experiments
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tell us that the system may have two non-trivial closed orbits if (7,70) is in the above
mentioned region. Thus we have a conjecture:
“The system (FNS) has either exactly two non-trivial closed orbits or no non-trivial

closed orbits in the above mentioned region.’
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