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1 Introduction

Let $R$ denote the real line and $E$ a Banach space with norm $|\cdot|$ . If $x$ : $(-\infty, b)arrow E$ , then
the function $x_{t}$ : $(-\infty, 0]arrow E,$ $t\in(-\infty, b)$ , is defined by $x_{t}(\theta)=x(t+\theta),$ $\theta\in(-\infty, 0]$ .
We deal with the linear autonomous functional differential equation with infinite delay in
the Banach space $E$ :

$(\mathrm{A}\mathrm{L})$ $\frac{dx(t)}{dt}=Ax(t)+L(x_{t})$ .

The phase space 3 and some hypotheses in Eq.(AL) are demonstrated in Section 3.
The aim of this paper is to investigate stability properties of the zero solution for

Eq.(AL). Recently, spectral properties of the generator of the solution semigroup to
Eq.(AL) were studied in $[4]$ ( see [5] for the complete proof of these). Moreover, using
these properties, the authors analyzed the stability of the zero solution of some integro-
differential equation. Note that the manner employed in [4] is based upon a concrete
equation. Also, the stability of solutions for a special case of Eq.(AL) with finite delay
was discussed in [9]. Since solution operators of Eq.(AL) form a $C_{0}$-semigroup on $B$ , we
will find stability criteria in the general setting of $C_{0}$-semigroups. Our approach follows
closely that in [9].

On the other hand, there are two concepts for a general $C_{0}$-semigroup $T(t)$ on $E$ :
(1) $T(t)$ is asymptotically stable if $|T(t)x|arrow 0$ as $tarrow\infty$ for every $x\in E$ ;
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(2) $T(t)$ is exponentially asymptotically stable if $||T(t)||arrow 0$ as $tarrow\infty$ .
If $E$ is of finite dimension, then these two concepts are equivalent. In general, if $E$ is of
infinite dimension, these two concepts are different (see [2, 6]).

In the present paper we shall give conditions to ensure the equivalence of these two
concepts when $E$ is of infinite dimensional.

In Section 2, we will get results on asymptotic behavior of a general $C_{0}$-semigroup. In
particular, we show that the asymptotic stability and the exponential asymptotic stability
of a $C_{0}$-semigroup are equivalent under a condition on the growth bound and the essential
growth bound of the $C_{0}$-semigroup.

In Section 3, we will apply the results obtained in Section 2 to find stability crite-
ria of the zero solution for Eq.(AL). Moreover, we give a sufficient condition for the
asynchronous exponential growth of the solution semigroup to Eq.(AL) (see [11]).

In Section 4, the results obtained in Section 3 are illustrated in an integro-differential
equation.

2 Asymptotic behavior of a $C_{0}$-semigroup $T(t)$

Let $T(t)$ be a $C_{0}$-semigroup on $E$ and $A$ its infinitesimal generator throughout this
section. We consider an asymptotic behavior of a $\tau(t),$ $\mathrm{W}\mathrm{h}\mathrm{i}_{\mathrm{C}\mathrm{h}}\cdot \mathrm{i}_{\mathrm{S}}$ concerned with informa-
tions about its essential spectrum. To do so, we will prepare the following lemma, which
is easily shown by induction.

Lemma 2.1 If $x$ belongs to the null space $M:=N((A-\lambda I)^{m}),$ I being the identity, then

$T(t)_{X=}e\lambda t_{\sum^{m-1}\frac{t^{k}}{k!}}(A-\lambda I)^{k}x$ .

The growth bound $\omega_{s}(T)$ , and the essential growth bound $\omega_{\mathrm{e}}(T)$ of $T(t)$ are defined
by

$\omega_{s}(T)$ $:= \lim_{tarrow\infty}\frac{\log||\tau(t)\mathit{1}|}{t}=\inf\frac{\log||T(t)||}{t}t>0$

’
$\omega_{e}(T)$ $:= \lim_{tarrow\infty}\frac{\log\alpha(T(t))}{t}=\inf\frac{\log\alpha(T(t))}{t}t>0$

’

where $||T(t)||$ stands for the operator norm of $T(t)$ and $\alpha(T(t))$ is the measure of non-
compactness of $T(t)$ which is described by the Kuratowskii measure of noncompactness
of bounded sets in $E(\mathrm{c}\mathrm{f}.[10])$ . Then the spectral radius $r_{s}(T(t))$ and the essential spectral
radius $r_{e}(T(t))$ are given as $r_{s}(T(t))=\exp(t\omega_{S}(\tau))$ and $r_{\mathrm{e}}(T(t))=\exp(t\omega_{e}(T))$ . Let $\rho(A)$

be the resolvent set of $A,$ $\sigma(A)$ the spectrum of $A,$ $P_{\sigma}(A)$ the point spectrum of $\mathrm{A},$ $E_{\sigma}(A)$

the essential spectrum of $A$ , and set $N_{\sigma}(A):=\sigma(A)\backslash E_{\sigma}(A)$ . The points in $N_{\sigma}(A)$ are
called normal eigenvalues of $A$ . Recall that, by definition, $\lambda$ is a normal eigenvalue of
$A$ if it is an isolated point of $\sigma(A)$ , the range $R(A-\lambda I)$ is closed and the generalized
eigenspace $M_{\lambda}(A)$ is of finite dimension.
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Then the following relations hold $(\mathrm{c}\mathrm{f}.[10])$ :

(1) $\sup\{^{\Re\lambda:\lambda}\in\sigma(A)\}\leq\omega_{s}(T)$ , $\sup\{^{\Re\lambda:\lambda\in}E_{\sigma}(A)\}\leq\omega_{e}(T)$

and
$\omega_{s}(T)=\max\{\omega_{e}(T), s(A)\}$ ,

where
$s(A):= \sup\{^{\Re}\lambda : \lambda\in N_{\sigma}(A)\}$ .

