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A $\mathrm{b}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{C}\mathrm{t}$ . In this paper, we will introduce a complete (and an incomplete) duck
solution; a singular limit of the du&solution for a parameter. Then, we will give the
explicit form of the solution w..hich do.ae not have the property of $S^{1}$ under certain
conditions.

1. INTRODUCTION.
In 1990, $\mathrm{B}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{t}[4]$ showed how to construct the explicit duck solutions (or sim-

ply ducks). Furthermore, he showed, in his paper, that if the difference of each
the winding numbers associated with the ducks is more than 3/2, there exists a
duck which is not $S^{1}$ ( $S^{1}$ is a smoothness class in nonstandard analysis). However,
this solution has not been constructed explicitly yet. In this paper, we would con-
struct the above solution in this framework. In Section2 and Section3, introducing
a parameter in the differential equations, an incomplete duck and a complete duck
without $S^{1}$ are constructed explicitly as a singular limit of the duck for the pa-
rameter. The explicit form of the complete duck is the exact solution in the first
approximation of the ”local model” ([3], [6]).

2. PRELIMINARIES.
Let consider a constrained system(2.1):

$dx/dt=f(x,y, Z, u)$ ,
(2.1) $dy/dt=g(x,y, z,u)$ ,

$h(x, y, z,u)=0$ ,

where $u$ is a parameter (any fixed) and $f,g,h$ are defined in $R^{3}\cross R^{1}$ . Furthermore,
let consider the singular perturbation problem of the systen (2.1):

$dx/dt=f(X,y, z,u)$ ,
(2.2) $dy/dt=g(x,y, z,u)$ ,

$\epsilon dz/dt=h(_{X}, y, z,u)$ ,
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where $\epsilon$ is infinitesimally small. . $\cdot$

$\iota$

.

We assume that the system (2.1) satisfies the following conditions (A $1$ ) $-(A5)$ :
$(A1)f$ and $g$ are of class $C^{1}$ and $h$ is of class $C^{2}$ .
$(A2)$ The set $S=\{(x,y, z)\in R^{3} : h(x,y, z, u)=0\}$ is a 2-dimensional differen-

tiable manifold and the set $S$ intersects the set ., . $\iota_{\sim}$.. ,\sim $.

$T=\{(x,y, z)\in R^{3} : \partial h(x,y, z,u)/\partial z=0\}$ transversely so that the set $PL=$
$\{(x,y, z)\in S\cap T\}$ is a 1-dimensional differentiable manifold. .

$(A3)$ Either the value of $f$ or that of $g$ is nonzero at any point $p\in PL$ .
Let $(x(t,u),y(t,u),$ $z(t,u))$ be a solution of (2.1). By differentiating $h(x,y, z,u)$

with respect to the time $t$ , the following equation holds:

(2.3) $h_{x}(x,y, z,u)f(x,y, z,u)+h_{\mathrm{V}}(X,y,Z,u)g(X,y, z,u)+h_{z}(x,y, z,u)dZ/dt=0$,

where $h_{i}(X_{\}}y)z,u)=\partial h$ ($x,y,$ $z$ , u)/&, $i=x,y,$ $z$ . The above system (2.1) becomes
the following system: .

.

$dx/dt=f(x,y,z,u)$ ,
$dy/dt=g(x,y, z,u).$ ’(2.4)
$dz/dt=-\mathrm{f}h_{x}(x,y, Z,\mathrm{u})f(X,y, Z,u)+$

$h_{y}(x,y,z,u)g(_{X},y,Z,u)\}/h_{z}(x, y, z,u)$ ,
:.

where $(x,y, z)\in S\backslash PL$ . The system (2.1) coincides with the system (2.4) at any
point $p\in S\backslash PL$ . In order to study the system (2.4), let consider the following
system: ..

$dx/dt=-h_{z}(x,y, z,u)f(X, y,z,u)$ ,
(2.5) $dy/dt=-h_{z}(xZuiy,,)g(X,y, z,u)$ ,

$dz/dt=h_{x}(x_{4},y, z,u)f(X,y, z,u)+h_{y}(x,y\langle)Z,u)g(X,y, Z,u)$.

