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A Fleming—Viot process with unbounded selection
FE S GERITERFETEMIERD (Tokuzo Shiga)
This is. a joint work with S. N. Ethier (University of Utah).

1. Introduction. Tachida’s (1991) nearly neutral mutation model (or normal-selection
model) is best described in terms of a Fleming—Viot process with house-of-cards (or
parent-independent) mutation and genic selection. In particular, the type space (or set of
possible alleles) is a locally compact, separable metric space E, so the state space for the

process is (a subset of) P(E), the set of Borel probability measures on E; the mutation
operator A is given by '

(1) (AN(&) = 5 [(f6) ~ ) wold),

where 6 > 0 and vo € P(E); and the selection intensity (or scaled selection coefficient)
for allele z € E is h(z), where h is a Borel function on E. More specifically, Tachida’s
model assumes that

(1.2) E=R,  yy= N(0,0?), h(z) = z,

where 02 > 0. In other words, the type of an individual is identified with its selection
intensity, and that of a new mutant is taken to be normal with mean 0 and variance o3.

Ethier (1997) derived some properties of what was presumed to be the unique sta-
tionary distribution for this process, but a characterization of the process, as well as a
“proof of the uniqueness of the stationary distribution, were left as open problems. In this
paper we treat these and related problems. The difficulty, of course, is that the function
h is unbounded. Overbeck et al. (1995) studied Fleming-Viot processes with unbounded
selection intensity functions using Dirichlet forms, but were concerned mainly with sup-
port properties and did not address the issue of uniqueness of solutions of the martingale
p_roblem. ,

It involves almost no additional effort to weaken (1.2) as follows. Let E, vg, and h be

arbitrary, subject to the condition that there exists a continuous function kg : E > [0, 00)
such that

(13) . Ih| < ho, [Eepho(ﬂ vo(dz) < 00, p > 0.

The second requirement in (1.3) is simply that vohy' have an everywhere-finite moment
generating function. This assumption is in force throughout the paper. The generator of
the Fleming—Viot process in question will be denoted by £} to emphasize its dependence
on the selection intensity function h. (Of course, it also depends on E, vy, and 6.) It acts
on functions ¢ on P(E) of the form '

(1.4) o(1) = F({fo, g (fer ) = F((£, 1)),
where k > 1, fi,..., fi € C(E), F € C*(R¥),
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Note that because (h,u) appears in (1.5) and h may be unbounded, we need to restrict
the state space to a suitable subset of P(E). Although other choices are p0531ble, we take
as our state space the set of Borel probability measures y on E such that phy' has an
everywhere-finite moment generating function.

Let us define

(1.6) 'P°(E) ={pePE): (e'”h",/r)‘ < o0 for all p > 0}

and, for p,v € P°(E),

(1.7) d°(p,v) = d(p,v) + / (1 A sup |(e”™, ) — (e”"°,V>|)e-r dr
0<p<r ' '

where d is a metric on P(E) that induces the topology of weak convergence. Then
(P°(E),d°) is a complete separable metric space and d°(u,, ) — 0 if and only if p, = p
and e?Po is {y, }-uniformly integrable for each p > 0. Thus, the topology on P°(E) may
be slightly stronger than the topology of weak convergence. : :

2. Characterization of the process. Let Q = C(p(g),q)[0,00) have the topology
of uniform convergence on compact sets, let F be the Borel o-field, let {u:, t > 0} be the
canonical coordinate process, and let {F;} be the corresponding filtration.

We will need four lemmas from Ethier (1997). All were proved under assumptions
(1.2) but extend easily to (1.3).

LEMMA 2.1. Let h; and h, be bounded Borel functions on E If P € P(Q) is a solution
of the martingale problem for £, then

(2.1) Rt=exp{(h2,ut)'—(hg,,uok)—ﬁte“<52,#s>ﬁhle(hg,us)ds}
= xp{ ()~ Ghaspo) [ [3(0H8 ) = ()

3002, v0) — () + S, ) (s s s ) ds

is a mean-one {F;}-martingale on (Q, F, P). Furthermore, the measure Q € P(Q) defined
by

(22) ' ' dQ = .'Rt dP on Fi, t Z 0,

is a solution of the martingale problem for Lp, 44,.

