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Inverse Bifurcation Problem and Multiplicative

Wiener-Hopf Equation

UK - #58 ESiRFH]  (Katsunori Iwasaki)

HAEUKERK B 8  (Yutaka Kamimura)

We illustrate a role that a class of Wiener-Hopf equations plays when one solves inverse
problems by means of the implicit function theorem, through a study of an inverse problem
in bifurcation theory. A general theory of the class of Wiener-Hopf equations is developed
and applied to the inverse problem.

1. INTRODUCTION

In a cominon abstract framework, the relationship between a cause x and an effect y can
be stated in terms of the equation

where F'is a smooth map of a neighborhood of (0, 0) in X xY into Z; X,Y,Z are Banach
spaces. Then the direct problem is no other than to solve (1.1) for y. The classical implicit
function theorem tells us that if

(1.2) £(0,0)=0
and if
(1.3) F,(0,0) is an isomorphism of ¥ onto Z,

where F,(0,0) denotes the Fréchet derivative of F' with respect to y at (0,0), then for x
close to 0 there is a unique solution 7(z) with 7(0) = 0. This can be interpreted as that the
direct problem is solved locally, in other words, that we can establish the correspondence
7(x) which assigns the effect y to the cause x near 0. In this situation we can pose the
inverse problem, which is formulated as: to solve w(x) = y.

When one tends to apply the implicit function theorem again to (1.1) in order to solve this
inverse problem, one needs to investigate the operator F;(0,0) from X to Z. The simplest
case is: F(0,0) is an isomorphism of X onto Y. In this case the direct map 7 (z) is a
diffeomorphism of a neighborhood of 0 in X to a neighborhood of 0 in Y, and therefore the
inverse problem 7(z) = y has a unique solution z in a neighborhood of 0 for each y close to
0 and this unique solution depends smoothly on y. The next simplest case is:

(1.4) Range I,(0,0) = 7, Ker F.(0,0) =: X is of finite dimension n,
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that is, £3(0,0) is surjective and the kernel is finite dimensional. In this case, by the implicit
function theorem, one can see (referring to Lemina 3.1) that there are a neighborhood U; x V-
of (0,0) in X; x Y, a neighborhood U of 0 in X, and a diffeomorphism G of U; x V onto U
such that the diagram

X1 xYDU xV

UcX

(1.5) ,,\\ r

commutes, where py denotes the projection: X x Y — Y. This means that the inverse
problem 7(x) = y has solutions G(z1,y) parametrized by x; in n dimensinal parameter set
Uy for cach y € Y close to 0. Thus, under the assumptions (1.2), (1.3), (1.4), the cause z
are determined from the effect y with n dimensinal ambiguity.

In practical inverse problems, what sort of structures enables us to carry out the scheme
mentioned above in the abstract framework? In many inverse problems in the fields of
mathematical scicnees, the cause-effect relationships (1.1) are stated in the form of nonlinear
integral equations or such kind of equations, and hence F;(0,0) in (1.4) become integral
operators. As is well known, if they are the Wiener-Hopf operators with non-positive indices
then the condition (1.4) is fulfilled. This is just the situation in which the scheme becomes
vivid.

In the present article we illustrate how the scheme can be carried out through a study of
an inverse problem in bifurcation theory, which we have treated in the work [1]. Our purpose
Is two-fold: first, to explain a practical role that the theory of the Wiener-Hopf equation
plays; and socondly, to obtain a more general result for the inverse problem than in [1].

We now pose the problem in bifurcation theory. Let A be a real parameter, ¢ be a real
continuous function, g be a C!-function with g(0) = ¢/(0) = 0, and consider the nonlinear
Sturm-Liouville problem .

