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1 Introduction
In traditional computer algebra on polynomials, we have assumed that the coefficients

of polynomials were given rigorously by integers, rational numbers or algebraic numbers
and that manipulation on the polynomials were also exact. However, in many practical
applications or real world problems, the coefficients contain errors, that is, polynomials
have “error terms.” In such cases, many of the traditional algorithms in computer algebra
break down.

This paper considers the real zero-points of a real univariate polynomial with error
terms (or “approximate polynomial”), where the coefficients of error terms can be much
larger than the machine epsilon $\epsilon_{M}$ . In fact, even if the initial errors in coefficients are
as small as $\epsilon_{M}$ , the errors can become much larger than $\epsilon_{M}$ after the calculation. Fur-
thermore, in approximate algebraic calculation, we handle polynomials with perturbed
terms which are much larger than $\epsilon_{M}$ in general.

If a polynomial $P(x)$ has error terms, we cannot draw the graph of function $y=P(x)$ ,
and what we can draw is only the “existence domain” of values of $P(x)$ , or the domain
in which the value of $P(x)$ can exist. Similarly, in such a case, the position of its zero-
points cannot be determined exactly, and what we can handle is only the domains in
which the zero-points can exist. Therefore, in this paper, we introduce a concept of
“approximate real zero-point” by a minimal interval outside of which no real zero-points
can exist. Although the existence domains of real zero-points can be calculated rigorously,
we propose methods to calculate them approximately and efficiently, by using Smith’s
theorem on the error bounds of zero-points of the polynomial [3].

Next, we consider calculating the number of real zero-points of an approximate poly-
nomial by Sturm’s method. If all the zero-points are single and well separated, the
number of real zero-points is definite unless some error term is quite large, although the
positions of zero-points are changed by the error terms. However, in the calculation of
the Sturm sequence, the leading coefficient of some element may become too small to
determine if it is equal to zero or not. Since the sign of the leading coefficient in the
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Sturm sequence is essential in determining the number of real zero-points, this is a seri-
ous problem. For this problem, we give an answer that, under some conditions, we may
discard the small leading term and continue further calculation of the Sturm sequence.

In 2, we investigate the existence domains of real zero-points of approximate polyno-
mial, then define approximate real zero-point. In 3, we propose a practical method to
calculate the existence domains of the zero-points of approximate polynomial. In 4, with
assumption that the polynomial does not have multiple or close zero-points, we derive a
sufficient condition for that the number of the real zero-points is not changed by error
terms. In 5, we propose and investigate several methods to check the effect of error terms
of a given polynomial on its discriminant or the Sturm sequence.

2 Approximate polynomials and approximate real zero-
points

Let $P(x)$ be a given univariate polynomial with real coefficients such that

$P(x)=a_{n}x^{n}+\cdots+a_{0}x^{0}$ , (1)

and let $\tilde{P}(x)$ be a univariate polynomial such that

$\tilde{P}(x)=P(x)+\Delta(x)$ , (2)

where $\Delta(x)$ represents the sum of “error terms.” Hence, we know neither $\tilde{P}(x)$ nor $\Delta(x)$ ;
what we know usually is an upper bound for each coefficient in $\Delta(x)$ . Representing $\Delta(x)$

as

$\Delta(x)=\delta_{n-1^{X}}n-1++\cdots\delta_{0^{X}}0$ , (3)

we assume that we know upper bounds $\epsilon_{n-1},$
$\ldots,$

$\epsilon_{0}$ such that

$|\delta_{i}|<\epsilon_{i}$ , $i=n-1,$ $\ldots,$
$0$ . (4)

We express $\tilde{P}(x)$ also as $\tilde{P}(x|\delta_{i}=\epsilon_{i}’(i=n-1, \ldots, 0))$ and so on, in the case that we
specify (some of) the values of $\delta_{n-1},$

$\ldots,$
$\delta_{0}$ as $\delta_{i}=\epsilon_{i}’(i=n-1, . . . , 0)$ and so on.

2.1 Existence domain of values of $\tilde{P}(x)$

Suppose that the variable $x$ is fixed to $x_{0}$ and $\delta_{n-1},$
$\ldots,$

$\delta_{0}$ are changed continuously
under the restrictions in (4), then the value of $y=\tilde{P}(x_{0})$ moves continuously inside an
interval. By changing $x_{0}$ in $\mathbb{R}$ , we will have the minimal domain outside of which there
is no possibility of existence of value of $\tilde{P}(x)$ .