We now define
(2.3) ‘ Q° = C('po(E)’do)[O, OO) CcQ= C('p(E)’d) [O, OO)

For y1 € P(E) we denote by P, € P(f2) the unique solution of the martingale problem for
Ly (i.e., the distribution of the neutral model) starting at p.
LEMMA 2.2. For each p € P°(E), T >0, and p > 0,

(2.4) EFx [0215 { PhO,ut>2] < (12T + 3)(e2°P, ) + (12T + 362 T2)(e?™, vg).
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In particular, recalling (1.3), e?" is {ys, 0 < t < T'}-uniformly integrable P,-a.s. for each
p>0and T > 0, and therefore P,(Q°) = 1. S

Remark. The corresponding result in Ethier (1997) contains a small error, so here we
_provide a corrected proof. -

Proof. Fix p € P°(E), T >0, and p > 0. For each g € C(E),

(2.5) 2() = (9,1 — (9. 10) = 40 [ ((9,0) = (g, 1)) ds

" is a continuous {J;}-martingale on (Q, F, P,) with quadratic variation process

t
(2.6) (@)= [ (@) = (o)) ds.
If, in addition, g is nonnegative, then (g, us) < Z9(t) + (g, o) + 30t(g,vo) for all t > 0, so

@7)  BP| sup (g,m)?] SSEP| sup Z9(t)?] +3(g, w)? + 30T (g, )2,
0<t<T 0<t<T

and

(2.8) EP"[ sup za(t)z] < 4EP+[29(T)?]
0<t<T

T
—4 / B2 [(g2, 1) — (g, o)) ds

T
<4 / (U(s)g%, 1) ds
S 4T(<927/J') + <g2, V0>)7

where {U(t)} is the semigroup on C(E) with generator Af = 30((f,vo) — f); it is given
by '

(2.9) Ut)f = e 2 f + (1 - e™®/?)(f, o).
Now let g = e?Po A K in (2.7) and (2.8), and noting that.

(2.10) sup (e”" 1) = lim sup (e”™ A K, ps)?,
0<t<T K—o0 0<t<T

we obtain (2.4).

Let 2° have the topology of uniform convergence on compact sets, let F° be the
Borel o-field, let {u:, t > 0} be the canonical coordinate process on 0°, and let {F7?}
be the corresponding filtration. We do not distinguish notationally between the canonical
coordinate process on  and that on Q°, between P, € P(Q) and its restriction to F°
(note that F° C F), or between R; of (1.9) and its restriction to Q°. We temporarily
denote R; by Ri‘ vhitha 4 indicate its dependence on hy and hs.
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LeMMA 2.3. For each u € 'P°(E) {R 2 Z 0} is a mean—or_xe_{]-'f}-ma,rtv:ingale on
(Qe, Fo, P,). .

Th1s is proved using the estimate of Lemma 2.2. For each p € ’P°(E) Lemma 2.3
allows us to define Q, € P(Q2°) by
(2.11) dQ,=RMdP, on F?, t>0.
Lemma 2.2 can again be used to show that @, solves the Q2° martingale problem for Lp,
starting at p.

LEMMA 2.4. Let p € P°(E). Then

(2.12) o (e) - / (Ex ) ds

is an {F7}-martingale on (Q°, F°, Q,) for each ¢ € D(Ly).

These results from Ethier (1997) proved the existence of solutions of the (3° martingale
problem for £;. We now complete the characterization.

THEOREM 2.5. For each u € P°(E), the Q° martmgale problem for Lp, starting at p
has one and only one solution.

Proof. It remains to prove uniqueness. Given pu € P°(E), let Q. € P(Q2°) be a

solution of the Q° martingale problem for £}, starting at p. Then {R;z 0 t> 0} is an {F7}
local martingale on (Q°,F°,Q,). In fact, if we define

(2.13) TN = inf{t > 0: (h3, us) > N},
then {R™C Arys t > 0} is a mean-one {F},,, }-martingale on (2°,F°,@Q,). Using essentially

Theorem 1.3.5 of Stroock and Varadhan (1979), there exists for each N> 1 a probablhty
measure PN on (02°, Fz) such that

(2.14) dPY = Rﬁi’m dQ, on Fin., t>0.