VCcy

(1.6) {’“" + A= g(@)o = g(v), @ €[0,1];
v

v'(0) = v(1) = 0.
By the assumption on g, the linearized problem of (1.6) near v = 0 becomes:
v+ A —q(z)lv=0, x€]0,1];
v'(0) = v(1) = 0.
Let A; be the first eigenvalue of this problem and define the first bifurcating branch I'(g) to
be the set of the points (A, ) for which there exists a solution v of (1.6) such that v(0) = h,
v(x) #0 for 0 <z <1, and the pomt (A1,0). Let us denote by v(h,x; g, A) the solution of
the the initial value problem
V' + A= q(z)]v =g(v), z€][0,1];
v(0) = h, 2'(0) = 0.

Then, for h # 0, a point (A, h) belongs to I'(g) if and only if v(h, 1;9,\) = 0, provided that
g and i := X\ — A, are sufficiently small. Hence, introducing a map F for small functions g, p

(1.7)

(1.8)
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by

—1,, ' . -
1) | Plo, w)(h) = {/0 v(h, 1,9, M + p(h)) E;ﬁg;

we see that (A, + p(h),h) € ['(g) if and only if F'(g, ) = 0. On the other hand it follows
from an elementary argument (see the proof of [1, Theorem 2.3]) that if g is small then A
for which (A, h) € I'(g) is unique for each h. So we arrive at

(110 Tlg) = {( + b))} = Flg,p) =0,

provided that g, y are small. -

In this way the relationship between the nonlinearity (cause) and the first bifurcating
branch (effect) can be written in the form (1.1). Clearly (1.2) is satisfied. In this problem
one can casily compute the Fréchet derivative F},(0,0) formally (leaving the function spaces
setting till §3) as follows:

1
(1.11) F(0,0)p = 'U’l(l)‘l/ vy (z)2dx - p,
0

where v;(x) is the eigenfunction of (1.7) corresponding to A;, normalized by the condition
v1(0) = 1. Since this operator is just a multiplication with nonzero constant, (1.3) is satisfied.
Hence the direct map 7: g — p is established. This result is naturally corresponding to the
well-known fact that solutions of (1.6) with no zeros in [0, 1) bifurcate at the first eigenvalue
of the linearized problem (1.7).

We can now forinulate the inverse problem (Inverse Bifurcation Problem): given u, find g
satisfying 7(g) = p. In terms of the first eigenfunction v;(x) the Fréchet derivative Fy(0,0)
is computed as

(1.12) 4(0,0)g(h) = hfl(~7;§(1))"1/ v1(x)g(hvy (x))dx.
0
Assuming that v; () is monotonically decreasing : v}(z) < 0 (0 < z < 1) and setting
t
(1.13) U(t) :

(D (@)

with the inverse function v of v, we rewrite (1.12) in the form

(1.14) F,(0,0)g(h) = h™! /01 U(t)g(ht)dt.

This operator can be regarded as a kind of the Wiener-Hopf operators. In fact, for 0
h < b, changing variables via h = be™™, t = €*¥ and setting ¢(z) := g(be™), k(x)
P (") X(~o00/(#) (x denotes the characteristic function) yield

/1 U(t)g(ht)dt = /OOO k(= y)p(y)dy.

J0

This is a Wiener-Hopf operator, which has the pecularities: (i) of the first kind; (ii) with the
kernel k(x) being singular at « = 0; (iii) with the kernel k(z) vanishing for z > 0. Because
of (iii), condition (1.4) in our scheme is expected to be realized.

In §2, a general analysis of integral operators Jo defined by Jou(x) = [y ®(t)u(zt)dt is
developed.  Under some assumptions on ® and in an appropriate framework, it is shown

MIA

(1.15)
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that Jo is surjective if De(z) = jbl O(t)t*dt has no zeros on the imaginary axis Rez =
The precise formulation is given in Theorem 2.2, which is an extension of the result in our
earlier work [2]. In §3, Theorem 2.2 is applied to the inverse bifurcation problem. Under
some assuimptions on the potential ¢ and in an appropriate function spaces setting, it is
shown that given small function p(h) on the interval a < h < b with a < 0 < b, there exist
nonlinear terms g such that the section in a < h < b of the first bifurcating branch I'(g)
coincides with {(A; + p(h),h)|a < h < b}. For each . the set of the nonlinear terms is a
2N -dimensional submanifold in a neighborhood of the origin in a function space, where N
is the number of zeros of (o(2) == fy vi(x)*dx in the half plane Rez > « + 2, with some
«a € (0,1/2). The precise formulation is given in Theorem 3.4, which gives a generalization
of the result in our earlier work [1].