As the system(2.5) is well defined at any point of $R^{3}$ , it is well defined indeed at
any point of $PL$ . The solutions of (2.4) coincide with those of (2.1) on $S\backslash PL$

except the velocity when they start from the same initial points.
$(A4)$ For any $(x, y, z)\in S$ , the implicit function theorem holds;

(2.6) $h_{y}(x,y, Z,u)\neq 0,$ $h_{x}(x, y, z,u)\neq 0$ ,

that is, the surface $S$ can be expressed by using $y=\varphi(x,z,u)$ or $x=\psi(y, z, u)$ in
the neighborhood of $PL$ . Let $y=\varphi(x, z,u)$ exist, then the projected system, which
restricts the system (2.5) is obtained:

$dx/dt=-h_{z}(x,\varphi(X,Z,u), z,u)f(x,\varphi(x, Z,u), z,u)$ ,
(2.7) $dz/dt=h_{x}(x, \varphi(X, z,u),z,u)f(x,\varphi(x, z,u), Z,u)+$

$h_{y}(x,\varphi(x,Z,u), z,u)_{\mathit{9}((,(}x,\varphi X\varphi X,$ $z,u),$ $z,u)$ .

$(A5)$ All the singular points of (2.7) are nondegenerate, the matrix induced from
the linearized system of (2.6) at a singular point has two nonzero eigenvalues. Note
that all the points contained in $PS=\{(x,y,z)\in PL:dz/dt=0\}$ , which is called
pseudo singular points are the singular points of (2.7).
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Definition2.1. Let $p\in PS$ and $\mu_{1}(u),$ $\mu_{2}(u)$ be two eigenvalues of the linearized
system of (2.7), then the point $p$ is called pseudo singular saddle if $\mu_{1}(u)<0<$
$\mu_{2}(u)$ and called $p_{\mathit{8}}eudo$ singular node if $\mu_{1}(u)<\mu_{2}(u)<0$ or $\mu_{1}(u)>\mu_{2}(u)>0$ .
Definition2.2. A solution $(x(t,u),y(\iota,u),$ $z(t, u))$ of the system(2.2) is called $a$

duck, if there exist standard $t_{1}<t_{0}<t_{2}$ such that
(1) $*(x(t_{0}, u),$ $y(t\mathit{0}, u),$ $Z(t0,u))\in S,$ where $*(X)$ denotes the standard part of $X$ ,
(2) for $t\in(t_{1},t_{0})$ the segment of the trajectory $(x(t,u),y(t,u),$ $z(t, u))$ is infinitesi-

mally close to the attracting part of the slow curves,
(3) for $t\in(t_{0},t_{2})$ , it is infinitesimally close to the repelling part of the slow curves,

and
(4) the attracting and repelling parts of the trajectory are not infinitesimally small.
Definition2.3. Let $E$ be a set in $R^{3}$ . We call a point $p$ is a $\delta-$ micro-galaxy of $E$

when the distance from $p$ to $E$ is less than $exp(-n/\delta)$ , where $n$ is some positive
integer and $\delta=\epsilon/\alpha^{2}$ ($\alpha$ is infinitesimally small).

Definition2.4. Let $\theta$ is an angle of the polar coordinate after changing the coor-
dinates in the ”local model” such as the orbit passing through the pseudo singular
point becomes the $z$-axis itself as the below. See $[3],[5]$ . Then, the winding number
$N(\psi)$ of a duck $\psi$ is defined as follows:

(2.8) $N( \psi)=(1/2\psi)\int_{\psi}d\theta$,

where $\psi$ is contained partially in the $\delta$-micrk galaxy of $\gamma_{\mu}$ .