Put $P_{0}(A)=\{\lambda\in N_{\sigma}(A):\Re\lambda=0\}$ and $R(\mu, A)=(\mu I-A)^{-1}$ .

Proposition 2.2 The following results hold true.
1) The following statements are equivalent.

(i) $\omega_{s}(T)<0$ .
(ii) There are an $\omega_{0}>0$ and a $K\geq 1$ such that

$|T(t)x|\leq I5\mathrm{i}e-\omega_{0}t|X|,$ $t\geq 0,$ $x\in E$ .

(iii) $||T(t)||arrow 0$ as $tarrow\infty$ .
2) Assume that $\omega_{e}(T)<\omega_{s}(T)$ . Then there exist a $\lambda\in C$ and an $x_{0}\in N(A-\lambda I),$ $x_{0}\neq$

$0$ such that $\Re\lambda=\omega_{s}(T)$ and

$|T(t)_{X|}0=e^{\omega_{\mathit{8}}()t}|\tau x_{0}|,$ $t\geq 0$ .

3) Assume that $\omega_{e}(T)<\omega_{s}(T)=0$ . Then the following statements hold.

(i) If $R(\mu, A)$ has a pole of order 1 at $\mu=\lambda$ for all $\lambda\in P_{0}(A)$ , then there is a
constant $H>0$ such that

$|T(t)x|\leq H|x|,$ $t\geq 0,$ $x\in E$ .

(ii) If there is a $\lambda_{0}\in P_{0}(A)$ such that $R(\mu, A)$ has a pole of order $m\geq 2$ at $\mu=\lambda_{0}$ ,
then there exists an $x_{0}\in E$ such that

$|T(t)_{X|}0arrow\infty$ as $tarrow+\infty$ .

Proof. 1) Since the inequality $e^{\omega_{S}(\tau)t}\leq||T(t)||$ holds for $t>0$ , it is easy to show the
assertion 1).

2) Since $\omega_{\mathrm{e}}(T)<\omega_{s}(T)$ , it follows from Theorem 2 in [4] that there is a $\lambda_{0}\in N_{\sigma}(A)$

such that $\Re\lambda_{0}=\omega_{s}(T)$ . Take an $x_{0}\in N(A-.\lambda_{0}I),$ $X0\neq 0$ . By Lemma 2.1 we have
$T(t)_{X}0=e^{\lambda 0t}x0$ , and hence $|T(t)_{X|}0=e^{\omega_{S}()t}|\tau|X_{0}$ .

3) From Theorem 2 in [4] we see that $P_{0}(A)$ is finite; denote it by $\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{q}\}$ . Let
$m_{j}$ be the index of $\lambda_{j}$ , and set $M_{j}=N((A-\lambda_{j}I)m_{j}),j=1,2,$ $\cdots,$ $q$ . Then $E=M\oplus M_{0}$ ,
where $M=M_{1}\oplus M_{2}\oplus,$ $\cdots,$ $\oplus M_{q}$ , and $M_{0}=\mathrm{n}_{j=1}^{q}R((A-\lambda_{j}I)m_{j})$ . Let $P_{i}$ be the projection
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in $E$ such that $P_{j}E=M_{j},$ $(I-P_{i})E=R((A-\lambda_{j}I)^{m_{j}})$ ; and set $P=P_{1}+P_{2}+\cdots+PP=q’ 0$

$I-P$.
(i) By Theorem 3 in [4] we have

(2) $|T(t)P_{0}x|\leq I\mathrm{t}’e-\epsilon t||P0|||x|$

for some $K\geq 1$ and $\epsilon>0$ . Since $P_{j}x\in M_{j}$ and $m_{j}=1,1\leq j\leq q$ , it follows from Lemma
2.1 that $\tau(t)Pi^{X}=e^{\lambda_{J}}{}^{t}P_{j^{X}}$ . Noting that $\Re\lambda_{j}=0$ , we see that

(3) $|T(t)P_{j}x|\leq|P_{j}x|\leq||P_{j}|||x|,$ $t\geq 0,$ $x\in E$ .

Combining(2) and (3) we obtain the following inequality

$|T(t)x|$ $\leq$ $|T(t)Px|+|T(t)P_{0}x|$

$\leq$ $\sum_{j=1}^{q}|T(t)Pjx|+|T(t)P_{0}X|$

$\leq$ $H|x|$ ,

where $H=\Sigma_{j=1}^{q}||P_{j}||+K||P_{0}||$ .
(ii) Let $j$ be an index such that $R(\mu, A)$ has a pole of order $m\geq 2$ at $\mu=\lambda_{j}$ . From

the definition of $M_{j}$ we see that there is a $x_{0}\in M_{j}$ such that ( $A-\lambda_{i^{I)}}m-1X_{0}\neq 0$ . Since
$m\geq 2$ , it follows from Lemma 2.1 that

$|T(t)x_{0}|$ $=$ $| \sum_{k=^{0}}^{1}\frac{t^{k}}{k!}m-(A-\lambda_{j}I)kx_{0}|$

$=$ $t^{m-1}| \sum_{0k=}^{m}\frac{1}{k!t^{m-1-k}}-1(A-\lambda jI)^{k}X_{0}|$

$arrow\infty(tarrow\infty)$ .

