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Abstract. Nonlinear equations with parameters are called parametrized nonlinear
equations. In this paper, a priori error estimates of finite element solutions of parametrized
nonlinear elliptic equations on branches around turning points are considered. Existence of a
finite element solution branch is shown under suitable conditions on an exact solution branch
around a turning point. Also, some error estimates of distance between exact and finite element
solution branches are given. It is shown that error of a parameter is much smaller than that
of functions. Approximation of nondegenerate turning points is also considered. We show that
if a turning point is nondegenerate, there exists a locally unique finite element nondegenerate
turning point. At a nondegenerate turning point an elaborate error estimate of the parameter
is proved.

1. Introduction.

Let A, B be Banach spaces and A C R™ a bounded interval. Let F' : A x A — B be a smooth
operator. The nonlinear equations '
F(\u)=0,

with parameter A € A is called parametrized nonlinear equations.
In [17] and [18] a thorough theory of a priori error estimates of finite element solutions of
the following parametrized strongly nonlinear problems has been developed:

CF(0u) =0, (\u)€Ax H}Q),

(F(\u),v) = /Q B, 7, u(=), Vu()) - Vo(a)
0z, u(@), Vu(@)(@)dz, Yo € HiQ),

(1.1)
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Figure 1: Nondegenerate and degenerate turning pfoi.nts. ‘

where QCcR (d=1,23)is a bounded domain with the piecewise C? boundary 82, and

t A x Q x RéHL Rd fiAxQxRH o R are sufficiently smooth functions. Here, the
equatlon (1.1) is called strongly nonlinear if a()\ z,1,2) (A €A,z €Q, yER, 2 E RY) is
nonlinear with respect to z. Otherwise, it is called mlldly nonlinear,

Since the equation (1.1) is defined in d1vergence form, finite element solutmns to (1 1) is
defined in a natural way.

In [8], [9], and [13] Fink and Rheinboldt have shown that some subset of the solutions to
(1.1) form an one-dimensional smooth manifold without boundaries, if the nonlinear operator
defined by (1.1) is Fréchet differentiable and Fredholm of index 1. They have also shown that
corresponding finite element solutions form an one-dimensional smooth manifeld. In this paper
we denote by My and M}, the exact solution manifold of (1.1) and' the correspondmg finite
element solution manifold, respectively.

Here, a linear operator P € L(A, B) is called Fredholm if (1) the dimension of KerP is
finite, (2) ImA C B is closed, (3) the dimension of CokerA := B/ImA is finite. If P € L(A, B)
is Fredholm, its index indP is defined by indP := dimKerP — dim CokerP. Let U C A be
open and F : U — B Fréchet differentiable. F is called Fredholm in U if its Fréchet derivative
DF(u) € L(A, B) is Fredholm at any u € U. It is shown that ind DF(u) is constant in each
connected component of U. Hence, we define the index of F' by indF' := ind DF'(u).

In [17] and [18], it is shown that, under reasonable conditions, for each compact subset My C
Mo, there exists a locally unique compact subset Mh C M, such that My is approximated
uniformly by Mh, if triangulation of Q is sufficiently fine. Moreover, several a priori error
" estimates are obtained. " .

The aim of this paper is to refine the error analysis on branches around turning points.

A point (X,u) € My is called a turning point if the partial Fréchet derivative D, F(\,u) €
L(A, B) at (A, u) is not an isomorphism.

To develop a refined error analysis around a turning point, we introduce a slightly different
formulation of the problem from that in [17], and show a theorem which is similar to [18, The-
orem 8.6] and [17, Corollary 7.8]. Next, we obtain an elaborate error estimate of parameter. In
the following we explain the basic ideas of this paper.

In the error analysis of parametrized nonlinear equations, we have the following difficulty.
Suppose that we are approaching a turning point during continuation process of a solution
branch. Since we cannot fix the parameter A around a turning point in (1.1), A should be
treated as an unknown parameter. Hence, correspondence of an approximated solution to an
exact solution becomes ambiguous in such a situation.
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Usually, this difficulty is overcome by the following Imannef We introduce a. (nonlinear, in
general) functional p: A X A — R, and consider the followmg problem,.