Furthermore, by the argument that was used to prove Lemma 2.1,

215) W)= [ (Lo s

is an {Fiary }-martingale on (Q°, F7,, PN )- Agam we apply Theorem 1.3.5 of Stroock and
Varadhan (1979) to deduce the emstence of a probability measure P; on (2°,F°) such
that

(2.16) o P;=PF) on F;

7 p ™

N> 1.

We daim that

(2.17) o(ue) - / (Low)(ur) dr
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is an {7} }-martingale on (Q°, F°, P?) for every ¢ € D(Lo). To see this, fix such a go, let
H be a bounded continuous functlon on P°(E)™, where m > 1, and let 0 < sy <+o- <
Sm < s < t. Then '

CpEATN

(Qo(ﬂ't/\-rzv) — Q(Hanry) — /

SATN

(2.18) EF:

(Low)(r) d'r) H(ps,nrys - -y Bopn /\TN)} =0

for each N > 1, hence

@19 B (i) - ) - /t(coso)(ur)dr)ﬂ(usl,;..,psm)]-=o.

This proves the claim, and so Pg, extended to (2, ) in the obvious way, is a solution of
the ) martingale problem for Eo starting at u, and must therefore equal P,.
Finally, from

(220) Rt/\‘rN de on EoAnv’ t 2 07
we obtain
(2.21) dQu = R\ dP, on F,..., t>0,

and in particular that for each N > 1, E@[p(usary )] is uniquely determined for every
bounded continuous ¢ and t > 0, hence the same is true of E@x [p(ut)]. Thus, the Q-
distribution of y is uniquely determined for every t > 0, implying that the Q° martingale
problem for £}, starting at pu has a umque solution.

3. Dlﬂ'usmn approximation of the erght—Flsher model The motivation
for the Fleming—Viot process characterized in Section 2 is that for large populations it
approximates Tachida’s (1991) model, which was originally formulated as a Wright-Fisher
model. In this section we provide a justification for this diffusion approximation. It
does not follow from existing results (such as Ethier and Kurtz (1987)) because of the
unboundedness of A.

We begin by formulating a Wr1ght~Flsher model that is general enough to mclude

Tachida’s model. It depends on several parameters, some of which have already been
introduced: : '

o E (alocally compact separable metric space) is the type space or set of possible alleles.
e M (a positive integer) is the haploid population size, or M = 2N is the number of
gametes in a diploid population of size N.

u (in {0,1]) is the mutation rate per generation per gene.

* vy (in P(E)) is the distribution of the type of a new mutant; this is the house-of-cards
assumption.

@ w(z) (a positive Borel function defined for each z € E) is the fitness of allele x.

The Wright-Fisher model is a Markov chain describing the evolution of the composi-
tion of the populatlon of gametes (z1,...,z)) € EM or, since the order of the gametes is

unimportant, M~! Zz 16z, € P(E). (Here 0z € P(E) is the unit mass at z € E.) Thus,
the state space for the process is

(3.1) . Pu(E) = {A—Z‘Z% eP(E): (z1,...,21) € EM}
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with the topology of weak convergence. Time is discrete and measured in generations. The
transition mechanism is specified by

: - ; ‘,1MJ"Q1M’-

32 . | : S b= 37 ;5&: iy ;5}@,

where

(3.3) Yi,..., Yy are iid. g™ [rarldom sampling],
(3.4) p** = (1 —uw)p* +uvg - [house-of-cards mutation],
(3.5) ,u* @ = / w(z) p(dr) / w, 4) [genic selection].

(Integrability in (3. 5) is not an 1ssue, because G has finite support ) ThlS sufﬁces to describe
the Wright-Fisher model in terms of the parameters listed above. -
" . However, since we are interested in a diffusion approx1mat10n, we further assume that

(3.6)  u= 2?\4, N (x)_exp{h(x)}

where 6 is a positive constant and h is as in (1.3). (Note the use of the exponential in
(3.6). This ensures that w(z) is always positive, in contrast to the more conventional and
asymptotically equivalent-w(z) =1+ h(z)/M.) : ‘

The aim here is to prove, assuming the continuity of h, that convergence in ’P°(E) of
initial distributions implies convergence in distribution in Q° of the sequence of rescaled
and linearly interpolated Wright—Fisher models to a Fleming—Viot process with generator
Ly as in (1.4)-(1.5). We postpone a careful statement of the result to the end of the
section.

