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1. Introduction

Our purpose is to give a parameter range for which the ordinary differential equa-

tions governing the $\mathrm{F}\mathrm{i}\mathrm{t}\mathrm{Z}\mathrm{H}\mathrm{u}\mathrm{g}\mathrm{h}$ -Nagumo system have a unique non-trivial closed orbit.

It is wider than those already known.

To explicate the ion mechanism for the excitation and the conduction of nerve

Hodgkin and $\mathrm{H}\mathrm{u}A\mathrm{e}\mathrm{y}([\mathrm{H}-\mathrm{H}])$ developed the system of four nonlinear ordinary dif-

ferential equations as a model of nerve conduction in the squid giant axon(Loligo).

R. $\mathrm{F}\mathrm{i}\mathrm{t}_{\mathrm{Z}}\mathrm{H}\mathrm{u}\mathrm{g}\mathrm{h}([\mathrm{F}\mathrm{i}])$ and J. Nagumo et $\mathrm{a}\mathrm{l}.([\mathrm{N}\mathrm{a}])$ simplified the system by introducing

the following two dimensional autonomous system of ordinary differential equations:

$\{$

$\dot{w}=v-\frac{1}{3}w^{3}+w+I$

$\dot{v}=\rho(a-w-bv)$ ,
(FHN)

where the dot $()$ denotes differetiation and $a,$ $\rho,$
$b$ are real constants such that

[C1] $a\in \mathbb{R}$ , $\rho>0$ , $0<b<1$ .

The variable $w$ corresponds to the potential difference through the axon membrane

and $v$ represents the potassim activation. The quantity $I$ is the current through the

membrane. The system (FHN) for special values of $I$ has been investigated by using

numerical methods and phase space analysis in [Fi] or [Na].

The system (FHN) has a unique equilibrium point $(x_{I}, y_{I})$ for each $I\in \mathbb{R}$ , where
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and

$y_{I}=(a-x_{I})/b$ .

Instead of the parameter $I$ we introduce a new parameter $\eta$ . By the transformation

$\eta=x_{I},$ $x=w-\eta$ and $y=v-a/b+\eta/b+\rho b(w-\eta)$ , the system (FHN) is transformed

to the following system:

$\{$

$\dot{x}=y-\{\frac{1}{3}x^{3}+\eta x^{2}+(\eta^{2}+\rho b-1)x\}$

$\dot{y}=-\frac{\rho b}{3}\{x^{3}+3\eta x^{2}+3(\eta^{2}+\frac{1}{b}-1)_{X}\}$

(FNS)

The system (FNS) is called the $\mathrm{F}\mathrm{i}\mathrm{t}\mathrm{Z}\mathrm{H}\mathrm{u}\mathrm{g}\mathrm{h}$ nerve system and has a unique equilibruim

point $E(\mathrm{O}, 0)$ . We shall give some results for the system (FNS) is equivalent to the

system (FHN).

Note that, if $\rho b\geq 1$ , then the system (FNS) has no non-trivial closed orbits. Thus

instead of [C1], we can assume the condition

[C2] $a\in \mathbb{R}$ , $0<b<1$ , $0<\rho<1/b$ .

It was studied in such papers as [H1], [K-S] and [Su] for the system (FNS) with the

condition [C2]. Let $\eta_{0}=\sqrt{1-\rho b}$ . The following is our main result.

Theorem. The system (FNS) $h$as a unique $\mathrm{n}$on-trivi $\mathrm{a}l$ closed orbit if $\eta^{2}<\eta_{0}^{2}$ .

This result improves those given in [K-S] and [H1]. In fact, the result that ‘If either
$\eta^{2}\leq 4^{-1}\eta_{0}^{2}$ or { $\rho b^{2}-7b+6<0$ and $\eta^{2}<\eta_{0}^{2}$ }, then the system (FNS) has a unique

non-trivial closed orbit’ was given in [K-S]. In [H1] the result that ‘There is a positive

constant $\eta_{1}\leq\eta_{0}$ such that the system (FNS) has a unique non-trivial closed orbit

for $|\eta|\leq\eta_{1}$
’ was given. Therefore the result of the above theorem is clearly stronger

than those in [K-S] and [H1].

2. Lemmas

In this section we prepare some lemmas to be used in the next section to prove the

Theorem. We consider the Li\’enard system of the following form

$\{$

$\dot{x}=y-F(X)$

$\dot{y}=-g(_{X)}$ ,
(1)
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where $F$ is continuously differentiable and $g$ is continuous. We assume the following

conditions for the system (1):

[C3] $xg(x)>0$ if $x\neq 0$ ,

[C4] There exist $a_{1}<0$ and $a_{2}>0$ such that $F(a_{1})=F(a_{2})=^{\mathrm{o}}$ ,

$xF(x)\leq 0$ for $a_{1}<x<a_{2},$ $F(x)$ is nondecreasing for $x<a_{1}$ and $x>a_{2}$ ,

[C5] $\lim_{xarrow\pm\infty}\int_{0}^{x}\{F’(\xi)+|g(\xi)|\}d\xi=\pm\infty$.