(1.2) ‘ H(v, M) = (p(A,u) — 7, F(), u)) (0,0) €Rx A

where H : Rx A x A — Rx B. We expect that the partlal Fréchet derivative Dy, u)H (v,Au) €
L(R x A,R x B) is an isomorphism at a turning point (),u) and in its neighboerhood. In
Section 2, it will be shown that, if DyF(},u) # 0 and KerDF(A,u) N KerDp(X, u) = {(0 0}
at (\,u) € My, then the above partial Fréchet derivative is an isomorphism, If we could find a
good definition of such p, then the solution branch would now be parametrlzéd by ~.

Finite element solutions (Xp,up) would be defined by

(1.3) Hiu (v, A u) := (p(An, un) — ¥ Fa(Ons un)) = (0,0),

where F}, is an approximation of F. In this setting the correspondence of an exact solution (X, u)
and an finite element solution (Xs,u) is represented by p(Ap,un) =7 = p(A,u).

In the above setting we will show that, even around a turning point, there exists a locally
unique finite element solution branch near an exact solution branch under suitable conditions.
Also, some error estimates of distance between the exact and finite element solution branches
are given.

Next, we will consider an elaborate error estimate of parameter A. In error analysis of the
finite element method (1.3) for (1.2) around a turning point, we would have error estimates such
as :
A= An| + |lu—uplla < CR".

In many practical computation, it is usually observed that the error |A — Ay| is much smaller
than ||u — uplla, or Ch".

A typical and well-known example of this phenomenon is finite element approximation of
the eigenvalue problems:

(1.4) —Au = Ay, u € HY (D).

Let (), u) be an eigen-pair of (1.4) and (An, us) its finite element approximation. Suppose that
the eigenvalue ) is simple. Then we have an error estimate such as

A=Al £ Cllu - Uhllir&,

where C is a positive constant independent of & (see, for example, [14, Chapter 6], [1]).

We will show that a similar estimate hold for the finite element solutions (Ap,up) of (1.3)
under the condition that Dy, F(),u) is self-adjoint. To obtain a similar estimate we introduce
an auxiliary equation. Let z and z; be the exact and finite element solutions to the auxiliary
equation. We will show that the error |A — Ap| is estimated as

1A = Al < Cllu — unllalle — unlla + ||z — za]l4)

around a turning point, where C is a positive constant independent of h.

Occasionally, a turning point on the exact solution manifold My has a certain physical
meaning, and, in such a case, computing its precise value will become important. If a turning
point (Ag,up) € My is nondegenerate (see Section 3 for its definition), we can show that the
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associated finite element solution manifold also has a locally unique nondegenerate turmng point
(AR, ul) € My,. The error | Ao = /\"'| is estlmated accurately by a- similar ‘manfer as above.

In Section 2 and 3 we develop our theory in an abstract setting: Apphcatwns of the abstract
theorems obtained in Sectmn 2 and 3 to the strongly nonlinear; elhptm bound‘ary value problem
(1.1) will be found in the original version of this paper.

2. Abstract Fdrmulation.

In this section, we formulate our problem in an abstract setting, and show a theorem which
claims existence of a locally unique solution branch of a discretized problem. The setting-in this
section is slightly different from that of [17].

For the stage of our analysis we first introduce functional spaces.

(A1) There are Banach spaces, V, W, and X, (1 <p < oo) where X is a Hilbert space, such
that VC Xoo C Xp (1 <p < ) andWCX1 c X/ (1<q<oo) Here,X’ is the dual
space of X,. We suppose that all inclusions are continuous. We also suppose that X, is
denselnX ifl1<p<r<ooc

Let F: A x X — X (1/p+1/q = 1) be a nonlinear map, where A C R'is an 1nterva1

We consider the parametnzed nonlinear equation F(A,u) = 0. Since we will suppose that F is

strongly nonlinear, the domain and the range should be taken carefully. In many cases, F is not

Fréchet differentiable on A X X, p < 0o, and should be restricted to a-certain subspace to make

it differentiable.

We also need extensions and restrictions of the Fréchet derivatives DF (A, v), DyF(A,v) etc.
t (A,v). When we need to specify the domain of, say, D,F(A,v) clearly, we will write such
as D,F(\ v) € L(P,Q). This means that D, F(\,v) now denotes its extension (or restriction)

whose domain is P and range is in Q.

Now, we take certain p > 2 and g with 1/p + 1/q = 1, and fix them. We then assume the
following:

(A2) The restriction of F' to A X X, denoted by F again, is a Fréchet differentiable map from
A x X to X{. For any A € A and v € X the derivative DF(\,v) € L(R X X0, X7)
can be extended to DF(),v) € L(R x Xp,X;) and it is locally Lipschitzicontinuous on
A X Xt 1.e., for any bounded convex set O C A x X, there exists a positive constant
C1(0O) such that

| DF(A1,v) = DF (A2, w)ll e x,p,x1) < C1(O)(|A1 = Ao + [lv — wl| x)

for arbitrary (A1, v), (A2, w) € O.