The proof requires a moment estimate on the neutral (h = 0) Wright-Fisher model
that is analogous to Lemma 2.2 for the neutral diffusion model, as well as a Girsanov-type
formula for the erght—Flsher model that is a bit different from Lemmas 2.3 and 2.4 for the
diffusion model. These two results require two simple lemmas concerning Markov chains,
whose proofs can be left to the interested reader.

LEMMA 3.1. Let {Xn, n =0,1,...} be a Markov chain in a separable metric space
S with transition function m(z,dy), and define the operator P on B(S) by (Pf)(z) =
[s f(y) w(x, dy). Then, for each f € B(S),

n—1

(3.7) M, = f(Xn) = f(Xo) — > _(Pf — H)(Xx)

k=0

is a zero-mean {FX}-martingale, as is M2 — A,,, where

(3) 40 = S{P() - (PH?HX0).
k=0
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For the next lemma, let S be a separable metric space, and let {X,, n =0,1,...}
denote the canonical coordinate process on = = $%+, which has the product topology.

LEMMA 3.2. Let (P;)zes and (Qz)zes be (time-homogeneous) Markovian families of
probability measures on (=, B(Z)), and suppose there exists a Borel function V : § x S —
[0, ) satisfying

(39) E% [f(X1)] = E™[f(X1)V (X0, X1)]
for all f € B(S) and z € S. If we define Ry =1 and

. (310) Rn = H V(X,;..l, X,;), n Z 1,
. =1
then |
(3.11) E®=[f(Xo, X1,...,Xn)] = B [f(Xo, X1,..., Xn) Rn]

for all f € B(S™) and z IE S. In particular, R, is a mean-one {FX}-martingale on
E,B(E), P;) for each z € S, and Q.|FX <« P,|FX with Radon-Nikodym derivative R,
foreachn>0and z € S.

We begin by applying Lemma 3.1 to the neutral Wright—Fisher model. As in Section
2 it will be convenient to use the canonical coordinate process

Let Zp = Py (E)z+ have the product topology, let F be the Borel o-field, let
{#n, n=0,1,...} be the canonical coordinate process, and let {F,,} be the corresponding

filtration. For u € Pp(E) we denote by P,EM) € P(Em) the distribution of the neutral
Wright-Fisher model starting at pu.

LEMMA 3.3. For each u € Py(E), T > 0, and p > 0,

pPM) pho 2 < 2pho 3p2m2 2pho .
(3.12) E"« [og%aﬁ%:r](e s B ) } < (12T + 3)(e**™, ) + (12T + 36°T?)(e* ™, vy).

Remark. Note that the right side of (3.12) is identical to that of (2.4).
Proof. Let g € C(E). Note first that, for each p € Py (E),

319 B o m)] - (0. = B[ (0, 37 ﬁayﬂ ~ (o)

= (g, (L= wps+ o) — (g, ) = 5o2((9,v0) — {g, ),

where Y1,..., Yy are i.id. (1 — w)p + uvp,
(M) (M) | 1 M
P, 21 _(RP 2 _—
(3.14) E™ (g, p1)*] — (B™ " [{g, m1)]) Var(<g, i §=1 6Y,->)

M
= 373 22 Vara() < {1~ (e ) + vl ).
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and
(3.15) P (g2, i) = BP0 (B (g2, )]
. = (1 - WEP (g2, 1)) + ulg?, vo)
= (l - u)k<g2aﬂ') + [1 - (1 - u)k]<92a.V0>
for all k > 1. : |
By Lemma 3.1,
(316) Zg, = (ga .U"n> <g7/“0 2M Z(<g7VO> gaﬂ'k»

is an {F,}-martingale on (=2, F, PF(LM)) with
317  ERM [z < Z{u — WER (g%, )] + u(g?, vo)}

=——Z{<l W Lg2, ) + [ — (1 — u)** (g, 1)}

< M({g ;1) + (9%, o))

for allm > 1 and p € Py(E). If, in addition, g is nonnegative, then (g, u,) < Z9 +
(g, 1o) + (2M)~10n(g, vo) for all n > 0, so, for each p € Py (E),

1 EP(M) 2| « quPM™ g 2, 3p272 2
(3 8) . [OS%a[,}I\CJT]<g, Nn) ] < 3E » [0(,?28‘3\{47’](Z ) } +3(g,,u> + 40 T <g1 VO) 3

for all T > 0, and

(319)  BAY| max (22)’] <4B5V((Z0)") < AT(G% ) + (6 0))

As in the proof of Lemma 2.2, we apply (3 18) and (3.19) with g = eP?° A K, and the result
follows by letting K — oc.