Definition 1 (existence domain) Let $x_{0}$ be a real number and $\delta_{i}$ move continuously
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in the whole interval $[-\epsilon_{i}, \epsilon_{i}]$ for $i=0,$ $\ldots,$ $n-1$ . Let $y_{U}(x\mathrm{o})$ and $y_{L}(x\mathrm{o})$ be

$y_{U}(x \mathrm{o})=\max,\tilde{P}(_{X_{0}}\delta i\in[-\epsilon i\epsilon i])$ , (5)

$y_{L}(_{X_{0}})= \min\tilde{P}(_{X_{0}}\delta i\in[-\epsilon_{i},\epsilon i])$. (6)

By changing the value $x_{0}$ in $\mathbb{R}$ , we have a domain

$\{[yL(x), yU(_{X})]|x\in \mathbb{R}\}$ . (7)

This domain is said to be “existence domain of values of $\tilde{P}(x).$ ”

We specify the existence domain of values of $\tilde{P}(x)$ rigorously.

Theorem 2 Let the polynomials $P(x)$ and $\tilde{P}(x)$ be defined as above. Then, existence
domain of values of $\tilde{P}(x)$ is given by a set defined as

{ $[P_{L}(x),$ PU $(x)]|x\in \mathbb{R}$ }, (8)

where $P_{L}(x)$ and $P_{U}(x)$ are polynomials defined as follows.

$P_{U}(x)=\{$
$\tilde{P}(x|\delta_{i}=\epsilon_{i}(i=n-1, \ldots, 0))$ for $x\geq 0$ ,

$\tilde{P}(x|\delta_{i}=(-1)^{i}\in_{i}(i=n-1, \ldots, 0))$ for $x<0$ ,
(9)

$P_{L}(x)=\{$
$\tilde{P}(x|\delta_{i}=-\epsilon_{i}(i=n-1, \ldots, 0))$ for $x\geq 0$ ,

$\tilde{P}(x|\delta_{i}=(-1)^{i+1}\epsilon i(i=n-1, \ldots, 0))$ for $x<0$ .
(10)

2.2 Approximate real zero-points and their existence domains

Using polynomials $P_{L}(x)$ and $P_{U}(x)$ , we define a concept of “approximate real zero-
points” as follows.

Definition 3 (approximate real zero-point) Let $\zeta_{U}$ and $\zeta_{L}$ be real zero-points of $P_{U}$

and $P_{L}$ , respectively, such that a real zero-point $\zeta$ of $\tilde{P}(x)$ moves in the whole region of
the interval $[\zeta U, \zeta_{L}]$ if $\zeta_{U}<\zeta_{L}$ or the interval $[\zeta L, \zeta_{U}]$ if $\zeta_{L}<\zeta_{U}$ . Then, $\zeta$ is said to be
$an$ “approximate real zero-point of $\tilde{P}(x)$ of accuracy $|\zeta_{L}-\zeta_{U}|.$

”

3 Bounding existence domains by Smith’s theorem
Although the existence domains of approximate real zero-points can be specified rig-

orously, we consider specifying the existence domains approximately by using the real
zero-points of $P(x)$ .

A key for bounding existence domains is celebrated Smith’s theorem. (For the proof,
see Smith [3].)
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Theorem 4 (Smith) Let $x_{1},$ $\ldots$ , $x_{n}$ be $n$ distinct numbers in $\mathbb{C}$ and $r_{1},$ $\ldots$ , $r_{n}$ be
defined as

$r_{j}=| \frac{nP(x_{j})}{a_{n}\prod_{k1,\neq j}^{n}=(x_{j}-x_{k})}|$ , $j=1,$ $\ldots,$
$n$ . (11)

Let $D_{j}(1\leq j\leq n)$ be a disc of radius $r_{j}$ and the center at $x_{j}$ . Then, the union
$D_{1}\cup\cdots\cup D_{n}$ contains all the zero-points of $P(x)$ . Furthermore, if a union $D_{1}\cup\cdots\cup D_{m}$

$(m\leq n)$ is connected and does not intersect with $D_{m+1},$
$\ldots,$

$D_{n}$ , then this union contains
exactly $m$ zero-points.

For further discussions, see Terui and Sasaki [4].

4 Calculating the number of real zero-points of real
approximate polynomial

In the case that a real polynomial has multiple or close zero-points, its zero-points
may change largely or some real zero-points may become complex, as the coefficients
change slightly. Therefore, it is not adequate to count the number of real zero-points
of a real approximate polynomial which may have multiple or close zero-points. On the
other hand, in the case that a polynomial has only single zero-points, the number of its
real zero-points rarely changes although the position of them may move considerably,
as the coefficients change slightly. In this section, we focus our attention on calculating
the number of real zero-points of a real approximate polynomial containing only single
zero-points.