(A3) We suppose that there exists an open subset S C AXV in which F : § — W is a Fredholm
operator of index 1. We also suppose that, for each (A, u) € §, DF(),u) € L(Rx Xp, X)
is a Fredholm operator of index 1 as well.

We define the subset R(F,S) C S by
R(F,S) = {()\u) € S|DF(\u) € L(R x V, W) is onto}.
The following lemma is valid: |

Lemma 2.1. (1) For any (\,u) € R(F,S), dimKerD,F(),u) is at most 1.
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(2) For (A, v) € R(F,S), we have either - R
" Case 1: KerD, F(\,u) = {0} and Dy\F(), u) € ImbD, F(A u), or
- Case 2: dim KerDy F()\ u)y =1, and D,\F(A u) € ImDuF()\ u) EI

For the proof see [18, Sectlon 4]..
We introduce a nonlinear functional p:AX ,Xp — R and assume that
(A4) The restriction of p to A’ x Xeo, denoted by p again, is Fréchiet differentiable.
(A5) For (X\;u) € A X Xoo, the Fréchet derivative Dp(\,u) € LR X Xoo, R)(= Rix Xg,) can be
extended to Dp(A,u) € L(Rx Xp,R)(= Rx X ) and it is locally Lipschitz: continuous on
A X X, i.e., for any bounded convex set O C A x Xoo, there ex1sts a- positive- constant
C3(0) such that ‘ '

1Dp(A1,v) = Dp(A, w)lmxxy < 02(0 (A1 = Xl + llv - wHXw)

for any (A1,v), (A2, w) € O.
(A6) Let (A\,u) € S and D, F(\u) € C(XP,X') We suppose that if D F(/\ u)p = f for
Y€ Xpand f € W,theny € V.

Lemma 2.2. Assume that (A1)-(A6) are valid. Suppose that there!is (Ao, uo) € R(F,S)
such that DyF(Xo,ug) # 0 € W. From (A3), there exists (po,%0) € R X V such that
KerDF (Ao, up) = span{(uo,¢g)} We assume that Dp(/\o, ug)(po, o) #F0ER *

Define G: Ax W = R x V by G\, u) := (p(),u) — (/\ u)), where y € R.

Then, DG (X, u0) € LR x W,R x V) is an 1somorphzsm ' Moreover, DG(Ag,ug) € .C(IR X
Xp,R x X}) is an isomorphism as well.

Proof. From the assumptions we find that KerDF(Xo,uo) N KerDp(Ao,u0). = {(0,0)}. This
implies that KerDG (Ao, uo) is trivial and DG(Ao, uo) is one-to-one.

Since DF (Ao, ug) is onto, for any g € W, thereis (v, p) € RxV such that DF (g, uo)(v, @) =
g. Since Dp(Ag,uo)(ro,%0) # 0, for any t € R, there is a € R such that Dp(Xo,uo)((v, ) +
a(po,%0)) = t. This yields that DG(Ag, up) is onto. ‘Therefore,‘ DG(Xo, ) € L(R x V, R x W)
is an isomorphism.

To show that DG(Xg,up) € E(R x Xp,R x X}) is an isomorphism, we first show that
DF (Ao, u0) € L(R x Xp, Xg) is onto. Since DF(Ag,uo) € L(R x Xp, Xg) is Fredholm with index
1 by (A3), we only have to show that the dimension of KerDF(Ao,ug) C R X Xp is 1.

Let (u,%) € R x X, be such that DF (Ao, u0)(s,9) = 0 € Xg. This is also written as
DyF(Xo,u0)y = —uDxF(Xo,u0). Since DyF(Xo,ug) € W and (A6), we conclude that ¢ € W
and dimKer(DF(Xo,u0) € L(R x X, Xg)) =1.

Using this fact, we show that DG(Ag,ug) € L(R x Xp,R x X7) is an isomorphism by the

exactly same manner as above. [J

Corollary 2.3. Assume that (A1)-(A6) are valid. Suppose that there exists (Ao, u0) €
R(F,S) such that F(Xg,up) = 0, p(ho,u0) = 7o, and D,\F()\g,uo) % 0. Suppose also that
KerDF (Ao, up) N Keer(/\o,uo) = {(0,0)}. Deﬁne H:RxAxV -5 RxW by H(v, A\ u) =
(p(\ 1) — 7, F(\,u).