Theorem2.1(Benoit). In the system(2.1), if the following two conditions at a
pseudo singular saddle or node point;

(1) $f(O, u)\simeq h(O, u)\simeq h_{y}(O, u)\simeq h_{z}(o, u)\simeq \mathrm{o}$ ,
(2) $g(O, u)\not\simeq 0,$ $h_{x}(O, u)\not\simeq \mathrm{O},$ $h_{zz}(O, u)\not\simeq \mathrm{O}$ , where $O=(\mathrm{O}, 0, \mathrm{o})\in PS$,

are satisfied, the explicit duck solutions $\gamma_{\mu:(u)}$ in the first approximation of the
local model can be constructed:

(2.9) $\gamma_{\mu_{i}(u)}(t)=(-\mu_{i}(u)2t-2\delta\mu_{i(}u),$ $t,$ $\mu i(u)t)(i=1,2)$ ,

wehere $\delta$ is an infinitesimally small constant.
The above Definition2.3 is based on the following fact. If $\epsilon$ is fixed arbitrarily

and $\gamma(t)$ is a duck near $\gamma_{\mu(u)}(t)$ is within $exp(-n/\delta)$ in some neighborhood of the
pseudo singular point. $\mathrm{S}\mathrm{e}\mathrm{e}[10]$ .

In the system(2.2), under the conditions (1) and (2) in the Theorem2.1, making
the following coordinate transformations (2.10) and (2.11) successively;

(2.10) $–$ , $(\alpha\simeq 0, \epsilon/\alpha^{2}\simeq 0)$

(2.11)

$=(^{h_{x}(u}\mathrm{o},)h_{zz}(0, u)\tilde{X}/2+(h(yy0,u)h_{zz}(\mathrm{o},u)-h_{yz}(0,u)^{2})\tilde{y}^{2}/4\mathrm{I}-h_{yz}(0,u)\tilde{y}/2-\tilde{y}/\mathit{9}(0,uh)zz(0,u)_{\tilde{Z}/2}$

’
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the followin$\mathrm{g}$ local model (2.12) is obtained:

$dX/dt=p\mathrm{Y}+qZ+\xi(X, \mathrm{Y}, Z,u)$ ,

(2.12) $d\mathrm{Y}/dt=1+\eta(\mathrm{x},\mathrm{Y}, z,u)$ ,
$\delta dZ/dt=-(Z^{2}+X)+\zeta(X, \mathrm{Y}, Z,u)$ ,

where

$p=g(\mathrm{O},u)h_{x}(0, u)(f_{y}(\mathrm{o}, u)h(zz0, u)-fz(0, u)h(yz0, u))/2$

$+g(\mathrm{O},u)^{2}(h_{yy}(\mathrm{o},u)h(zz\mathrm{o}, u)-h_{y}(z\mathrm{o},u)^{2})/2$ ,
(2.13)

$q=-h_{x}(0,u)fz(\mathrm{o}, u)$ ,
$\delta=\epsilon/\alpha^{2}$ .

Here $\xi(X, \mathrm{Y}, Z, u),\eta(X, Y, Z,u)$ and $\zeta(X, \mathrm{Y}, z, u)$ are infinitesimal when $X,$ $\mathrm{Y}$ and $Z$

are limited. Note that the solutions (2.9) are in the first approximation system on
(2.12).

By applying the following transformations of the coordinates as mentioned above,
in Definition2.4, successively;

$u=X+z^{2}+\delta\mu$ ,
(2.14) $v=\mathrm{Y}-Z/\mu$ ,

$z=Z$,

$u=r\omega s\theta$ ,
(2.15)

$v=rsin\theta$ ,

the Hermite equation (2.16) is obtained. This equation associated with $\gamma_{\mu:(u)}(i=$

$1,2)$ is the following: ,.

(2.16) $\delta\ddot{Z}-\mathcal{T}\dot{Z}+K_{i}z=0,\dot{z}=dZ/d\tau,$ $t=\tau/\alpha,$ $(i=1,2)$ ,

where $K_{i}$ is a positive integer and $K_{1}=1+\mu_{2}(u)/\mu_{1}(u),$ $K_{2}=1+\mu_{1}(u)/\mu_{2}(u)$ .
See [3]. . .

It is said that a duck $\psi(t)$ has a jump if the shadow of it contains a vertical
segment and that $\psi(t)$ is long if it is in an infinitesimally small neighborhood at the
pseudo singular point. It can be proved that if $\psi$ is not long, the standard part of
the winding number $N(\psi_{i})$ associated with $\mu_{i}$ is an integer. If the pseudo singular
point is node, it is positive. If the point is saddle, it needs some conditions such as
$K_{i}$ is poitive. The relation between $N(\psi_{i})$ and $K_{i}(i=1,2)$ is as follows.