Therefore the proof is complete.

We note that $\tau(t)X0,$ $X0\in D(A)$ , is a solution of Eq.(AL) with $L=0$ ; that is,

(A) $\frac{dx(t)}{dt}=Ax(t)$ .

Definition
1) $T(t)$ (or the zero solution of $\mathrm{E}\mathrm{q}.(\mathrm{A})$ ) is said to be stable if for any $\epsilon>0$ there exists

a $\delta>0$ such that if $|x|<\delta,$ $x\in E$ , then $|T(t)x|<\epsilon$ for all $t\in[0, \infty)$ .
2) $T(t)$ (or the zero solution of $\mathrm{E}\mathrm{q}.(\mathrm{A})$ ) is said to be $\mathrm{a}\mathrm{s}\mathrm{y}\mathrm{m}\mathrm{p}\dot{\mathrm{t}}$ otically stable if for any

$x\in E,$ $|T(t)x|arrow 0$ as $tarrow+\infty$ .
3) $T(t)$ (or the zero solution of $\mathrm{E}\mathrm{q}.(\mathrm{A})$ ) is said to be exponentially asymptotically

stable if there are an $\omega_{0}>0$ and a $K\geq 1$ such that

$|T(t)x|\leq Ke^{-\omega_{0}t}|X|$ , $t\geq 0$ , $x\in E$ .
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Theorem 2.3 $As\mathit{8}ume$ that $\omega_{e}(T)<\omega_{s}(T)$ . Then the following statements are equiva-
lent.

1) $T(t)$ is asymptotically stable.
2) $T(t)$ is exponentially asymptotically stable.
3) $F_{\mathit{0}^{m},}$ any $\lambda\in P_{\sigma}(A),$ $\Re\lambda$ is negative.

Proof. We will derive the assertion 3) from the assertion 1), because the other parts are
obvious. To do so, it suffices to show that the inequality $\omega_{s}(T)<0$ holds. Assume, for a
contradiction, that $\omega_{s}(T)\geq 0$ . Since $\omega_{e}(T)<\omega_{s}(T)$ , from the assertion 2) in Proposition
2.2 it follows that there exist a $\lambda\in C$ and an $x_{0}\in N(A-\lambda I),$ $x_{0}\neq 0$ , such that
$\Re\lambda=\omega_{s}(T)$ and

$|T(t)_{X|=}0\{$
$e^{\omega_{\mathit{8}}()t}|\tau x_{0}|$ , if $\omega_{s}(T)>0$

$|x_{0}|$ , if $\omega_{s}(T)=0$ .

This contradicts the assertion 1). Hence the proof is $\mathrm{c}o$mplete.

Remark If $\omega_{e}(T)=\omega_{s}(T)$ , then, in general, the two concepts of asymptotic stability
and exponential asymptotic stability for $C_{0}$-semigroup $T(t)$ are different. Of course, if
$T(t)$ is a $C_{0}$-compact semigroup, the these two concepts are equivalent.

Theorem 2.4 Assume that $\omega_{\mathrm{e}}(T)<\omega_{s}(T)=0$ . Then the following statements are
equivalent.

1) $T(t)$ is stable.
2) $R(\mu, A)$ has a pole of order 1 at $\mu=\lambda$ for all $\lambda\in P_{0}(A)$ .
3) There is an $M\geq 1$ such that $||T(t)||\leq M$ for all $t\in[0, \infty)$ .

Proof. The statements 1) and 3) are equivalent by definition of the stability. From
the assumption we see that $P_{0}(A)$ consists of finite normal eigenvalues of $A$ . Hence if
$\lambda_{0}\in P_{0}(A),$ $\lambda_{0}$ is a pole of $R(\mu, A)([10])$ . We will prove the assertion 2) from the assertion
1). Now, assume that the assertion 2) does not hold. Then there is $\lambda_{0}\in P_{0}(A)$ such that
$R(\mu, A)$ has a pole of order $m\geq 2$ at $\mu=\lambda_{0}$ . From the assertion 3) in Proposition 2.2
there is an $x_{0}\in E$ such that $|T(t)_{X|}0arrow\infty$ as $tarrow\infty$ , which contradicts the assumption.
The remaining parts are easily shown by Proposition 2.2.