2. MULTIPLICATIVE WIENER-HOPF EQUATION

This section is concerned with integral operators Jo defined by

(2.1) Jou(x) = /01 O(¢)u(xt)dt,

where ®(1) are given functions in L'[0,1]. We use the notation

(2.2) De(2) = /01 O(1)*dt.

If ® € L'0,1] then Dg(z) is holomorphic in the region Re z > 0, and continuous in the right
half plane Re =z > 0. As a matter of convenience we adopt the following:

Definition 2.1. A function ® € L'[0, 1] is said to be non-resonant if Dg(z) has no zeros on
the imaginary axis.

Let [ := [a,b] be a bounded interval with a < 0 < b and set, for functions u(x) on I,

|y “uly) — |z|"u(z)]

lullo == sup |u(x)], |julla:="sup - ’
ze\{0} z,yeI\{0} z#y 1}/ - .’l'l
where 0 < oo < 1. By using the notation ) := 1% we define, for O< a <1, n=1,2,...,
(23 e (1) = {u e C*(1\ {0} | 3 18°ullo + 10"l < o0},
1==0

where (™(() denotes the space of functions having continuous derivatives up to the order n
on (. The space C™*(/) become Banach spaces with the norms

oo =D [10%ullo + 16"l

1220

Our main goal here is to establish the following:

Theorem 2.2. Let n be a nonnegative integer. Let ®(t) € C"*2(0,1) and assume that
(D, ©,00,---,0"® € L'[0,1], and moreover 0"®(t) is written as

0®(1) = At (1 —t°)° T R(t), B,e>0,0<é< 1,
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where A # 0 and R(t) € C(0,1] N C?%(0,1) satisfies the conditions
(2.4) IR < MY, |R()] < M1 — )71, |R(1)] < M7 (1= )72

with some M, v, p > 0; :
(ID),, ®(1) =0®(1) =--- = 0"'®(1) = 0.
(For n = 0, (I), are dropped.) Let 0 < a < 1 — 6. If ® is non-resonant then, for each
nonnegative integer k, the operator Jo : CP(I) — CF™o([) is surjective. The kernel
Ker Jo is of finite dimension N in the case ab= 0 and 2N in the case ab < 0. Here N is
the number of zeros of Dg(2) (counted by multiplicity) in Re z > 0. The kernel is spanned
by the functions

X[a)m]:rlb”(log ’TD[, X[O,b]|:1:|b'”(log Ix[)[ (¢=0,1,...,N,— 1, p=1,2,...,m),

where by, ..., by, denote the mutually distinct zeros of De(z) and N Ly -y Ny are the multiplic-
itics of them.

The proof of Theorem 2.2 is divided into several steps and will be completed after Lemma
2.9. In our argument the differential operators

. d
(2.5) O,=0+a=r—+a- (a€l)
dz
play an important role. Note that, for any function u with u, fu € C(I), we have
(2.6) \ O, Jou = Job,u  (a € C)

The basic properties of 0, are stated as follows:

Lemma 2.3. Let n be any nonnegative integer.

(i) If Rea > 0 then O,: CPhe(I) — C™*(1) is bijective, and the inverse of 0, is given by
ju == -]ta—l. :

(ii) If Rea < 0 then 0,: C*'12(1) — C™(I) is surjective, and is not injective: Ker @, =
Cz.

Proof. (i) It is clear that 0, is a bounded operator from C"™1*(I) to C™*([). Let ,u = 0 for
w € C*"1([). This equation can be solved as u = Cz~* with a constant C. By Rea > 0,
u € C"*1(I) implies C' = 0. This shows that 6, is injective. Moreover, for each v € C™*([),
the function (j,v)(r) =~ [y t* 1u(¢)dt satisfies 0,j,v = v. It only remains to show that
Jav € C"U(I). By (2.6) we have 0"j,v = j,0"v, which yields

(2.7) 0" jav = 0™ — ag,0"v.