$\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}2.2(\mathrm{B}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{t})$ . If the duck $\psi_{1}$ , which is not long has 2 jumps,
$N(\psi_{1})\approx-[K_{1}/2]$ , and if the duck $\psi_{2}$ has 2 jumps, $N(\psi_{2})\approx 0$ .
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3. COMPLETE AND INCOMPLETE DUCKS.

In this section, the main theorems of this paper; the sufficicient condition for the
existence of the complete duck solution are described explicitly

Definition3.1. In the system(2.12), if for any parameter $u$ ,
it satisfies the conditions $(A1)_{-}(A5)$ and has a duck,
then the solution is called a complete duck.
Definition3.2. In the system(2.12), if the followings (1) and (2):

(1) for any parameter $u$ except some limited $u_{0}$ ,
it satisfies the conditions $(A1)_{-}(A5)$ and has a duck,

(2) for the parameter $(u=u_{0})$ ,
it satisfies the conditions $(A1)_{-}(A5)$ but the solution is not a duck,
are established, then it is called an incomplete duck.

Definition3.3. A solution $\psi(x, u)$ is called $S^{1}$ at a,
if there exists a real number $b$ such that

(3.1) $\frac{\psi(_{X},u)-\psi(y,u)}{x-y}\approx b$ ,

for any $x,y(x\overline{\sim}a, y\overline{\sim}a)$ .
A duck is called an $S^{1}$ duck if it is $S^{1}$ in some neighborhood
of the pseudo singular point.
$\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}3.1(\mathrm{B}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{t})$ . In the first approximation of the local model (2.12),
if $\mu_{1}(u)/\mu_{2}(u)$ is positive $(>3)$ but no an integer, then all the $S^{1}$ ducks are expo-
nentially close to one of the two explicit ducks and there exists non $S^{1}$ ducks.

In the local model, we assume that

(3.2) $f_{y}(0, u)=gu(\mathrm{o}, u)=hyz(\mathrm{o}, u)=h_{yyu}(0, u)=hzzu(0, u)=0$,

and that the following (1) or (2):
(1) $h_{x}(\mathrm{o}, u)=O(u)andf_{z}(0, u)=O(1)$ ,
(2) $f_{z}(0, u)=O(u)andh_{x}(0, u)=O(1)$ ,
where all the coefficients of higher order (more than 2) for $u$ is negligible. In
other words, we assume that only the coefficient $q$ can take an unlimited number
($q=\tilde{q}u+o(1)$ , a constant $\tilde{q}\not\simeq \mathrm{O}$). Then, blowing up only the variable $Z$ again;

(3.3) $Z=(1/u)\zeta$ ,

the first approximation of the local model becomes the following:
$dX/dt=p\mathrm{Y}+\tilde{q}\zeta$ ,

(3.4) $d\mathrm{Y}/dt=1$ ,
$(\delta/u)d\zeta/dt=-(\zeta^{2}/u^{2}+X)$ ,

where $\tilde{q}$ is limited (does not contain $u$ ) and $(\delta/u)\simeq \mathrm{O}$ . The explicit solutions in the
system(3.4) are
(35) $\gamma_{\mu:(u})(t)=(-\mu_{i}(u)^{2}t^{2}-u\delta\mu i(u),u^{2}t, u\mu i(2u)t)(i=1,2)$ ,
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where $\mu_{1}(u),$ $\mu 2(u)(\mu_{1}(u)>\mu_{2}(u))$ are t.h$\mathrm{e}$ solutions of the characteristic $\mathrm{e}..\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$

of the system(3.4) in case $\delta/u\simeq \mathrm{O}$ . d- :..:. $=$

The above system satifies the conditions $(A1)_{-}(A5)$ and the solutions(3.5) $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}6r$

the condition (1) and one of the solutions satisfies the condition (2) in Definition3.2
when $u=u_{0}=\omega=1/\epsilon$ . Since $\mu_{2}(u)\simeq-1/2\epsilon$ as $u=1/\epsilon$ and for the first
component of (3.5), the following

(3.6) $\frac{-(1/2\epsilon)^{2}(2\epsilon)2+(1/2\epsilon)2(\epsilon)2}{2\epsilon-\epsilon}=-3/4\epsilon$ ,

is established. In this state, the winding number $N(\psi_{2})$ associated with $\mu_{2}$ is
unlimited and the other $N(\psi_{1})$ associated with $\mu_{1}$ is infinitesimal. Then, this duck
may be almost tangent to the $X$-axis when $u$ tends to $1/\epsilon$ .