3 Stability of solutions in Eq.(AL)

In this section we will apply the results obtained in the previous section to Eq.(AL).
Let $B$ be a Banack $\circ 3\urcorner\wedge\mu.\mathrm{e}\wedge$ consisting of some functions mapping $(-\infty, 0]$ into $E$ ; the norm
in $\mathcal{B}$ is $\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}_{\lrcorner}^{+}\mathrm{C}\mathrm{c}^{1}’)^{\mathrm{T}}-;,,$

$|\cdot|$ . For a complex number $\lambda$ and for an $x\in E$ we define a function
$\epsilon_{\lambda}\otimes x:(-\mathrm{d}\mathrm{o},$ $\mathrm{C}-\lrcorner(\ddagger 7\lrcorner$ by $(\epsilon_{\lambda}\otimes x)(\theta)=e^{\lambda\theta}x,$ $\theta\in(-\infty, 0]$ . We assume that the $\mathrm{r}^{1_{-7\kappa}}.\wedgearrow\urcorner.\perp r_{-}\not\supset,\mathrm{c}\mathrm{e}$

$B$ satisfies the following axioms (B-1,2,3).
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(B-1) If a function $x$ : $(-\infty, \sigma+a)arrow E$ is continuous on $[\sigma, \sigma+a)$ and $x_{\sigma}\in B$ , then
(i) $xr.3\vee J$ for all $t\in[\sigma, \sigma+a)$ and $x_{t}$ is continuous in $t\in[\sigma, \sigma+a)$ ;
(ii) $- \mathrm{F}^{-\prime!_{X(}}’)t|-\leq|x_{t}|\leq I\mathrm{f}(t-\sigma)\sup\{|X(S)| : \sigma\leq s\leq t\}+M(t-\sigma)|X\sigma|$

for $\mathrm{a}$] $\underline{!}-\vee‘\sim-\iota \mathrm{f}\sigma,\sigma+a$ ), where $H>0$ is constant, $IC$ : $[0, \infty)arrow[0, \infty).:_{\mathrm{S}}$, co-otinuous,
$M:[0, \infty)arrow[0, \infty)$ is locally bounded and they are independent of $x$ .

(B-2) If $\{\phi^{n}\}$ is a Cauchy sequence in $B$ , and if the sequence $\{\phi^{n}(\theta)\}\prime^{\backslash },\mathrm{c}^{\gamma}1\mathrm{V}\mathrm{e}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{s}$ to
a function $\phi(\theta)$ uniformly on every compact interval of $(-\infty, 0]$ , then $\phi$ lies in $B$ and
$\lim_{narrow\infty}|\phi^{n}-\phi|=0$ .

We introduce the trivial $C_{0}$-semigroup $S(t)$ on $B$ defined as

$[S(t)\phi](\theta)=\{$
$\phi(0)$ $t+\theta\geq 0$

$\phi(t+\theta)$ $t+\theta<0$ .

Let $S_{0}(t)$ be the restriction of $S(t)$ to the subspace $B_{0}=\{\phi\in B : \phi(0)=0\}$ . Then the
equality $\omega_{e}(S_{0})=\omega_{s}(S_{0})\mathrm{h}\mathrm{o}\mathrm{l}\mathrm{d}\mathrm{S}(\mathrm{C}\mathrm{f}.[4])$.

(B-3). There exists a constant $\gamma_{0}$ such that $\epsilon_{\lambda}\otimes x\in B$ for $\Re\lambda>\gamma_{0}$ and $x\in E$ , and
that

$||\epsilon_{\lambda}||$ $:= \sup\{||\epsilon_{\lambda}\otimes x|| : x\in E, |x|\leq 1\}$

is finite for each $\lambda$ with $\Re\lambda>\gamma_{0}$ , and bounded for $\Re\lambda>\gamma_{1}$ for some $\gamma_{1}\geq\gamma_{0}$ .
We call the constant $\gamma_{0}$ in (B-3) the abscissa of the exponent of the space $B$ . For the

exponential functions as elements of $B$ , we have the following result : If $\Re\lambda>\omega_{s}(S_{0})$ ,
then $\epsilon_{\lambda}$ lies in $\mathcal{L}(E, B),\mathrm{t}\mathrm{h}\mathrm{e}$ Banach space of bounded linear operators on $E$ into $B$ , and it
is holomorphic for $\lambda$ . Hence $\gamma_{0}\leq\omega_{s}(S_{0})=\omega_{e}(S_{0})(\mathrm{c}\mathrm{f}.[4],[5])$ .

Let $C_{00}$ be the set of continuous functions mapping $(-\infty, 0]$ into $E$ , with compact
support. The following axiom for $B$ is used later on.

(C) If a uniformly bounded sequence $\{\phi^{n}(\theta)\}$ in $C_{00}$ converges to a function $\phi(\theta)$

uniformly on every compact set of $(-\infty, 0]$ , then $\phi\in B$ and $\lim_{narrow\infty}|\phi^{n}-\phi|=0$ .

Let $B=E\cross \mathcal{L}_{\gamma}$ be the quotient space with respect to the seminorm defined by

$|| \phi||=|\phi(0)|+\int_{-\infty}^{0}e^{-}|\gamma\theta\phi(\theta)|d\theta$.

for a measurable function $\phi$ : $(-\infty, \mathrm{O}]arrow E$ such that $e^{-\gamma\theta}|\phi(\theta)|$ is integrable on $(-\infty, 0]$ .
Then this space is a Banach space satisfying (B-1,2,3), $\gamma$ is the abscissa of the ex-

ponent, and $\omega_{e}(S_{0})=\omega_{s}(S_{0})=\gamma$ . $.\mathrm{I}\mathrm{f}\gamma<0$ , then $B$ is a uniform fading memory space
$(\mathrm{c}\mathrm{f}.[1])$ .