Then, we have H(vo,)0,u0) = (0,0) and D(y4)H(v0,M0,%0) € LR X V,R X W) is an
isomorphism. Therefore, by the implicit function theorem, there exist a positive constant £ and
a C! map (v — &7 +¢€) 37— (A(7),u(y)) € A XV such that (A7), u(70)) = (Ao, v0) ‘and
H(v,A(7),u(y)) = (0,0) for any ~. That is, the solution manifold of the equation F(\u)=0
is parametrized by v = p(}\,u) around (Ao, uo). O
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To define d1$cretlzed solutions of F(),u) = 0, we introduce ‘the ﬁnzte—dlmensmnal subspaces
Sh C X which'are parametrized by h, 0-< h < 1 with the following properties: -
(A7) There exists a real r > 0 and a positive constant Cs independent of & such that

lonllxe < S2llonllx,, Vo € S

The relations of Banach spaces are depxcted in the following:

AXS},_
n .
AxV C AxXe C RxX, C RxX;
1 F(\u) 1 FOu) L DF(\u) 1 DF()\,u)
w c X c X c X

The finite element solution (A, us) € A X Sy, is defined naturally by
(F()\h,ﬂh),’l}h) = 07 V’Uh € Sha

where (-;-) is the duality pair of X} and X,. We derive an equivalent definition of the finite
element solutions which is more convenient in the error analysis.

Let Q € L£(X;, X)) be a self-adjoint operator, that is, (Qu,v) = (Qu,u) for all u,v € Xj.
Suppose that there exists a positive constant o such that v

(2.1) - {Quyv) 2 alvllk,,  Vve X

We define (-,-)q by (u,v)q := (Qu,v). It is easy to show that (-,-)g is an inner product and
the norm ||vf|q := (v, v)g ? is equivalent to the original norm |lvllx,. It is also easy to show that
Q € L(X,, X}) is an isomorphism.

We define the canonical projection ﬁh Xy — Sp by (¥— Phd), vp)g = 0 for all vy, € Sp. Ob-
viously, we have that (u, Pyv)q = (Pyu,v)q for all u,v € X3. As in [18, Section 6] it follows from
the definitions that (Ap,up) is a finite element solution if and only if (QPhQ LF(Anyup),v) =0
for all v € X5.

Following Fink and Rheinboldt ([8], [9], [13]) we define the approximation of F'(\,u) by

(2.2) Fa(\u) = - B)Qu+ PoF(\u),  Py:=QPQ7%,

~ where I is the identity of Xj. It can be seen easily [13, Lemma 5.1] that F(\,u) = 0 if and
only if u € Sy, and (A, u) is a finite element solution.

Theorem 2.4. Assume that (A1)-(A7) are valid. Suppose that there exists (Xg,up) €
R(F,S) such that F(Xo,up) = 0, p(Xo,u0) = v, and DyF(Ag,ug) # 0. Suppose also that
KerDF (Ao, uo)NKerDp(Ag, uo) = {(0,0)}. Then, by Corollary 2.3, there exist a positive constant
eo and a C' map [vo—e0,70+¢€0] D v — (A(7),u(v)) € AxV such that (A(70), u(0)) = (Ao, o),

= p(A(y),u(v)), and F(A(y),u(y)) = 0. We assume that (A(y),u(y)) € R(F,S) for all
v € [v0 — €0,70 + €0]. We also assume that there exists the projection Iy, : X, — S) for each
h > 0 such that, for all y € [y — £0,%0 + €0},

(23) lim " |[u() ~ Mu()llx, =0,
(2.4 tim [[u(y) ~ Myu(1)llx. =0,
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and the above convergences are uniform. - S ’

We, on the other-hand, suppose that D, F(Ag, ug) is deeomposed inte DuF<z\ry,uo) Q +
R, where Q € £(Xp,X,) is the principal part which-is self-adjoint and satisfies (2. 1), and
R e £(XP,X’ ) is compact The discretized nonlinear map F, : Xp = X’ and the prolectzon
Py: X, — X’ is defined by (2.2). We suppose that , ,

(2.5) | lim 6~ Pupll, =0, Vg€ Xj.