We define the map @y : Epp — Q° by

(3.20) Dar(po, p1,-- )t = (1 — (Mt — ,[Mt])),u[Mt] + (Mt — [Mt)) pipre41-

This transformation maps a discrete-time process to a continuous-time one with continuous
piecewise-linear sample paths, rescaling time by a factor of M. For each u € Py (E), let

P(M) € P(Em) denote the distribution of the neutral Wright-Fisher model starting at p,
and let P, € P(2°) denote the distribution of the neutral Fleming—Viot process starting
at u.

The next lemma shows that the neutral Wright-Fisher model, with time rescaled
appropriately, converges in distribution in Q° (not just ) to the neutral Fleming—Viot
process.
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LEMMA 3.4. Let {u™} c Py (E) C P°(E) and p € P°(E) satisfy d°(u™),u) — 0.
For simplicity of notation, denote Pﬁ,@) by just P, Then PM .)<I>;Il‘ = P, on °.

Proof. First, we verify the compact containment condition (Ethier and Kurtz (1986)).
Let ¢ > 0 and T > 0 be given. For each positive integer 7, define the constant

(3.21) C,=c"127 S}\I/Ip{(12T +3) (e?rhO,'u(M)) + (12T + 362T2)(e2rho, Vo)}l/?.
Then
(3.22) K=[{pePE): (™ u<C}

r=1

is compact in P°(E), and

(3.23) PMart{y, € K for 0< ¢t < T}

=120 (U { g e > 01}

= ZCT_ 'BP [«ﬁa[’zfm(erho’“")]

r=1

>1—¢

for all M, where the last inequality uses Lemma 3.3 and (3.21).
For completeness, we prove here convergence of the generators, though the argument

is essentially as in Ethier and Kurtz (1986), Section 10.4. For functions ¢ on P°(E) of the
form

where n > 1 and f1,..., f, € C(E), define L(()M)go on Py (E) by -

(M)

(3.25) (LM ) (1) = M{EP" [p(p1)] — p()}-

Letting w(n,k) denote the set of partitions 3 of {1,...,n} into k unordered subsets
Bi,-..,0k (with minB; < --- < minf), and letting Yi,...,Yy be iid. p** = (1 -
u)p + uvp, we have

(3260  EP[p(um)] = Kfl, Zéy> (o o Zayﬂ
——I——E[(;fl(m)“(Zfﬁ(mN
-3 e 3 (I

Ber(n,k) =1 ‘i€P;
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for all 4 € Pu(E).. Consequently,
321 (o))

1 1 * ¥k
M{Mn(M ),Hf,, Mn(M T 2 Sitiw) 1 oo™

1<i<j<n l:l#i,j

+ o) - T, >}

j=1 ‘
=M 1-— f: fzfg9 **> (fa f_77
(-5 Huwregy 3 s H H }
+oW™Y)
= Y (k) = G Fnm) T (Fop)
1<z<g<n . L:l#4,7
4‘2:-AfﬂﬁL Il(fn II fﬂ )'*CXAJ_H
| Ju<i > v |
=y (<fz-fj,u>—<?fi,u><fj,u>) IT (Fom +> (Afim T] (Fiom) +O@L7Y)
1<i<i<n L:l#£4,5 i=1 VBEX ,

= (Lop)(p) + O(M™),

uniformly in u € Pp(E). Thus, the lemma follows from several results in Ethier and Kurtz
(1986) (Theorems 3.9.1 and 3.9.4, Proposition 3.10.4, and Corollary 4.8.13).

For the next two lemmas we require the infinitely-many-alleles assumption, that is,
(3.28) vo({z}) =0, xeE.

This of course includes (1.2).