Let w := j,0™v. Then, by the definition of j,, w, 0w € B(I). So it follows from the equality
Yy
yrw(y) — 2%w(x) = / t 1 (Ow(t) + cw(t))dt.

that w € C%*(I). By (2.7) and the assumption v € C**(I) we have 0" j,v € C%*(I). This
shows that j,v € C""be([).

(ii) In the case Rea < 0, the solution u = Cz™% of f,u = 0 belongs to Cntle(I). Hence
Ker 0, = Cax—®. Moreover, for cach v € C™*(I), the function w(z) := —z~* [;°t*  u(t)dL,
where we take xg € [ so that +z¢ > 0 according to +x > 0, satisfies f,u = v. Clearly
w € B(I). In view of 6,u = v we obtain ,0"u = 6™v. This equation can be solved as
0"u(x) = —x~ (7 t*-10"v(t)dt + ). From this it follows that 6"u,6"*'u € C(I). Hence, by



212

0"y = 00 — afu and a similar argument to that in the proof of (i), we have u € C**"*([).
Thus 0, is surjective. [

By means of 0; = 6 + 1, (2.6), Lemma 2.3-(i), we get the following:
Lemma 2.4. Let 0 < a < 1—46 < 1. and assume that
(2.8) ®(t) € C1(0,1), |®(1)], [t(1 — )@ (1) < Mt — )"
with some constants M, e > O; Then, for any nonnegative integer n, Jo is a bounded linear
operator from C*(I) to C™*T(I).

Proof. By means of [2, Lemma 5.1], Jo is a bounded operator from C%*(I) to Coe*4(T). For
e Ch(I) we obtain

1 1
07 JoOu(x) = Jy Jebiu(x) :/ dt | ®(s)(01u)(zst)ds
o Jo
! 1

1
= [ ®(s)ds / (0yu) (st)dt = / O(s)u(xs)ds = Jou(z).
Jo Jo Jo

Hence Jg is a bounded linear operator from C*(I) to C1+*(I). By using the same argument
repeatedly, we complete the proof. [

Remark. From Lemmas 2.3-(i) and 2.4, we have the commutative diagram

Jo
Cn+1,a([) CnJrl,a—H)([)
Cn,a([) Cn,a+6([)
Jo

where the vertical maps are isomorphisims, thanks to Lemma 2.3-(i).

The following formula will be used later:

Lemma 2.5. If ®, 09 € L'[0,1], then (2 + 1)Do(2) = ®(1) — Dga(2) (Rez > 0). In
particular.

(2.9) B(1) =0 = Dyo(2) = —(24+1)Ds(2) (Rez >0).
Proof. Integrating by parts we get

1 1

(= + 1)Da(2) = [t (1)) - / 0B (1)1 dt.
0
Noting that ®,0® € L'[0,1] implies ®(t) € C(0,1] and Il:il%tq)(t) =0 we complete the
proof. [ '
We can now establish Theorem 2.2 for the case where Dg(2) has no zeros in Re z > 0:

Proposition 2.6. Let ®(t) € C"*%(0,1) satisfy (I)n-(I1), in Theorem 2.2. If Do(z) # 0 in
Rez > 0 then. for cach nonnegative integer k, the operator Jo : CE(I) — CHmeT8(T) is an
isomorphism.
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Proof. By (2.9) we have for Rez > 0, Dgno(z) = (—1)"(2+1)"Ds(z). Hence, by assumption,
Dgne(2) # 0 for Rez > 0. This enables us to apply [2, Theorem BJ] to "®. Thus we
conclude that Jyne is an isomorphism of C¥(I) onto C%**®(I). On the other hand, using
(II),,, we have 01 Jou = —Jpou for v € C'(I\ {0}). Repeating this procedure we get
0 Jou = (—1)"Jpmou for u € C(I). Since O7: C*¥(I) — C®***(I) is an isomorphism,
this shows that Je: CO%(I) — C™*%([) becomes an isomorphism. For & > 1, the assertion
follows from the following commutative diagram: '