To prove the Theorem we shall use the following three lemmas.

Lemma 1. $Ass\mathrm{u}\mathrm{m}e$ that the system (1) satisfies the conditions [C3], [C4], [C5] and

besides

[C6] $G(a_{1})>G(a_{2})$ and there exists a $co\mathrm{n}$stant $\alpha\geq 0$ such that $\frac{F(x)}{G^{\alpha}(x)}$ is

$\mathrm{n}$ondecreasing for $x\in(a_{1}, x_{1})\cup(a_{2}, +\infty)$ ; moreover, there exists a constant

$\delta>0$ such that $\frac{F(x)}{G^{\alpha}(x)}$ is strictly increasing in $x$ with $0<|x|<\delta$ ,

where $G(x)= \int_{0}^{x}g(\xi)d\xi$ and $x_{1}<0$ is a $n$umber satisfying the equa$t\mathrm{i}$on $G(a_{2})=$

$G(x_{1})$ .

Then the system (1) has a unique $\mathrm{n}$on-trivi $\mathrm{a}$] closed orbit.

Proof of Lemma 1. Under the conditions [C3], [C4] and [C5] the system (1) has at

least one non-trivial closed orbit. See [H1]. Moreover, by [Ze], under the conditions

[C3], [C4] and [C6] the system (1) has at most one non-trivial closed orbit. $\square$

We can assume that the condition $\eta^{2}<\eta_{0}^{2}$ in the Theorem holds with $\eta\geq 0$ . The

proof for the case $\eta<0$ is essentially the same.

Lemma 2. Let

$\Gamma(X)=\{2\eta 0^{+(}32\frac{1}{b}-1)\}x+\eta\{22(\eta_{0}^{2}-\eta^{2})+3(\eta_{0}^{2}+\frac{1}{b}-1)\}X$

$-3( \eta^{2}-\eta_{0}2)(\eta^{2}+\frac{1}{b}-1)$ .

Then $\Gamma(\epsilon(\eta-\eta_{0}))>0$ if $\eta^{2}<\eta_{0}^{2}$ , where
$\epsilon=\frac{3(\eta+\eta_{0})(\eta+2\frac{1}{b}-1)}{1}$

.
$2\eta_{0}\{2(\eta^{2}0-\eta 2)+3(\eta^{2}0^{+}\overline{b}-1)\}$
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Proof of Lemma 2. If $\eta^{2}<\eta_{0}^{2}$ , we have

$\Gamma(\epsilon(\eta-\eta 0))=\epsilon(2-\eta_{0}\eta)^{2}\{2\eta 02+3(\frac{1}{b}-1)\}$

$+ \epsilon\eta\{2(\eta_{0}-2\eta)23+(\eta_{0}+\frac{1}{b}-21)\}(\eta-\eta 0)-3(\eta-2\eta_{0}2)(\eta^{2}+\frac{1}{b}-1)$

$= \epsilon^{2}(\eta-\eta 0)^{2}\{2\eta^{2}0+3(\frac{1}{b}-1)\}+3(\frac{\eta}{2\eta_{0}}-1)(\eta-2\eta_{0}2)(\eta^{2}+\frac{1}{b}-1)>0$ . $\square$

Lemma 3. Let

$g(x)= \frac{\rho b}{3}\{x^{3}+3\eta x^{2}+3(\eta^{2}+\frac{1}{b}-1)x\}$ and $G(x)= \int_{0}^{x}g(\xi)d\xi$ .

Then $G(a)-G(-a)\geq 0$ for every $a>0$ .

Proof of Lemma 3. Since $G(a)-G(-a)= \frac{2}{3}\rho b\eta a^{3}\geq 0$ , the proof is completed. $\square$

3. Proof of Theorem

We shall prove the Theorem by using the above three lemmas. We set $F(x)=$

$(1/3)x^{3}+\eta x^{2}+(\eta^{2}-\eta_{0}^{2})x$ . Then, if $\eta^{2}<\eta_{0}^{2}$ , we see easily that the system (FNS)

satisfies the conditions [C3], [C4] and [C5]. We shall check the condition [C6] in

Lemma 1. We have for $\eta^{2}<\eta_{0}^{2}$

$a_{1}= \frac{-3\eta-\sqrt{12\eta_{0}^{2}-3\eta^{2}}}{2}<0$ and $a_{2}= \frac{-3\eta+\sqrt{12\eta_{0^{-32}}^{2}\eta}}{2}>0$ .

Then we get

$G(a_{1})-c(a \mathrm{z})=\frac{\rho b}{4}\{\eta^{3}+2\eta_{0}^{2}+6(\frac{1}{b}-1)\}\sqrt{12\eta_{0^{-}}^{2}3\eta 2}>0$ .