According to [1], we have the following facts for the phase space $B$ with an additional
axiom (C):
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(1) $B$ is a fading memory space if and only if $S_{0}(t)$ is asymptotically stable.
(2) $B$ is a uniform fading memory space if and only if $s_{0}(t)$ is exponentially asymp-

totically stable.

From the above facts we see that two concepts of the asymptotic stability and the expo-
nential asymptotic stability of a $C_{0}$-semigroup are, in general, different.

We assume that Eq.(AL) always satisfies the following hypotheses :

(H-1) $A$ : $D(A)\subset Earrow E$ is the infinitesimal generator of a $C_{0}$-compact semigroup
$T(t),$ $t\geq 0$ , on $E$ ;

(H-2) $L:Barrow E$ is a bounded linear operator.

From the hypotheses (H-l)and (H-2) we see that a mild solution of Eq.(AL) through
$(0, \phi),$ $\phi\in B$ , exists uniquely on $[0, \infty)(\mathrm{c}\mathrm{f}.[5],[7])$ . Denote by $u(t)$ or $u(t, \phi)$ this mild
solution. It has the following properties:

(i) $u_{0}=\phi\in B$ and $u$ is continuous on $[0, \infty)$ .

(ii) $u(t)=T(t) \phi(0)+\int_{0}^{t}T(t-s)L(u_{s})ds$ , $t\geq 0$ .

Define the solution operator $U_{L}(t)$ on $B$ by

$(U_{L}(t)\phi)(\theta)=u(t+\theta, \phi)$ , $\theta\in(-\infty, 0]$ .

By using the axioms of the phase space, we see that $U_{L}(t)$ is a $C_{0}$-semigroup on $B$ . In the
particular case that $L\equiv 0,$ $U_{0}(t)$ is given by

$(U_{0}(t)\phi)(\theta)=\{$

$T(t+\theta)\phi(0)$ $-t<\theta\leq 0$

$\phi(t+\theta)$ $\theta\leq-t$ .

Denote by $A_{L}$ and $A_{0}$ the infinitesimal generators of $U_{L}(t)$ and $U_{0}(t)$ , respectively, and
set $I\zeta_{L}(t)=U_{L}(t)-U_{0}(t)$ . To characterize the point spectrum $P_{\sigma}(A_{L})$ of $A_{L}$ , we need
the characteristic operator $\triangle(\lambda)$ given as

(4) $\triangle(\lambda)x=(\lambda I-A-L_{\lambda})x$ , $x\in D(A)$ ,

where $L_{\lambda}x=L(\epsilon_{\lambda}\otimes x)$ . It is a closed linear operator which is well defined for $\Re\lambda>\gamma_{0}$ .
The following two lemmas can be found in $[4],[5],[8]$ .

Lemma 3.1 If $\Re\lambda>\gamma_{0}$ , then $\lambda\in P_{\sigma}(A_{L})$ if and only if the null space $N(\triangle(\lambda))$ is
nontrivial.

If the original semigroup $T(t)$ is a $C_{0}$-compact semigroup on $E$ or $L$ is a compact
operator, then $I\mathrm{f}_{L}(t)$ is a compact operator for $t>0$ . This implies that $\alpha(U_{L}(t))=$

$\alpha(U_{0}(t.))$ for $t>0$ . From this we can obtain the the following estimate of the essential
growth bound of $U_{L}(t)$ .
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Lemma 3.2 If $T(t)$ is a $C_{0}$ -compact semigroup on $E$ and if $B$ satisfies the axiom $(C)$ ,
then

$\omega_{e}(U_{0)}=\omega_{e}(U_{L})\leq\hat{\omega}_{e}(S_{0}):=\lim_{tarrow\infty}\frac{1}{t}\log\varlimsup_{st0}arrow-\alpha(s_{0(s)})$ .

We remark that $\omega_{e}(S_{0})\leq\hat{\omega}_{e}(S_{0})$ . In fact, if $0<\epsilon<t$ , then

$\alpha(S_{\mathrm{o}(t))}\leq\alpha(s_{0}(t-\epsilon))\alpha(S_{0}(\epsilon))\leq\sup_{t-\epsilon\leq s<t}\alpha(S\mathrm{o}(S))||S_{\mathrm{o}(}\epsilon)||$.

Since $||S_{0}(t)||$ is locally bounded for $t\geq 0$ , we have the remark.
Using Lemma 3.2, we have the following result.

Theorem 3.3 Let $T(t)$ be a $C_{0}$ -compact semigroup on $E$ and $B$ a uniform fading memory
space. Assume that $\hat{\omega}A^{s_{0)}}<\omega_{s}(U_{L})$ . Then the following statements are equivalent.

1) The zero solution of Eq. $(AL)i_{\mathit{8}}$ asymptotically stable.
2) The zero $\mathit{8}oluti_{\mathit{0}}n$ of Eq. $(AL)$ is exponentially asymptotically stable.
3) For any $\lambda$ such that $\Re\lambda>\gamma_{0}$ and $N(\triangle(\lambda))$ is nontrivial, $\Re\lambda$ is negative.