Then, for sufficiently small h > 0, there exist a positive constant e < so: and a unique

~map [y — 1,70+ €1} 2 7.~ (Au(¥),un(7)) € A X Sy, such tbat Fh(/\h('y),uh('y)) = O for all
v € [Yo — €1, + €1]. Moreover, we have the estimate

IA(Y) = An()] + Hun(v) = Hh’“(')’)”Xp Kiflu() ~ Tpu(9)llx,,

for all v € [yo — €1,70 + €1], where K is a positive constant mdependent of h and ~.

Proof. The proof of Theorem 2.4 is quite similar to: those of [17, Theorem 7.7] and [18, Theo-
rem 8.4]. Hence, we here skip the proof. O

3. Elaborate Error Estimates of the Parameter ).

In this section we give elaborate error estimates of the parameter A. To do this we need more
assumptions. k

(A8) The nonlinear maps F : A X Xo — X} and p: A X Xoo — R are of C? class.

(A9) For any (\,u) € S C A X W, D,F()\, u) € L(X2, X)) is self-adjoint.

Now, let. (\,u) € R(F,S) be a solution of F(A,u) = 0 at which all assumptions of Theo-
rem 2.4 and (A8), (A9) hold. Let (Ap,up) € A X Sp be the corresponding finite element solution
with (A, un) = p(A, ).

We consider the following auxiliary problem: find (7, 2) € R x X}, such that

((DuFO)z,v) = U(Dupoyv)a Vv € Xp,
(D)‘FO,Z) - UD,\PO =1,

where Dy F® := D, F(\,u), Dyp® := Dyp(),u), etc.

(3.1)

Lemma 3.1. Suppose that all assumptions of Theorem 2.4 and (A8), (A9) hold. Then, the
equation (3.1) has an unique solution (7n,z) € R x X,.

Proof. Recall that we have either
Case 1: KerD, F(\,u) = {0} and DyF(\,u) € ImD,F(A,u), or
Case 2: dimKerD,F(A,u) =1, and DyF (), u) € ImD, F(A, u).
Suppose that we are in Case 1. Then, KerDF(),u) = span{(1, —(D,F°®)~1(D)F°))}. By
the assumption we have Dp®(1, —(D,F®)~1(D\F?)) # 0, that is,

Dyp° = (Dup’, (DuF®) " (DAF®)) # 0.

Let 7 := ((Dyp®, (DuF°)~Y(DyF?)) — Dyp°)~ and 2 := n(DyF°)~1(Dyp?). Since D, F° is
self-adjoint by (A9), we have

n(DAFov‘(DuFO)_l(DuPO» = ”(Dupoa (DuFO)—l(DAFO»’
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and (DyFO, z) — nDp% =n((Dyr°, (DuFO‘) (DAFU)) DApO) &= 1. Hence (9, 2) 15 a: solutmn of
~ (3.1).- Uniqueness is proved by- the same manner.
Now, suppose that we-have Case 2. Then, there exists qbq eV such that KerDF(/\ u)
span{(0, %)} and (D, o) 0. |
Since DF(A, u) is onto, there exists (6,¢) € ]R X, Xp such that

(3.2) 8(D>F°,v) + ((DuF°)¢,v) = {-Dup ,v), YoeXs,

and 6 is determined uniquely.

We clalm that Dyp® ¢ Im(DyF°). If Dyp® € Im(D,F°), then there woqu exist w G Xp
such that (DyFO)w = Dyp°. Hence, we have

0 # (Dur®, o) = ((DuF)Yw, g0} = (DuF)o, w) =0,

and obtain a contradiction. Therefore, we conclude that Dyp® & Im(D, F°) and 8 # 0. .

Letting v := v in (3.2), we have (D F° 4o) = (Dup®, ¥0) # 0. Hence, we conclude
(DAF®,0) = (Dup®,10)/6 # 0. We thus immediately notice that (0, athp) with o i= (DyF°, o)~}
is a solution of (3.1). Again, the uniqueness is shown by the same manner. 0

It is obvious that we may apply Theorem 2.4 to the equa.tlon (3.1) with the following setting:

F(n,2) i= (DuF°)z = n(Dup’),
p(n, z) = (D;\FOI’Z) - ")‘(DAPO),

and obtain

Lemma 3.2. For sufficiently small h > 0, there exists the unique finite element solutlon
(7n, zn) € R x Sy, of (3.1) such that

((DuF Yan, vp) = "7h( wp’s V), Vv € S,
(DAF®, z1) — mDap® = 1.