If $\eta^{2}<\eta_{0}^{2}$ , since $0<\epsilon<1$ , we have $a_{2}> \frac{3}{2}(\eta_{0}-\eta)>\epsilon(\eta_{0}-\eta)$ . Let $x_{1}<0$ be a

number satisfying the equation $G(a_{2})=G(x_{1})$ . From the above fact, the monotonicity

of $G$ and Lemma 3, it follows that

$G(x_{1})=G(a_{2})>G(\epsilon(\eta 0-\eta))\geq G(\epsilon(\eta-\eta_{0}))$ .

Using the fact that $a_{1}<x_{1}<\epsilon(\eta-\eta 0)<0$ , we shall show that $F(x)/G^{\alpha}(x)$ is

nondecreasing for $x\in(a_{1}, \epsilon(\eta-\eta_{0}))\cup(a_{2}, +\infty)$ . This means that $F’(x)G(X)$ -

$\alpha F(x)g(x)\geq 0$ for $x\in(a_{1}, \epsilon(\eta-\eta 0))\cup(a_{2}, +\infty)$ .
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From the calculation in [H1] we see that the above claim means that

$\Phi(x, \alpha)$

$=(3-4 \alpha)X+6\eta(43-4\alpha)_{X+3\mathrm{t}3}35(-4\alpha)\eta^{2}-(1-4\alpha)\eta^{2}0+2(3-2\alpha)(\frac{1}{b}-1)\}x^{2}$

$+12 \eta\{2(2-3\alpha)\eta^{2}-(1-3\alpha)\eta 0+32(1-\alpha)(\frac{1}{b}-1)\}x+18(\eta 2-\eta_{0}^{2})(\eta+2\frac{1}{b}-1)(1-2\alpha)$

$\geq 0$

for $x\in(a_{1},\epsilon(\eta-\eta 03))\cup(a_{2}, +\infty)$
.

Let
$\alpha=\overline{4}$

. Thus we get the following expression which is of degree 2 in $x$ .

$\Phi(x, \frac{3}{4})$ .
..

$=3[ \{2\eta_{0}^{2}+3(\frac{1}{b}-1)\}x+\eta\{22(\eta_{0\eta)(+\frac{1}{b}}^{2}-2+3\eta_{0}-1)2\}X-3(\eta^{2}-\eta 0)2(\eta+\frac{1}{b}-\mathrm{z}1)]$

$=3\Gamma(x)$ .

If $\eta^{2}<\eta_{0}^{2}$ , from the fact that $\Gamma$ is a function of the degree 2, the inequality $\Gamma(0)>0$

and Lemma 2, we conclude that $\Phi(x, \frac{3}{4})\geq 0$ for $x\in(a_{1}, \epsilon(\eta-\eta 0))\cup(a_{2}, +\infty)$ .

Therefore the condition [C6] in Lemma 1 is satisfied. $\square$

4. A numerical example

We shall present the phase portrait of the following system as an example illus-

trating the application of the Theorem. We consider the system (FNS) with $b=1/2$ ,

$\rho=1$ and $\eta^{2}=3/8$ :

$\{$

$\dot{x}--y-(\frac{1}{3}x^{3}+\frac{\sqrt{6}}{4}x^{2}-\frac{1}{8}X)$

$\dot{y}=-\frac{1}{6}(x^{3}+\frac{3\sqrt{6}}{4}x^{2}+\frac{33}{8}x)$

(2)

In this case, since $\eta_{0}^{2}=1-\rho b=1/2>\eta^{2}$ , the system (2) satisfies the condition in the

Theorem. Thus we see that the system (2) has a unique non-trivial closed orbit $(\mathrm{S}\mathrm{e}\mathrm{e}$

$\mathrm{t}\dot{\mathrm{h}}\mathrm{e}$ Figure below). We note that this system does not satisfy the condition in [H1]

nor that of [K-S], either.

17



$v$

Figure

5. Appendix

Recently, in
$[\mathrm{H}-\mathrm{T}]1$

the result that the system (FNS) has a unique non-trivial closed

orbit if $\eta^{2}=\eta_{0}^{2}>\overline{b}-1$ was given by using some Lyapunov-type functions.
In [Su] it was shown that the system (FNS) has no non-trivial closed orbits if it

satisfies the condition

$\eta^{2}\geq\eta_{0}^{2}$ and $\eta^{4}-4\eta^{22}\eta 0+\eta_{0}^{4}+2(\frac{1}{2}-1)\eta^{2}-4(\frac{1}{b}-1)\eta^{2}0+4(\frac{1}{b}-1)^{2}\geq 0$

or
$2 \{\eta_{0}^{2}+(\frac{1}{b}-1)\}^{3}<\eta^{2}\{\eta^{2}+3(\frac{1}{b}-1)\}^{2}$ .

We do not know yet what happens in the region in the $(\eta, \eta 0)$ -plane in which
$\eta^{2}>\eta_{0}^{2}$ , but the condition of [Su] is not satisfied. But some numerical experiments
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tell us that the system may have two non-trivial closed orbits if $(\eta, \eta 0)$ is in the above

mentioned region. Thus we have a conjecture:

‘The system (FNS) has either exactly two non-trivial closed orbits or no non-trivial

closed orbits in the above mentioned region.’
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