Proof. From the assumptions in the theorem and Lemma 3.2 it follows that $\omega_{e}(U_{0)}=$

$\omega_{e}(U_{L})\leq\hat{\omega}_{e}(So)<\omega_{s}(U_{L})$ . Hence $\omega_{e}(U_{L})<\omega_{S}(U_{L})$ . Therefore, Theorem 3.3 follows from
Theorem 2.3.

Put $P_{\sigma}(\triangle)=$ { $\lambda\in C$ : $N(\triangle(\lambda))$ is nontrivial}, $P_{0}(\triangle)=\{\lambda\in P_{\sigma}(\triangle) : \Re\lambda=0\},$ $D=$

$\{\mu\in C:\Re\mu>\hat{\omega}_{e}(s_{0})\}$ and $D_{-}=D\backslash (P_{\sigma}(\triangle)\cup P_{\sigma}(A))$ .

Lemma 3.4 Let $T(t)$ be a $C_{0}$ -compact semigroup on $E$ and let $B$ satisfy the axiom $(C)$ .
Assume that $\hat{\omega}_{e}(S_{0})<\omega_{s}(U_{L})$ .

1) For every $\lambda\in D$-the following relation holds :

(5) $R(\lambda, A_{L})\phi=R(\lambda, A_{0})\phi+\epsilon_{\lambda}\otimes\triangle(\lambda)^{-1}L(R(\lambda, A_{0})\phi)$, $\phi\in B$ .

2) If $\triangle(\lambda)^{-1}$ has a pole of order $n$ at $\lambda_{0}$ in $(P_{\sigma}(\triangle)\backslash P_{\sigma}(A))\cap D$ , then $R(\lambda, A_{L})$ has a
pole of at most order $n$ at $\lambda_{0}$ .

Proof. From the proof of Theorem 3.3 we have $\omega_{e}(U_{L})\leq\hat{\omega}_{e}(S_{0})<\omega_{s}(U_{L})$ . Moreover,
the abscissa $\gamma_{0}$ of the exponent of the phase space $B,$ $\omega_{e}$ (So) and $\omega_{s}(S\mathrm{o})$ are related
as $\gamma_{0}\leq\omega_{e}(s_{0})=\omega_{s}(S_{0})$ . Let $\epsilon$ be any number such that $0<\epsilon<\omega_{S}(U_{L})-\hat{\omega}(\mathrm{e}s0)$ .
Put $D(\epsilon)=\{\mu\in C : \Re\mu>\hat{\omega}_{e}(S\mathrm{o})+\epsilon\}$ and $D_{-}(\epsilon)=D(\epsilon)\backslash (P_{\sigma}(\triangle)\cup P_{\sigma}(A))$ . In
view of the relation (1), we see that $P_{\sigma}(A_{0)}$ and $P_{\sigma}(A_{L})$ consist of at most finite normal
eigenvalues in $D(\epsilon)$ . Of course, $P_{\sigma}(A)=P_{\sigma}(A_{0})$ and $P_{\sigma}(A_{L})=P_{\sigma}(\triangle)$ , because of Lemma
3.1. Hence, $R(\lambda, A),$ $R(\lambda, A_{0})$ and $R(\lambda, A_{L})$ are holomorphic in $D_{-}(\epsilon),\mathrm{a}\mathrm{n}\mathrm{d}$ so $LR(\lambda,$ $A_{0)}$

and $L^{\nu,/}\neg\lambda\backslash ’ AL$) are also holomorphic in $D_{-}(\epsilon)$ . Notice that $\triangle(\lambda)$ is well defined on $D_{-}(\epsilon)$ .
Using the above facts and the proof in [5, Theorem 4.2], we have
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(6) $R(\lambda, A_{L})\phi=R(\lambda, A_{0})\phi+\epsilon_{\lambda}\otimes R(\lambda, A)L(R(\lambda, A_{L})\phi)$ , $\phi\in B$ , on $D_{-}(\epsilon)$

and

(7) $\triangle(\lambda)R(\lambda, A)L(R(\lambda, A_{L})\phi)=L(R(\lambda, A0)\phi)$, $\phi\in B$ , on $D_{-}(\epsilon^{\backslash }$

If $\lambda\in D(\epsilon)\backslash P_{\sigma}(\triangle)$ , then $\triangle(\lambda)^{-1}$ exists. Hence for $\lambda\in D_{-}(\epsilon)$ the relation (7) becomes

(8) $R(\lambda, A)L(R(\lambda, A_{L})\phi)=\triangle(\lambda)^{-1}L(R(\lambda, Ao)\phi)$ , $\phi\in B$ .

Therefore, combining the relation (6) with (8), the relation (5) holds for all $\lambda\in D_{-}(\epsilon)$ .
Since $\epsilon$ is arbitrary, the proof of the assertion 1). is completed. The assertion 2) is easily
shown by the relation (5), because $\lambda_{0}$ is a pole of $R(\lambda, A_{L})$ ( $\mathrm{c}\mathrm{f}.[10$ , Proposition 4.11]).

Using the above lemma and Theorem 2.4, we have the following result.

Theorem 3.5 Let $T(t)$ be a $C_{0}$ -compact semigroup on $E$ and $B$ a uniform fading memory
space. Assume that $P_{\sigma}(A)\cap P_{0}(\triangle)=\emptyset_{f}$ and $\omega_{S}(U_{L})=0$ . If $\triangle(\mu)^{-1}$ has a pole of order 1
at $\mu=\lambda$ for all $\lambda\in P_{0}(\triangle)$ , then the zero solution of Eq. $(AL)$ is stable.