J. .
Ck,a (1) @ Ck+n,a+é(])
0k L >~ = l o
C0,0{([) Cn.,a%-»é (])

The proof is complete. []

In order to treat the case where Dg(z) has zeros in Rez > 0, we employ the function

(210) Py(1) = Jar1®(t) = Ju®(t) = /01 s*P(st)ds = ta,lu ./Ot s*P(s)ds.
We pick out sowme properties of ®,(1): |
Lemma 2.7. Lct Rea > 0.
(i) If ® € L'0,1] then ®, € LY[0,1]. Moreover
(2.11) (z —a)D¢,(2) = —(Do(z) — Do(a)) (Rez>0).
In particular. v
(2.12) Do(a) =0 = Dg,(2) = —(2 —a)'De(2) (Rez>0).
(i1) Assume that ®,09 € L'[0,1]. Then
(2.13) 0P, =D — (a+ 1)D,.
Moreover ‘
(2.14) 0d, = (6P),.

Proof. (i) By (2.10), we have

! t dt ! a ! Rea | ! dt
Avmmmggwﬂ%wnmmmagw D(s)lds [ ey < oo

This shows that ®, € L'[0,1]. Similarly we get (2.11).
(ii) A simple computation yields (2.13). Integrating by parts we have

1—f““@mwzém—9+lf¢w@wz@m—w+n@ﬁy

(et Jo terl Jo o

Combining this with (2.13) we obtain (2.14). O

(0®),(1)

Lemma 2.7 leads to:
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Lemma 2.8. Assume that ® satisfies the conditions (I),-(II),, in Theorem 2.2, and let
ary...,an be zeros of De(z) in Rez > 0. Then Pgiayay sotisfies the conditions (D n-
(I1)py n i Theorern 2.2. '

Proof. We shall prove the lemma by induction with respect to N. By means of (2.13) and
(2.14), one can obtain

0" Dy, = 0" — (ag + 1)(0"D)a, = AL(1 = 177" + Ry,

where 12 (1) 1= R(t) — (a; 4+ 1)(0"®),,. As is easily checked, R, (t) satisfies (2.4) if we replace
p by min (p, 6), and » by min (1, ¢). This shows that ®,, satisfies (I),41. By the assumption
Dg(a;) = 0 we have ®,, (1) = 0. Hence, in view of (2.13), ®,, satisfies (IT),+1. Thus we
have proved the lemma for N = 1.

We now suppose that ®,,...q,, satisfies (1) m-(1Dnm. Then 0™®q, ..., satisfies (I),-(11)n.
Morcover, by (2.9) and (2.12), one can get Dyme, ., (2) = (2 + 1)™(z — ap)te(z —
am) ' Do(2).  Accordingly Dgms, ... (@m1) = 0. This enables us to apply the lemma
for N =1 to 0™®,,...,.. Thus it follows that (6™®,,...q,. )an.,. satisfies (I)yq1-(I1)ny1. Using
(2.14) repeatedly we have (0@, .ap Jamiy = 0" Payamyr, a0d 50, 07 Py, .q,,,, satisfies (1)n41-
(IT),, 1. This shows that ®g,..q,,,, satisfies (Dnimi1-(IDnimi1. O

Combining tools ¢, and ®,(f) we have:

Lemma 2.9. Let 0 < a < 1 — 6 < 1. and assume that ® satisfies (2.8). Let a be a zero of
Do(z) in Rez > 0. Then, for cach nonnegative integer k, Jo, is a bounded linear operator

from CER(I) to C¥*11(]) and satisfics Jo,0-o = —Jo. Namely we have the commutative
dragram: ‘
Jo -
Ck b ],r.y([) Ck.+.170,_+,5([)
9., i
Jo,
Ck‘(x(]) Pa

Proof. By an interchange of the order of integration we have for f € CH(I),

11 v L 11
.]q)(,,f(;L‘):A/O o eyt [ 50 (s)ds = /O s’@(.s)ds‘/'s Flat)dt

Jo , tatl

= 7 /1 s*®(s)ds /I b (T)dr.