Moreover, we have the estimate
In —mnl + 11z = znllx, < Cllz — Urz|lx,,
where C is a positive constant independent of h. O

Let (A\,u) € R(F,S) is a solution of F(),u) = 0 which satisfies the assumptions of Theo-
rem 2.4 and (A8), (A9), and (An,un) € A X Sp, the corresponding finite element solution. By
Taylor’s theorem and (F(An,up),vn) = (F(A,u),vp) = 0 for any v, € Sp, we have

oy = = NDAF®,08) + (DuF)un — w),00) + 50 = VADAE, )

+(An — A)((DAuFO)(uh —u),vp) + ‘;‘((Duupo)("h - u)2’vh>’

where

1
Dy, \F° := / (1 = 8)DyxF(X + s(Ap — A),u + s(up — u))ds,
0

1 .
(D FO)(up, — u) = ./0 (1 = 8)Dxu F(X + s(Ap — A),u + s(up, — u))(up — u)ds,

1
(DuuFO) (up, — u)? := /0 (1 = 8)Dyu F(A + s(An = A), u + s(up — u))(up — u)?ds.
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Letting v := u — up in (3.1), we obtain

(DuF)z,u = un) = (DuF®)(u = wn),2) = n(Dusu ).

Since n
: 0=p(hnun) —p(Au) o
! 1
=(An = A)(Dxp°) + (Dup®, un, — u) + 5‘()% = X)*(Daxp)
; ' 1 A
+ (’\h - ’\)(;D;\upo)(u#_ u) + §(Duupo)(uh - u)2:
where ' :

‘ ; 1 . . :
Daas® = [ (1= )Dap(h -+ 5 = Ay u + sfun = w)ds,
N s |
(D/\upo)(u’h - u) = /(; (1 - 3‘)(Dhup()‘ + S(Ah - /\),u '!'s(uh - ’ll«)),’u,b, - 'u,)ds, _

(Duup®)(un = u)? = /01(1 = $)(Duup(A + (A = A),u + s(un — w))(un — w), un - u)ds,
we have -
g (DFOmuz) =m0 WD) ¢ 5 = )2 (Dxs”)
+0(0n = X)(Drap®)wn = w) + 5 (D) = v)’.

It follows from (3.3) with vy, := 2, (recall that (np, z,) € RX S}, is the finite element solution
of (3.1)) and (3.4) that ‘

(A = An) ((DAF®, 2)—n(Dxp°) + Bn) = ((DuF°)(u — un), 2 = 21)
1 ,
+ 5 {(DuaF) (= un)?, 24) = 7 (Duup®)(w = un)?,
where limy_,g By, = 0. Therefore, we have proved the following theorem:

Theorem 3.3. Let (A, u) € R(F,S) be a solution of F(Aju) = 0 which satisfies the as-
sumptions of Theorem 2.4 and (A8), (A9). Let (As,un) € A X Sy, be the corresponding finite
element solution. Let (n,z) € R X X, and (1, z,) € R x Sy, be the exact and the finite element
solutions of (3.1). ,

Then, for sufficiently small h > 0, we have the following elaborate error estimate of |A — Ap|:

A= 2] < GAl{(DuF®) (= un), 2 = 28) + 3 ((DuuFO)(u = ua ), 28)
~ 2 (Duup”)(u = ua)?|,
where Dy F® := DyF(),u),
(Do) = un)? 5= [ (1= IDuuF O\ -+ = )0+ sun = w)) = ua)'ds,
Duusu =" = [ (1= ) DuuplO 450 = Ny - (un — ) — )y — s,

and C}, is a positive constant such that limp,_,oCp = 1. O
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Sometimes, ione may want to!compute a turning point itself. For such a purpose we ' are
‘able to develop a similar analysis'as above. : Let {Mo,up) € R(F,S) be a-turning point of’ the
equation: #(A,u) = 0 at which the assumptions of Theorem2:47and (A8),: (A9) hold: That
is, F(Xo,ug) = 0, DF(/\o,uo) € L(R x V,W) is onto, and DuF(Xg,10) '€ L(V,W) is not an
‘ 1somorp_hlsm In this case we have dim KerD,, F()q, ug) =1 and DyF (Ao, uo) & ImDyF(Ao, up).
It then follows from the proof of Lemma 3.1 that (3;1) has an ‘unique .solutlon (0 zo) ER X X
at (Ao, up):