Recall that a $C_{0}$-semigroup $H(t)$ on $E$ is said to have asynchronous exponential growth
with intrinsic growth constant $\lambda_{0}\in R$ provided there exists a nonzero finite rank operator
$P_{0}$ in $E$ such that $\lim_{tarrow\infty}e^{-\lambda}0tH(t)=P_{0}(\mathrm{S}\mathrm{e}\mathrm{e}[11])$ . Put $P\sigma_{0}(\triangle)=\{\mu\in P_{\sigma}(\triangle)$ : $\Re\mu=$

$\sup\{\Re\lambda : \lambda\in P_{\sigma}(\triangle)\}\}$ . Then the following result holds.

Theorem 3.6 Let $T(t)$ be a $C_{0}$ -compact semigroup on $E$ and $B$ satisfies the axiom $(C)$ .
Assume that $\hat{\omega}_{\mathrm{e}}(S_{0})<\omega_{s}(U_{L})$ and that $\lambda_{0}$ in $R$ satisfies the following conditions:

(1) $P\sigma_{0}(\triangle)=\{\lambda_{0}\}$ and $\lambda_{0}$ belongs to the r.esolvent $\mathit{8}et$ of $A$ .
(2) $\lambda_{0}$ is a simple pole of $\triangle(\lambda)^{-1}.\cdot$

Then the solution semigroup $U_{L}(t)$ of Eq. $(AL)$ has asynchronous exponential growth
with intrinsic growth constant $\lambda_{0}\in R$ .

The proof follows immediately from Proposition 2.3 in [11], Lemma 3.1, Lemma 3.2
and Lemma 3.4.

4 An example

Let $E=L^{2}([0, \pi], c)$ , the set of square integrable functions on $[0, \pi]$ . Consider the
equation

(9) $u’(t)=Au(t)+b \int_{-\infty}^{t}e^{-}-u(c(ts)S)d_{S}$,
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where $A$ is defined as $Af=f”$ for $f\in E$ such that $f$ is continuously differentiable, the
derivative $f’$ is absolutely continuous, $f”\in E$ , and that $f(0)=f(\pi)=0$ . It is well known
that $A$ is a closed linear operator with dense domain. It is self adjoint, $\mathrm{t}\mathrm{h}\epsilon 3_{\check{\mathrm{P}}^{2}}..’ p\mathrm{C}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{m}$ of
$A$ $\mathrm{c}\mathrm{o}\mathrm{n}^{\zeta}.:\llcorner\backslash \mathrm{t}\cap \mathrm{s}$ of only point spectrum $\lambda=-n^{2},$ $n=1,2,$ $\cdots,$ $R(\lambda, A)$ has a ”.. $\mathrm{Q}^{1}’ \mathrm{e}\supset \mathrm{f}$ order 1
at these points, and $|R(\lambda, A)|\leq 1/|\lambda+1|$ for $\Re\lambda>-1$ . Hence $A$ is thc lnfinitesimal
generator of a $C_{0}$-semigroup $T(t)$ such that $|\tau(t)|\leq e^{-i}$ for $t\geq 0$ . Furthermore, $T(t)$ is a
$C_{0}$-compact semigroup.

Set
$L( \phi)=b\int^{0}-\infty e^{\mathrm{c}}\phi\theta(\theta)d\theta$ .

Then we have that $|L(\phi)|\leq|b|||\phi||$ for $\phi\in E\cross \mathcal{L}_{-C}$ . Hence, we will take $B=E\cross \mathcal{L}_{-C}$

as the phase space of $\mathrm{E}\mathrm{q}.(9)$ . We note that if $c>0$ , then $B$ is a uniform fading memory
space. The solution semigroup of $\mathrm{E}\mathrm{q}.(9)$ and its infinitesimal generator are denoted by
$U_{L}(t)$ and $A_{L}$ , respectively.

The characteristic operator $\triangle(\lambda)$ , given by (4), now becomes

$\triangle(\lambda)f=\lambda f-Af-b\int^{0}-\infty)c+\lambda\theta e^{(}d\theta f$ $f\in D(A)$ , $\Re\lambda>-C$ .

If we set $h(\lambda)=\lambda-b/(c+\lambda)$ for $\Re\lambda>-C$ , then we can write $\triangle(\lambda)=h(\lambda)I-A$ . Moreover,
the equation $h(\lambda)=-n^{2}$ has the roots $\kappa_{n}=[-(C+n)2-\sqrt{D}]/2,$ $\lambda_{n}=[-(C+n)2+\sqrt{D}]/2$ ,
where $D=(c+n^{2})^{2}-4(Cn^{2}-b)$ .

Define a curve $b=\chi(c)$ in the c-b plane by

$\chi(c)=\{$
$0$ for $c\leq 1$

$-(c-1)^{2}/4$ for $c>1$ ,

and divide the c-b plane into the subregions as

$\Pi_{1}$ : $b>\chi(C),$ $-\infty<C<\infty$ , $\Pi_{2}$ : $b\leq x(C),$ $c>1$ , $\Pi_{3}$ : $b\leq\chi(c),$ $c\leq 1$ .