JO zs TOT 1

(2.15)

By differentiating this and using the assumption Dg(a) = 0, it follows that

0Js, [ = —Jof +aJe,].
As is readily seen, ®, satisfies (2.8). Hence, by Lemma 2.4, Jof, Jo,f € C**™°(I). This
proves that Jo, f € C*124%(]) Integrating by parts we get for u € C*'1(),

[ L0 = [y o [ ED) gy D)

s TONL Jos  TO s TO x*  (xs)e

Substituting this to (2.15) we conclude that Jo 0 ,u = Do(a)u — Jou = —Jou for u €
C*'1(]). The proof is complete. [J
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We are now in a position to give the

Proof of Theorem 2.2. By the assumption (I)n we obtain

Jo B

where 13(p, ¢) is the beta function. Since B ((€ + z) / 3,6) and [y R(t)t*dt are holomorphic in
Rez > —e and in Re z > —w respectively, the function Dgne(2) is holomorphic in the region
Re z > —min(e, ). Moreover it follows from Stirling’s formula that B ((¢ + z)//3, 8) has the
order O(|z]|7%) as |z| — oo, uniformly in the region mensioned above. Furthermore, by the
cquality [y R(t)t2dt = (z + 1) (R(l) - f5 R’(t)tZ“dt), Jo R(t)t*dt has the order o(|z]|~%)
2| — 00, uniformly in the region mensioned above. Hence, thanks to A # 0, the function
Dgng(z) has at most a finite nummber of zeros aq, ..., ax counted by multiplicity in Re z > 0.
But, by (2.9), we have Dgno(z) = (—1)"(2 + 1)"Dg(z). Therefore Dg(z) has the same zeros
as of Dgne(2). Since, in the case N = 0, Theorem 2.2 is no other than Proposition 2.6, we
let N > 1. | .

By Lemma 2.8, @,,..., satisfies the conditions (I),;n-(II),+n. Moreover, in view of
(2.12), we have Dy, ., (2) = (=1)"(z — a1)™'--- (2 — an) "' De(z), which has no zeros
in Rez > 0. Therefore, by Proposition 2.6, Js,, ., ia an isomorphism of C**(I) onto
CrimeNate(r) for each nonnegative integer i. But, using Lemma 2.9 repeatedly, we obtain
for any uw e C'tNA(T),

r] ' 1
Dyo(2) = A [ 1575711 — )\t + / 1)trdt = B <€+z,(‘>> + / R()#dt,
JO

Jou = —Jp, 040 = (~1)2.]q>a1u2 0_4,0_a,u

2.16 N v
(2.16) e = (D)o OOy,

This situation can be indicated by the following diagram:

o J.
CZ{N’O(([) @

Cz' +n+N,a4-6 ([)

(217)  (=1)V0gy -0y,

\
C‘i.a ( ]) e

oo, 0

N

Since (—1)V0_, - - - 0_,, is surjective, which follows from Lemma 2.3-(ii), we conclude that
Jo: CVV(T) — CHH N s surjective. Moreover the kernel of Ji coincides with that
of the differential operator 6_,,, ---6_,,. Let by, ..., by, be the distinct numbers in {ay, ...,an}
and suppose b, has multiplicity N, (p = 1,2,...,m). Then, as is well known, solution set for
O_ay - 0_q,u= 0 is spanned by N functlons k

];tlb"(log |$|)C (¢=0,1,..,.N,—1; p=1,2,...,m).

Since these functions bclong to C™V*(I) we conclude that dimKerJop = N in the case

the commutative diagram in Prop051t10n 2.6, we complete the proof.
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3. INVERSE BIFURCATION PROBLEM

In this section we discuss the inverse bifurcation problem mentioned in §1. We first recall
the following scheme:

Lemma 3.1. Let XY, Z be Banach spaces, let F' be a CP-map (p > 1) of a neighborhood of
0w X x Y anto Z. and assume (1.2). (1.3). (1.4). Then there are a neighborhood U; X V' of
(0,0) in Xy XY, a neighborhood U of 0 in X. and a CP-diffeomorphism G of Uy x V onto
U such that F ((;(11, Y),y) =0 for eachy € V, x; € Uj.