(DuF (o, u0)20,9) =0, Vo€ Xp,

(3.5) (DaF (Ao, uo), 20) =1,

We consider the nonlinear map K : A XV X' X, —» R x W x Xy defined by

(DAF(A,u),2) -
(3.6) K\ u,z):= . F(A\u)
DuF(A, u)z

At a turning point (Ag,uo) € R(F,S) the equation K(),u,z) = (0,0,0) has the solution
(Mo, u0,20) € A x V' x X,. A turning point (Ag,ug) € R(F,S) is called nondegenerate,
if ' - o

Dy F (Ao, wo)totbo & ImDy F(Ao, uo),
where {10} C Xp is the basis of KerDyF()o,uo) (see [4, Section 4]). For a nondegenerate
turning point, we have the following lemma. For the proof of the lemma, see [4], [15].

Lemma 3.4. Let (Ao, ug) € R(F,S) be a tunmg point at which the assumptmns of The-
orem 2.4 and (A8), (A9) hold. Then, (Ao, up) is a nondegenerate turning point if and only if
the Fréchet derivative DK (Ao, u0,20) € L(R x V x X,,R x W x X) is an isomorphism, where
29 € X is the solution of (3.5) and the nonlinear map K is deﬁned by (3.6). O

From Lemma 3.4, the results in [16] can be applied to the equation K(A,u,z) = (0,0,0) at
a nondegenerate turning point (Ao, up) and obtain the following lemma:

Lemma 3.5. Let (Ao, up) € R(F,S) is a nondegenerate tuning point. Then, for sufficiently
small h > 0, there exist a locally unique finite element solution (A2, ul,zh) € R x (Sy)? such
that

(D,\Fh(’\o,uo ,Zo> 1
Fh(’\07u0) =0,
Dy Fp(A,ul)2l =0,
where F}, is the nonlinear map defined by (2.2). The finite element solution (A}, ul) is a nonde-

generate turning point on the finite element solution manifold My,.
Moreover, we have the following error estimate:

Ao = X1 + lluo = wdllx, + ll20 = 25l x, < C(lluo — Mrwol|x, + 120 — Mhzollx, ),

where C is a positive constant independent of h, and I, : X, — Sy, is the projection which
appears in Theorem 2.4. [J
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Now, we develop a similar elaborate error estimate for [A\o— AR, |Again, let (Ao, up) € R(F,S)
. be a nondegenerate turning point which satisfies the - assumptions of Theorem 2.4 and {A8),
(A9), and (A} uo) € A x Sj the corresponding finite element solution: By: Tay}or 'S theorem and
(F(O§, ul), vn) = (F(Xo,u0),vp) = 0 for any vy, € Sh, we have | '

0 ('\o - AO)(D)\F(}‘OyUO):vh + (DuF Ao,uo)(uo — o), vh)
(3.7) + (f\o = 20)X(DxFO,up) + (/\0 Ao)((DAuFO)(uU - ue), vh)

%«DWF )b = uo)? ),
where
DyF° := /01(1 = 8)DyF(Xg + é(/\g — Xa),uo + s(ul — ug))ds,
(DruFO)(ug — ug) := /0 1(1 ~ $)DxuF (X0 + s(A§ = Xo), u i+ s(uf — u;»@g ~ ug)ds,
(DuuFO)(ug — ug)? := /01(1 — 8)DuuF(Xo + s(Af = Xo), u + s(ug — uo))(uff — uo)?ds.
Letting v := up — u} in (3.5), we obtain
(DyF (Ao, u0) 20,0 — ul) = (DyF(Ao,uo)(ug — ul), z) =
Plugging this equation into (3.7) with vy, := 2, we obtain
(Ao — M) ({DAF (Ao, uo), 20) + Bn) = (DuF (Ao, uo)(uo — ult), 20 — 21)
+ (D FO) o — )%, ),
where limp,_,9 By, = 0. Therefore, we have proved the following theorem:

Theorem 3.6. Let (Ao,up) € R(F,S) be a nondegenerate turning point which satisfies
the assumptions of Theorem 2.4 and (A8), (A9). Let (A}, ul) € A x S, be the correspondmg
nondegenerate turning point on the finite element solution branch My,. Let zy € X, and 20 €Sy
be the exact and the finite element solutions which appear in Lemma 3.4 and 3.5.