4.1 Sufficient condition for that the number of real zero-points
becomes definite

We first derive a sufficient condition for error terms so that they do not change the
number of real zero-points.

Theorem 5 Let $P(x)$ and $\tilde{P}(x)$ be defined as in (1) and (2), respectively. Then the
number of real zero-points of $\tilde{P}(x)$ is the same as that of $P(x)$ if the discriminant of

$\tilde{P}$ , or $\mathrm{r}\mathrm{e}\mathrm{s}(\tilde{P}, d\tilde{P}/d_{X})$ does not become zero as $\delta_{i}$ changes continuously within the range
$[-\epsilon_{i}, \epsilon_{i}]$ for $i=0,$ $\ldots,$ $n-1$ .

4.2 Problem of small leading coefficient in the Sturm sequence
We use famous Sturm’s method to calculate the number of real zero-points. Sturm’s

theorem is as follows. (For the proof, see Cohen [1] for example.)
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Theorem 6 (Sturm) Let $F(x)$ be a real square-free polynomial of degree $m$ , and
$(P_{0}, P_{1}, \ldots, P_{m})$ be a sequence of polynomials (the Sturm sequence) defined as

$\{$

$P_{0}=F(x)$ , $P_{1}= \frac{d}{dx}F(x)$ ,

$P_{i}=-\mathrm{r}\mathrm{e}\mathrm{m}(P_{i-}2, Pi-1)$ for $i=2,$ $\mathrm{s}\cdot\cdot,$
$m$ ,

(12)

where $\mathrm{r}\mathrm{e}\mathrm{m}(Pi-2, Pi-1)$ denotes the remainder of $P_{i-2}$ divided by $P_{i-1}$ . Let $a$ and $b$ be
any real numbers satisfying $a<b$ , and let $s$ and $t$ be the numbers of sign changes in the
sequences $(P_{0}(a), P_{1}(a),$

$\ldots,$
$P_{m}(a))$ and $(P_{0}(b), P_{1}(b),$

$\ldots,$
$P_{m}(b))$ , respectively. Then,

the number of the real zero-points of $F$ in the interval $[a, b]$ is equal to $t-s$ .

Note that we can calculate the number of all the real zero-points of $F$ by putting $a=-\infty$

and $b=\infty$ in Theorem 6.
Consider to calculate the Sturm sequence with floating-point arithmetic. During

calculation of the Sturm sequence, we may encounter the leading coefficient problem: 1)
we can hardly decide if a very small leading coefficient is equal to zero or not, and 2)
the division by a polynomial with a small leading coefficient will cause large cancellation
errors in the coefficients of the remainder polynomial.

A Sturm sequence $(P_{0}=F, P_{1}=dF/dx, P_{2}, \cdots, P_{i}, \cdots, P_{k}(=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}))$ satisfies
the following conditions which are sufficient for determining the number of real zero-
points. (For example, see $\mathrm{C}\mathrm{o}\mathrm{h}\mathrm{e}\mathrm{n}[1].$ )

1o For any real number $x$ , consecutive elements $P_{i-1}(x)$ and $P_{i}(x)$ do not simultaneously
become zero.

$2^{\mathrm{O}}$ If $P_{j}(x)=0$ for some $j(1\leq j\leq k)$ and $x\in \mathbb{R}$ , then we have $P_{j-1}(x)P_{j+}1(x)<0$ .
$3^{\mathrm{O}}$ The sign of $P_{k}$ is the same for any real number $x$ .

With condition $1^{\mathrm{O}}$ , we can find the number of sign changes by investigating each $P_{i}$

separately. Let $P_{j}(x_{j})=0$ for some $x_{j}\in$ R. Condition $2^{\mathrm{O}}$ means that $P_{j-1}$ and $P_{j+1}$

have no zero-point in the neighborhood of $x=x_{j}$ . Condition $3^{\mathrm{O}}$ means that $P_{k}$ is a
nonzero constant in our case, $i.e$ . $P_{0}(x)$ has no multiple zero-points. We note that the
sign change of $P_{j}(x)$ at $x=x_{j},$ $j\geq 1$ , does not affect the difference of the sign changes
in the sequences $(P_{0}(a), P_{1}(a),$ $\ldots$ : $P_{m}())a$ and $(P_{0}(b), P_{1}(b),$

$\ldots,$
$P_{m}(b))$ ; the number of

sign change in the whole Sturm sequence occurs only when the evaluation point passes
a real zero-point of $P_{0}(x)$ .