Proof. Let X, be a complementary closed subspace of X; and set F ((x1,9),z2) = F(x1 +
ra,y). Then I'is a ("P-map of a neighborhood of 0 in (X; X Y) x Xy to Z. By (1.4),
[%.,((0,0),0) is an isomorphism on X, onto Z. Hence, by applying the implicit function
theorem to F', there exist a neighborhood U; x V of (0,0) in X; x Y, a neighborhood U - of
0in X, and a CP-map ¢ of U; x V onto U such that 13’((:1,'1, y), ¢(z1,y)) = 0, and moreover
the derivative of ©(xr1,y) is computed as, for each 7, € X}, €Y,

Plar(0,0) (21, ) = —(F2(0,0) »((0,0),0)(£1,y)

%)
(3.1) = - ,0)|xe)” 1{ (0,0)21 + F,(0,0)y}
= -( ( 0)lx,) " (0,009 € Xy,

due to X; =Kerf7(0,0). We now define G(z1,y) := z; + ¢(x1,y). Then G(z1,y) is a CP-
map of Uy X V onto U and satisfies F'(G(x1,y),y) = 0. From (3.1) we have Gz, 4)(£1,7) =
Ty — (15(0,0)|x,) 71 F,(0,0)y. In view of (1.3) this operator is an isomorphism of X; x VY
onto X. The proof is complete N

For a function spaces setting, let 0 < o < 1/2, let [ := [a,b] be a bounded interval with
a < 0 < b, and introduce the function spaces

(3.2) Xq = { g(h) € CH(I)[g(0) = ¢'(0) =0, sup lg'(k) = g'(h)] < oo},

hkelLhzk |k — h|®
(3.3)
| ' 3/2,, 312,01
Yo = {/‘(”') € C(I) | u(0) = 0,hpd(h) € C(I), sup |[k[*2 1/ (k) — |h[* : V)| ool
: h kel htk |k — hloet1/2

Throughout this section, we assume that the first eigenfunction v;(x) (normalized by
v1(0) = 1) of (1.7) satisfies: (A1) v{(0) < 0, (A2) v{(z) < 0 (0 < z < 1). Under these
assumptions if g and p:= XA — Ay are sufficiently small then the solution v of (1.6) satisfies
lv(x)| < [u(0)] (0 <z < 1). This observation, together with [1, Lemma 3.1], yields:

Lemma 3.2. Let X, Y, be Banach spaces defined in (3.2), (3.3) with 0 < a < 1/2 and
assume (A1), (A2). Then, F defined by (1.9) is a C*'-map of a neighbourhood of (0,0) in
Xo X Yy to Yo, The Fréchet derivative F,(0,0) is written in the form (1.11), and hence is
an isomorphism of Y, onto Y. Moreover I4,(0,0) is written as (1.14) with the function ¥(t)
defined in (1.13).
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We shall apply Theorem 2.2 to Je with ® defined by

lta 12

vi (D (v (1)

(3.4) | (1) = (1) =

relying on the following

Lemma 3.3. Let Y be the function space defined by

K126 (k) — |26 (h) <OO}.

hkel htk |k — h|o+1/2

ﬁgz{ﬂME(%”hﬂ@*¢ﬂ»AQ

Then we have the cornmutative diagram:

Jo .
Cl,a(]) Cl on/z([)
i
h|h|®- { > ’E’ h|h|®
| l
X, Ju
,(0,0)

o
jol

Proof. We define

hkel h#k |k — h|o+o

/-{u e (1) J(0) = [/(0) =0,

An elementary estimmation shows that [hl““ . Ch “‘L‘S(I ) — Eq4 is an isomorphism, provided
that 0 < o <« + 6 < 1. Noting that X, = 17,0, Y, = E.. 1/2, we see that the vertical maps
are isomorphisms. Other assertions are also easily checked. [J