Then, for sufficiently small h > 0, we have the following elaborate error estimate of |A\g — A3|:

%0 = X§1 < Ch|(DuF (o, uo) (o = uf), 20 = o) + 5(DunF) o = v, o)
where
(D FO)(ug — ul)? := []1(1 — 8)Dyu F( o + s = o), uo + s(ulk — ug)) (uo — ul)?ds,
and C}, is a positive constant such that limy_,q C, = 1.0
Remark. Apparently, Lemma 3.5 and Theorem 3.6 are very similar to [4, Theorem 7]. The

main difference is the tools used in [4] and in this paper. In [4] the Liapunov-Schmidt reduction
is used to parametrize solution branches around turning points. On the other hand, so-called
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- “bordering technique” is used throughout this paper. In [15],it is pomted out that bdrdermg
technique.is closely related with the Llaptmov-Sr;hqut reduction.

Employing bordering technique, our situation becomes simpler than that of [4}. For instance,

in [4] F should be C3 map while F is 02 map in ﬂhls paper. Also, we do not need ]the derivatives
of A and u with respect to the newly introduced parameter, which are used frequently in_[4].
The second point will be advantageous when we try to apply the results in this section to a
posteriori error estimation of the parameter A. ThlS point will be dlscussed elsewhere by the
author. O

References

[1]

[2]

[6]

[7]
(8]

[10]
[11]
[12]

13)
14)
[15]

I. BABUSKA AND J. QOSBORN, E1genvalue Problems, in Handbook of Numerical Analysis,
Vol. TI, Finite Element Methods (Part 1), ed. by P.G. Ciarlet and J.L. Lions, North-Holland,
1991.

S.C. BRENNER AND L.R. ScoTT, The Mathematlcal Theory of Finite Element Methods,
Springer, 1994.

F. BrEzzI, J. RAPPAZ, AND P.A. RAVIART, Finite dimensional approximation of nonlinear
problems, Part I: Branches of nonsingular solutions, Numer. Math., 36 (1980) 1-25.

F. BrEzZl, J. RAPPAZ, AND P.A. RAVIART, Finite dimensional approximation of nonlinear
problems, Part II: Limit points, Numer. Math., 37 (1981) 1-28.

G. CALOZ AND J. RAPPAZ, Numerical Analysis for Nonlinear and Bifurcation Problems,
in Handbook of Numerical Analysis, Vol. V, Techniques of S¢ientific Computing (Part 2),
ed. by P.G. Ciarlet and J.L. Lions North-Holland, 1997.

P.G. CIARLET, Basic Error Estimates for Elliptic Problems, in Handbook of Numerical
Analysis, Vol. II, Finite Element Methods (Part 1), ed. by P.G. Ciarlet and J.L. Lions,
North-Holland, 1991.

M. CrouzeiX AND J. RAPPAZ, On Numerical Approximation in Bifurcation Theory,
Springer-Verlag, 1990.

J.P. FINK AND W.C. RHEINBOLDT, On the discretization error of parametrized nonlinear
equations, SIAM J. Numer. Anal., 20 (1983) 732-7486.

J.P. FINK AND W.C. RHEINBOLDT, Solution manifolds and submanifolds of parametrized
equations and their discretization errors, Numer. Math., 45 (1984) 323-343.

D. GILBARG, N.S. TRUDINGER, Elliptic Partial Differential Equations of Second Order,
2nd edition, Springer-Verlag, 1983.

F. KIKUCHI, An iterative finite element scheme for bifurcation analysis of semi-linear elliptic
equations, Report 542, Inst. Space Aero. Sci., Univ. Tokye, 1976.

F. KikucHI, Finite element approximations to bifurcation problems of turning point type,
Theoret. Appl. Mech., 27 (1979) 99-144.

W.C. RHEINBOLDT, Numerical Analysis of Parametrized Nonlinear Equations, Wiley, 1986.
G. STRANG AND G.J. FI1X, An Analysis of the Finite Element Method, Prentice-Hall, 1973.

T. TsucHIYA, Enlargement procedure for resolution of singularities at simple smgular
solutions of nonlinear equations, Numer. Math., 52 (1988) 401-411.



123

[16] T. TSUCHIYA, An application of the Kantorovich theorem to nonlinear ﬁmte element anal-
ysis, to appear in Numer. Math. :

[17] T. TSUCHIYA, Finite element approx1matt1ons of parametrlzed strong]y nonlmear bqunda.ry
value problems, submitted. . : ,

[18] T. TsucHIYA, I. BABUSKA, A priori error estimates of finjte element solutions of

parametrized strongly nonlinear boundary value preblems, J. Comp. Appl. Math., 79- (1997)
41-66, | |