We see that we can relax the condition $2^{\mathrm{O}}$ as follows.
$2’\mathrm{I}\mathrm{f}P_{j}(x)=0$ for some unknown $x$ in the interval $[x_{j}, x_{j}]’$ then we have $P_{j-1}(X)P_{j+}1(x)<$

$0$ for $x=x_{j}-\delta$ and $x=x_{j}’+\delta$ , where $\delta$ is an infinitesimal positive number.

These considerations lead us to an idea of discarding the small leading terms of $P_{i}(x)$ .

Theorem 7 Let $P_{0}(x)$ be a real polynomial having no multiple zero-points. Let $P_{i}(x)$

be an element in the Sturm sequence of $P_{0}(x)$ and assume that $P_{i}(x)$ has small leading
terms. Then, i) if large zero-points of $P_{i}(x)$ due to the small leading coefficients are
sufficiently apart from the zero-points of $P_{0}(x)$ , and ii) if the resultant $\mathrm{r}\mathrm{e}\mathrm{s}(P_{i1}-, P_{i})$ does
not become zero as the small leading coefficients of $P_{i}$ change continuously to zero, we can
calculate the number of the real zero-points of $P_{0}(x)$ by calculating the Sturm sequence of
$P_{0}(x)$ with discarding the small leading terms of $P_{i}(x)$ .
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5Calculation of the discriminant of an approximate
polynomial

We consider evaluating errors in the discriminant of approximate univariate polyno-
mial. We investigate the four methods: 1) evaluating the “subresultant determinant”
by Hadamard’s inequality, 2) calculating the Sturm sequence using interval arithmetic,
3) solving linear system on polynomial coefficients and evaluating errors in the solution
by a standard method in numerical computation, and 4) calculating the Sturm sequence
with parametric error terms.

5.1 Evaluation of subresultant determinant
Let $F(x)$ be a univariate polynomial such that

$F(_{X})=f_{m}X^{m}+fm-1^{X^{m}+\cdots+}-1f_{1^{X+f_{0}x^{0}}}$ . (13)

Then, the p–norm of $F$ is defined as

$||F||_{p}=(_{i=} \sum_{1}^{m}|f_{i}|p)^{1}/p$ , $p=1,2,$ $\ldots,$
$\infty$ . (14)

In this paper, we use 2-norm for polynomials.
Let $F(x)$ be a real univariate polynomial and assume that the Sturm sequence $(P_{0}=$

$F,$ $P_{1}=dF/dx,$ $P_{2},$
$\ldots,$

$P_{k},$ $\ldots)$ has an element $P_{k}$ such that

$P_{k}=\epsilon_{n}x^{n}+\cdots+\in n-s+1xn-s+1$ $+b_{n-s}x^{n}-s+\cdots+b_{0}X0$ ,
(15)

$|\epsilon_{i}|<<|b_{n-s}|$ $(i=n-s+1, \ldots, n)$ ,

where $s<n$ . We derive a sufficient condition that the signs of “successor” elements
in the Sturm sequence are unchanged if we discard the small leading terms $\epsilon_{n}x^{n},$

$\ldots$ ,
$\epsilon_{n-S+}1^{X}n-s+1$ . (For subresultant theory, see Mishra [2] for example.)

Proposition 8 Let $(P_{0}, P_{1}, P_{2}, \ldots)$ be a Sturm sequence and assume that there exist an
element $P_{k}(x)$ in the sequence satisfying (15). Let $P_{k-1}(x)$ be

$P_{k-1}(x)=a_{l}x^{l}+\cdots+a_{0}x^{0}$ , (16)

where $l=n+1$ , and define $\hat{P}_{k}$ and $N$ as follows.
$\hat{P}_{k}=P_{k}-(_{\mathit{6}x+\cdots+\epsilon_{n}X}n-s+1)nn-s+1$

(17)
$=b_{n-s}x+\cdots+n-sb_{0}$ ,

$N=||P_{k}||(2 \{l-1)(l-s)|al|s||P_{k}-1||_{2}^{(s}n-)\sum_{=}^{s}|a_{l}|^{(}j-1)|+|j1\}P_{k}-1||^{(}2n-j+1)$ . (18)
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(Note that the norm of polynomials is 2-norm.) If $\epsilon_{n},$