We now introduce the function

N 1 z 7, — ' i
Glz) = [ vila)de (— - md’>

Let us assumne ¢(r) € C?0,1] in addition to (A1), (A2). Then an elementary calculation

shows that ———'1— is expressed as
vi(v] (1))

_1
vy (vy l(t))

where A := (=7(0))""/? and @ is a function in C'[0, 1] N C?[0, 1) satisfying |Q'(¢)] < M(1 —
Q1) < M(1 - )73/ with some positive constant M. Hence it follows from the
same argument as in Theorem 2.2 that (,(z) is holomorphic in Rez > —1 with at most

finitely many zeros on Rez > 7 for each 7 > —1. Since (o(Z) = (4(2 Co(z) for Rez > —1 and

= A(1 =)+ Q(1),
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(q(2) > 0O for any real z > —1, the zeros of (,(z) in Rez > —1 consist of nonreal conjugate
complex numbers. hotmg
(3.5) Gz 4+ a+2) = —v(1)De(2),

we arrive at:

Theorem 3.4. Suppose that q is a real fuﬁcz’;i(m of class C?|0, 1] satisfying (A1), (A2), and
a € (0,1/2) is any number such that

(3.6) C(2) #0 (Rez=a+2).

Let T'(g) be the first bifurcating branch of g defined in §1. Then there exist a neighborhood U
of 0 in X,, and a neighborhood V' of 0 in Y, such that:

(1) For each g € U there is o unique u € V such that the section in a < h < b of the
first bifurcating branch T'(g) coincides with {(A 4+ p(h),h)|a < h < b}. The assignment
w9 — pis a Cl-map from U onto V.

(ii) If ¢,(2) has no zeros in the region Rez > a + 2 then 7 is a C-diffeomorphism of U
onto V.

(iii) If ¢ (=) has zeros oy + iTy,....0m * ity with multiplicities Ny, ..., N,, in the region
Rez > o+ 2. then. by letting X, be 4(Ny + - - - + Ny,)- dimensional subspace of X, spanned
by

Tp— 2

!rrp 2

,)('\'a.,O]h’U” “sir (TpIOg)h' (10g|h|)£1 X[aOhVL COS(TPlOgVI| (loglht){

(3.7) Xjo.pt|1|7?~? sin(7, log |h]) (log |h])", Y[Obhlhl"” % cos(T, log |h])(log |h|)*
(=0, ,N,— 1 p=1,2,..,m),

there is a neighborhood Uy of 0 in Xy and a C'! dzﬁu)mozphzsm G of Uy x V onto U such
that, for (g,pn) € U x V', w(g) = p is equivalent to g = G(xy, p) with x; e Ur.

Proof. 1t is easily checked that ® defined by (3.4) satisfies (I)g in Theorem 2.2 with € = v =
a+3,%=2,06 = p=1/2. Relation (3.5) and assumption (3.6) imply that ® is non-resonant.
Hence, by Theorem 2.2 with k = 1, Jp : C1*(I) — CY*V2(]) is surjective. In view of
(3.5), the zeros by, of Dg(z) in Rez > 0 are written as b, = 0, + i, — o — 2 and therefore
Ker Jo is a 4(N; + - -+ + N,)-dimensional subspace of C**(I) spanned by the functions
X0l 7PE ™2 (log |h))E, X0 |75 ~2"2(log |h]). This, together with Lemmna 3.3, shows
that £4(0,0) : Xo — Y, is surjective and the kernel Ker F,(0,0) is a 4(N; + - + N,)-
dimensional subspace of X, spanned by the functions in (3.7). We now apply Lemina 3.1
with X = X,, Y = Z =Y, to complete the proof. [

Remark.  From the property of (,(z) mentioned above, the assumption (3.6) is satisfied
except for at most finitely many « € (0,1/2).

We wish to point out (without the proof) that any nonnegative multiple of 4 in Theorem
3.4 can be actually realized by a concrete family of Sturm-Liouville operators.
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