The following result can be found in [4].

Lemma 4.1 The abscissa of the exponent of the phase space $B$ , and the growth bound
and the essential growth bound of $U_{L}$ become as follows:

$\hat{\omega}_{e}(S_{0})=\omega_{e}(s_{\mathit{0}})=\omega s(So)=\omega_{e}(U_{L})=-c=\gamma_{0}$ ,

$\omega_{s}(U_{L})=$

$\lambda_{1}$ if $(c, b)\in\Pi_{1}$

$-(c+1)/2$ if $(c, b)\in\Pi_{2}$

$-C$ if $(c, b)\in\Pi_{3}$ .
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Proposition 4.2 1) The zero solution of Eq. (9) is exponentially asymptotically stable if
and only if $c>0$ and $b<c$ .

2) Assume that $(c, b)\in\Pi_{1}$ and $c>0$ . The following statements are equivalent.
(i) The zero solution of Eq. (9) is asymptotically stable.
(ii) $\mathit{1}^{\ulcorner\urcorner}he$ zero solution of Eq. (9) is exponentially asymptotically stable.
(iii) $b<c$ .
3) Assume that $(c, b)\in\Pi_{2}$ . $Then_{f}$ the zero solution of Eq. (9) is asymptotically stable

if and only if it $i_{\mathit{8}}$ exponentially asymptotically stable.

Proof. The assertion 1) was obtained in [4]. If $(c, b)\in\Pi_{1},$ $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}-c<\lambda_{1}$ . This implies
the inequality $\omega_{e}(U_{L})<\omega_{S}(U_{L})$ , because of Lemma 4.1. If $b<c$ , then $\lambda_{1}$ is negative.
Hence the assertion 2) follows from Lemma 4.1 and Theorem 3.3. Since $(c, b)\in\Pi_{2}$ ,
we have $c>1$ , from which it follows that the inequality $\omega_{e}(U_{L})<\omega_{S}(U_{L})$ holds. Thus
Theorem 3.3 implies the assertion 3).

The following result was already shown in [4] and its proof is strongly dependent on
the concrete form of $\mathrm{E}\mathrm{q}.(9)$ . In contrast with it, our manner is based on Theorem 3.5.

Proposition 4.3. Assume that $c>0$ . Then the zero solution of Eq. (9) is stable but not
asymptotically stable if and only if $b=c$.

Proof. Assume that the zero solution of $\mathrm{E}\mathrm{q}.(9)$ is stable but not asymptotically stable.
Since $c>0$ , it follows from 1) in Proposition 4.2 that $b\geq c$ . If $b>c$ , then $\lambda_{1}>0$ . Thus
$e^{\lambda_{1}t}\leq||U_{L}(t)||arrow\infty$ as $tarrow\infty$ . Hence $b=c$.

Next, we assume that $b=c$ . Then $\lambda_{1}=0$ . Thus we $\mathrm{h}\mathrm{a}\mathrm{V}\mathrm{e}-c=\omega_{e}(U_{L})<\omega_{S}(U_{L})=0$

from Lemma 4.1. Of course, $P_{\sigma}(A)\cap P_{0}(A_{L})=\emptyset$ . For the characteristic operator $\triangle(\lambda)=$

$h(\lambda)I-A$ , we see that $N(\triangle(\lambda_{1}))\neq\{0\}$ , and $P_{0}(A_{L})=\{\lambda_{1}\}$ . Moreover, since $T(t)$ is a
$C_{0}$-compact semigroup, there exists an $\epsilon_{0},0<\epsilon_{0}<\omega_{S}(U_{L})-\hat{\omega}e(s0)$ such that $\lambda_{1}$ is a
unique pole of $\triangle(\mu)^{-1}$ within $H(\epsilon_{0}):=\{\mu\in C:\Re\mu\geq-\epsilon_{0}\}$ .

Finally, we shall show that $\lambda_{1}$ is a simple pole of $\triangle(\mu)^{-1}$ . Set $g(w)=R(w, A)$ . Then
$g(h(z))=\triangle(Z)^{-1}$ and $h(0)=-1$ . Since $g(w)$ has a pole of order 1 at $w=-1$ , we have
$g(w)=\hat{g}(w)/(w+1)$ , where $\hat{g}(w)$ is holomorphic at $w=-1$ and $\hat{g}(-1)\neq 0$ . Hence we
have

$g(h(z))= \frac{\hat{g}(h(Z))}{h(z)+1}=\frac{\hat{g}(h(\mathcal{Z}))(Z+c)}{z(_{Z+C}+1)}$ ,

from which $g(h(z))$ has a pole of order 1 at $z=0$ . Thus $\lambda_{1}(=z=0)$ is a simple pole of
$\triangle(z)^{-1}$ . Therefore the proof of the theorem follows from Theorem 3.5.

Proposition 4.4 Assume that $b=c>0$ . Then the solution semigroup $U_{L}(t)$ of Eq. (9)
has asynchronous exponential growth with intrinsic growth constant $0\in R$ .

The proof follows immediately from Theorem 3.6 and the proof of $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{p}\mathrm{o}\mathrm{s}\prime 1\mathrm{t}_{1}\mathrm{o}\mathrm{p}_{-}4.3$ .
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