$\ldots,$ $\epsilon_{n-s+1}$ satisfy

$\{|\epsilon_{n}|+\cdots+|\epsilon n-s+1|\}\cdot N<|a_{l}^{s}\cdot 1_{\mathbb{C}}(\mathrm{S}i(Pk-1,\hat{P}k))|$, (19)

for $i=0,$ $\ldots,$ $n-s-1$ , where $\mathrm{S}_{i}(P_{k}-1, P_{k})$ denotes the i-th subresultant of $P_{k-1}$ and $P_{k}$ ,
then we have

$1_{\mathrm{C}}(\mathrm{s}_{i(P_{k-}P_{k}}1,))\cdot al.1S\mathrm{c}(\mathrm{S}i(P_{k-1},\hat{P}_{k}))>0$. (20)

5.2 Interval arithmetic
In this method, we first transfer the coefficients of the given polynomial into inter-

val numbers each of which includes the corresponding error, then calculate the Sturm
sequence.

We observed how the width of the intervals of coefficients increased during the calcu-
lation. We found that the increase of the width of intervals was about one decimal-digit
for each remainder computation. In fact, division of polynomial of degree $n$ by polyno-
mial of degree $n-1$ requires twice of “

$\mathrm{p}\mathrm{o}\mathrm{l}\mathrm{y}\mathrm{n}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{a}\mathrm{l}\cross \mathrm{n}\mathrm{u}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{r}$
” multiplication and twice of

polynomial subtraction. Since the width of each interval number increases about twice
after one arithmetic operation if the width of each operand is almost the same, the width
of interval coefficient increases about $2^{4}=16$ times after the polynomial division. There-
fore, for example, the widths of intervals in the last element of the Sturm sequence of a
polynomial of degree 10 may become about $10^{10}$ times larger than the initial intervals,
which shows that this method is never useful in practice.

5.3 Standard method in numerical analysis
In numerical analysis, we have a good method of error estimation for the solution of

a system of linear equations. Calculation of the resultant or the Sturm sequence can be
reduced easily into a linear system. (For the norm of vectors and matrices, please consult
various literature on numerical analysis. We only use 1-norm and $\infty$-norm for vectors
and matrices in this paper.)

Let $F(x)$ and $G(x)$ be given by

$F(x)=f_{m^{X^{m}+\cdots+}}f\mathrm{o}x^{0}$ , $f_{m}\neq 0$ , (21)

$G(x)=gn^{X^{n0}}+\cdots+g0^{X}$ , $g_{n}\neq 0$ , (22)

where $m\geq n$ . Then, calculation of the resultant or the Sturm sequence is equivalent
to eliminate the terms of higher degrees to derive $R_{s}$ , a polynomial of degree $s$ , for
$s=0,$ $\ldots,$ $n-1$ . For every $R_{s}$ , there exist polynomials $U_{s}$ and $V_{s}$ such that

$U_{ss}F+VG=R_{s}$ , $\deg(U_{s})\leq n-s-1$ , $\deg(V_{S})\leq m-S-1$ . (23)

We consider calculating $\mathrm{r}\mathrm{e}\mathrm{s}(F, G)$ , or the resultant of $F(x)$ and $G(x)$ . Let $U_{0}$ and $V_{0}$ be
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expressed as

$U_{0}=u_{n-}1^{X+\cdots+}n-1u_{0}x0$ , (24)

$V_{0}=v_{m-}1^{X+\cdots+}m-1v0^{x}0$ . (25)

By the relation $U_{0}F+V_{0}G=R_{0}=\mathrm{r}\mathrm{e}\mathrm{s}(F, G)$ , we obtain a system of linear equations on
the coefficients in $U_{0}$ and $V_{0}$ . With normalizing $U_{0}$ and $V_{0}$ as $u_{n-1}=g_{n}$ and $v_{m-1}=-f_{m}$ ,
respectively, we can derive a system of linear equations of the form

$Ax=b$. (26)

In the system (26), $A$ is a “coefficient matrix,” and $x$ and $b$ are vectors of unknown
numbers and known numbers, respectively. We briefly describe the effect of errors in $A$

and $b$ on $x$ (detailed analysis can be found in various literature in numerical analysis).
Assume that $b$ has the error $\Delta b$ which causes an error $\Delta x_{1}$ in the solution $x$ . Then, we
have

$A(x+\Delta X1)=b+\Delta b$ . (27)

Using (26), we easily evaluate the magnitude of $\Delta x_{1}$ as

$\frac{||\Delta_{X_{1}}||}{||x||}\leq||A||||A-1||\frac{||\Delta b||}{||b||}$ . (28)

Furthermore, assume that $A$ has the error $\Delta A$ and the error of $x\mathrm{b}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{e},\mathrm{S}\Delta x_{1}+\Delta x_{2}$ ,
as follows.