For each p € Py (E), we denote by PF(LM) and Q&M) in ’P(E M) the distributions of the
neutral and selective Wright—Fisher models, respectively, starting at u.

LEMMA 3.5. Assume (3.28). Then, for each u € Py (E),
(3.29) ©dQM = RMDGPM on FI,  n>0,

where

(3.30) R&M) = exp { z<hlsur>p pk—1s Hic) — Z(lsupp ,Ufk—17/‘l‘k>M10g<eh/M)/‘l‘k—'1>}'
' k=1 k=1 -

Proof. Let ¢ € B(Py(FE)) and p € Py (E). Then

(331)  E%[p(u)] = / / ( Z«sy,) u**(dyl)---u**idyM>
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_ Z (1 _u)IIluM—IIl/E.../ ( 1 ﬁl:(iyz) Hu (dy:) H vo(dy;)

Ic{1,2,...,M} E i=1 i€l i€le

- 1 I (yl)
- I e [ Lol 3o e Tutaw [T i
Ic{1,2,..,.M} - JE 5 \M = (w, “>I l icle

(M)
= EPP’ [So(ﬂl)V(M) (/‘01 I~L1)]>

where, if yy = M~? ZzM___l 0y, and I = {1 <i < M :y; € supp o},

(332) V™ (uo,m) = %%Qgg_')

— exp{{M (log w)lsupp po, #1)}
<w, NO>M<1supp po k1)

= exP{<hlsupppo>N1> - <1supppoa.u1>Mlog<eh/MaNO>}'

The first equality in (3.32) uses (3.28). The result now follows from Lemma 3.2.

We next show that the Girsanov-type formula for the Wright—Fisher model converges
in some sense to the one for the Fleming-Viot process. First, we need a bit of notation.
Define Rg ) on Q° for all ¢ > 0 so as to satisfy

(3.33) | R™o®y =Rl on By, t20,

where RS is as in Lemma 3.4. Specifically, we take

(M)

(3.34) RM = exp { D (Wloupp e syyae M/ M)
k=1
(M1] ‘
- Z(lsupp #(k—x)/M:#k/M)MlOg(eh/M,H(k——l)/M)}-
k=1

We also define R; on Q° for all t > 0 to be what we called R? » in Section 2, namely,

(3.35) R; =exp {(h,ut) — (h, o) __/0 [—21-((h2,;43) — (hpe)?)
+ 16((h, vo) — (h, o)) ds}.

LEMMA 3.6. Assume that h is continuous and (3.28) holds, let T' > 0 be arbitrary, and
let P(M) be as in Lemma 3.4. Then there exist Borel functions Fyr, Gas : 2° — — (0,00), a
continuous function F : Q° — (0, 00), and a positive constant G such that

(3.36) B = FyGy,  Rr=FG,

Fy — F uniformly on compact subsets of 2°, and Gy — G in P(M) &3 -probability.
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Proof. Let.
M7 | T
(3:37) log Far = > (b, o1y ar) — Z Mog(c* nu(k 1>/M>
k=1 , i
MT)
+36 3 108<6h/M,M_(k—1)/M),
(M7
(3:38)  logGm=— D (M{(supp ucs_1y/a0)es Hk/M) — l9) log(e"™, p(—1)/n)
k_...
[MT] v v
— D (AL (supp a1y 00)°» M),
k=1

T T |
839 logF = (h,r) = (hopso) = [ 3(,1) = (hop)at+ [ 0(h, )

and
(3.40) log G = — 16T (h, 1),
and note that (3.36) holds. Then, pathwise on °,

(3.41)  log(e™™, px—1y/mr)
T h2, -
~ log (1+< K(k—1)/M) +< P(k—1)/M) +O(Mf3))

M © 2M2 |
h'7 - 5 h27 - - ha - 2 -
_ ¢ ﬂ(l;vll)/M) N 5 (A, 1k 1)/M]>w2< I(k—1)/M) )+O(M‘3),
s0
[MT]
(3'42) logFM = <ha/-"[MT]/M> h NO Z ( )N(k—l)/M)_ — (h,,u,(k_l)/M>2)
1 [MT]
v Z 30(h, pe— 1)/M>+O(M 1
k=1
=log F' + o(1).