Now, let $v=1/u$ . then $\partial_{u}=-v^{2}\partial_{v}$ holds and then the following conditions
are assumed; $f(x, y, z, u)=\tilde{f}(x, y, z, v)\in C^{3},$ $g(x, y, z, u)=\tilde{g}(x, y, z, v)\in C^{1}$ and
$h(x,y, z,u)=\tilde{h}(x,y, z,v)\in C^{3}$ at almost everywhere but $v=v_{0}=0$ .

Theorem 3.2. In the first approximation of the local model, under the condition
(3.2) and $\tilde{h}_{x,v}(0, v)\tilde{f}zv(0,v)=0$, if either th$e$ assum$p$tion (1) or (2) ;

(1) $\tilde{f}_{z}(0, v)=0$ , and $\tilde{h}_{x}(0, v)\tilde{f}zvv(\mathrm{o}, v)=0$ , .

(2) $\tilde{h}_{x}(\mathrm{o}, v)=0$ , and $\tilde{h}_{xvv}(\mathrm{o},v)\tilde{f}_{z}(0, v)=0$,
where all the coefficien$ts$ of higher order (more than 2) for $v$ is $n$egligibl$e$, is
satisfied, then this system has an incomplete duck.

proof. From the above assumptions, the relation $q=-h_{x}(0, u)f_{z}(0, u)=\tilde{q}u$ holds.
Differentiating the both side of the equation by the parameter $v$ , we can directly
lead to the conclusion. $\square$

By blowing up the variable $X$ again, like the same way above, the complete duck
which is not $S^{1}$ is obtained.

Theorem 3.3. In the equation (3.4), we assume that

$\tilde{f}_{y}(\mathrm{o}, v)=\tilde{h}_{yz}(\mathrm{o},v)=0$ ,
(3.7)

$\tilde{g}(0,v)=O(1)$

and moreover, if either the condition $\tilde{h}_{yy}(\mathrm{o}, v)=0$, or $\tilde{h}_{zz}(\mathrm{o}, v)=0$ , is satisfi$\mathrm{e}\mathrm{d}$,
that is; $p=c_{1}v^{2}+o(1)$ ($c_{1}\not\simeq 0$ is limite$d$) and $\tilde{q}=c_{2}v^{2}+o(1)$ ($c_{2}\not\simeq 0$ is limite$d$),
then there exists a complete duck which is not $S^{1}$ in this system (3.4).

$p$roof. Blowing up the variable $X$ such as

(3.8) $X=v^{2}\xi$ ,

the equation (3.4) becomes

$d\xi/dt=(1/v^{2})pY+(1/v^{2})\tilde{q}\zeta$ ,
(3.9) $d\mathrm{Y}/dt=1$ ,

$(\delta/v)d\zeta/dt=-(\zeta^{2}+\xi)$ ,
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where $\delta/v\simeq \mathrm{O}$ .
Therefore, the explicit ducks $\tilde{\gamma}_{\mu:(u)}$ of (3.9) are described as follows:

(3.10) $\tilde{\gamma}_{\mu:(v})(t)=(-\mu i(v)2t-2\delta\mu_{i(v)}/v, t, \mu_{i}(v)t)(i=1,2)$,

where $\mu_{i}(v)$ are the eigen values of the linearized system in the constrained system
of (3.9). In this situation, the constrained surface $S=\{(\xi,\mathrm{Y}, () : \xi+\zeta^{2}=0\}$ is
invariant for the parameter $v$ . Furthermore, one of the ducks tangents to the $\xi$-axis
at the pseudo singular point when $v$ tends to $\epsilon^{1/2}$ . So this duck is not $S^{1}$ . $\square$
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