$(A+\Delta A)(x+\Delta x_{1}+\Delta x_{2})=b+\Delta b$ . (29)

Using (27), we derive the following evaluation of $\Delta x_{2}$ .

$\frac{||\Delta_{X_{2}}||}{||_{X+\Delta x_{1}+}\Delta x2||}\leq||A||||A^{-1}||\frac{||\Delta A||}{||A||}$ . (30)

(28) and (30) lead us to the following evaluation.

$\frac{||\Delta X_{1}||+||\Delta_{X_{2}}||}{||x||+||\Delta_{X}1||+||\Delta_{X_{2}}||}\leq||A||||A^{-1}||\{\frac{||\Delta A||}{||A||}+\frac{||\Delta b||}{||b||}\}$ . (31)

The number $||A||||A^{-1}||$ is called the “condition number,” which specifies the amount of
the error in the solution.

Equation (26) can be solved by Gaussian elimination with pivoting. Although we
did not consider rounding errors in floating-point arithmetic in the above evaluation, the
evaluation of rounding errors can easily be included by adding $\Delta A_{M}$ , the error whose
magnitude is about machine epsilon $\epsilon_{M}$ , into $A$ .
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5.4 Calculating error terms parametrically

The method described in this subsection gives a good estimation of errors in the
Sturm sequence, although the calculated value does not give the rigorous error bound.

Let $n$ be the degree of the given polynomial $P(x)$ and $\delta_{n-1},$ $\delta_{n-2},$
$\ldots,$

$\delta^{\mathit{4}}0$ be parameters
representing the errors of the coefficients. Then, the discriminant or an element in the
Sturm sequence is a polynomial in $x$ and the parameters $\delta_{n-1},$ $\delta_{n-}2,$

$\ldots,$
$\delta_{0}$ . Although it

is very inefficient to calculate all the terms of the polynomial, calculation of only terms
which are linear in the parameters can be executed at the cost of $O(n)$ times the cost of
calculation of a $\mathrm{p}\underline{\mathrm{o}}\mathrm{l}\mathrm{y}\mathrm{n}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{a}\mathrm{l}$ with numerical coefficients.

Assume that $P(x)$ in (2) is monic, then $\tilde{P}(x)$ is expressed as follows.

$\tilde{P}(x,$ $\delta_{n},$ $\ldots J\delta_{0)=X+}n(_{C_{n}}-1+\delta_{n}-1)X-1+n(_{C}n-2+\delta_{n}-2)x+\cdots+(n-2c0+\delta_{0})_{X^{0}}$ .
(32)

Now we introduce a total degree variable $t$ , and calculate the Sturm sequence $(\tilde{P}_{0}=$

$\tilde{P},\tilde{P}_{1}=d\tilde{P}/dx,\tilde{P}_{2},$
$\ldots$ , $\tilde{P}_{k}$ ) of $\tilde{P}$ up to degree 1 in $t$ , then substitute 1 for $t$ after the

calculation. With this computation, we have

$\tilde{P}_{i}(x, \delta_{n}, \ldots, \delta_{0})\simeq\tilde{P}i(x, \mathrm{o}, \ldots, 0)+\tilde{P}i,n-1(x, 0, \ldots, 0)\delta_{n-1}+,$ $..+\tilde{P}_{i,0}(x, 0, \ldots, 0)\delta_{0}$ ,
(33)

where $\tilde{P}_{i,j}=\partial\tilde{P}_{i}/\partial\delta_{j}$ for $j=n-1,$ $\ldots,$
$0$ . By neglecting the terms of order $o(\delta^{2})$ , we

have the following approximate inequality.

$|\tilde{P}_{i}-P_{i}|\leq|\tilde{P}_{i,n-1}(x, 0, \ldots, \mathrm{o})|\epsilon_{n-1}+\cdots+|\tilde{P}i,0(X, 0, \ldots, 0)|\epsilon_{0}$ , (34)

where $|(\mathrm{p}\mathrm{o}\mathrm{l}\mathrm{y}\mathrm{n}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{a}\mathrm{l})|$ denotes a polynomial with the coefficients replaced by their absolute
values.
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