To show that these results hold uniformly on compact subsets of 2° requires a more careful
analysis, which we illustrate with an example.
Consider the problem of showing that, for fixed T > 0,

[MT]
(3.43) i Z b, pk—1) /M —-*/ (h,pt) d
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uniformly on compact subsets of Q2°. This requires several observations. First, note that,
for each w € Q°, t — (h,w;) is continuous since h is continuous and |h| < hy. (Recall
the topology on P°(E), in which convergence entails a uniform integrability condition.)
Second, we claim that, if {w™} € Q°, w € Q°, and W™ — w, then (h, w(")) — (h,wt)
uniformly on compact t-intervals. Of course, w(“) — w means that d°(o.;1t ),wt) -0
uniformly on compact t-intervals, hence d°(w(n) wt) — 0 whenever t, — t, hence

(h, w,g")) — (h,w;) whenever t, — t, and this is equivalent to our assertion. Third, it

follows that w — fOT(h,wt) dt is continuous on Q°. This argument, incidentally, leads to
the conclusion that F' is continuous on Q°. Finally, it therefore suffices to show that, if
(WY Cc Q° weQ°, and w®) - w, then

[MT]

T
(3.44) - L Z(h W ) = /O (h,we)

But by the second observation, (h,wéK)) — (h,w;) uniformly on compact t-intervals, and
therefore, using the first observation, (3.44) follows. The rest of the proof that Fyy — F
uniformly on compact subsets of ° is handled in the same way.

Next, because of (3.28), the P(M)@!-distribution of the second sum in log G is the
distribution of

[MT] X,

(3.45) jYi Z > héw),

k=1 I=1

where X1, Xs,... are independent binomial(M, 8/(2M)) random variables and &y (k1 =

2,...) are i.i.d. vy and independent of X, X,.... This converges in L? to 20T (h, o),
since

[MT] X, MT] 2
(3.46) — h(éw) — 30—
B(2 > 3 hew) (hvo}) | |
[MT] X, [MT) 2
=5 (o 3 Do hE) - (o) + 7 2 5= 10000 |
k=1 l=1
) {[g’] (Z )2 ) [g} )
S, h(€r) — (b, vo)} ) | + =5 Y Var(Xk)(h, o)
M k=1 —{ . ] M k=1 are i
1 [MT] 1 [MT)]
= Z E[X1]((h2, vo) — (h, 1) )+ 1 > > Var(X)(h, vo)?
k=1

Finally, using (3.28) once agaln the P(M iy M !-distribution of the ﬁrst sum in log G M has
second moment

[MT])

(M) (MS
(3.47) > EPV ML supp ey i6) — 20)2IEP ™ [(log(eP™ | 1 _1))2]
k=1
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by virtue of the fact that M(1(supp uy_1)e> Bk) IS independent of px—1 and distributed |
binomial(M, 8/(2M)) under P(M). But (3.47) is bounded by

[MT) ' [MT] '
(3.48) 3 10EP™ [(log(e"™, m-1)? < 30 Y BT [(log(e™/M, pi-1))’]
k=1 k=1 . :
| 1 = PO L ho /M 2
10) EF (e o/M 1, pe-1)?]
k=1
15 1 ekl P ho/M 2
<16— » E "[(hoe™’", pr-1)]
. k=1
=OoM™),

IA

using Lemma 3.3. To see the first inequality in (3.48), note that

(3.49) | log(e™/M ) < log(e"™, ) < log(e"/™, )

~and therefore | |

(3.50) | log(e™ , )| < max{log(e"/™, u), —log(e™/M, )} = log(e"/™, ),

where the last identity uses Jensen’s inequality. This proves the lemma.
Our last lemma is a simple result about weak convergehcé. ’

LEMMA 3.7. Let S be a separable metric space, let fn,gn : S+ [0,00) (n > 1) be
Borel functions, let f : S — [0,00) be continuous (but not necessarily bounded), let g be
a positive constant, and let H : S — R be bounded and continuous. Assume that f, — f
uniformly on compact sets. Let P, (n > 1) and P be Borel probability measures on S such
that P, = P, g, — g in P,-probability, and [ fngn dPn = JsfgdP =1 foralln > 1.
Then [g fngnH dP, — [s f9H dP. '

Proof. By Theorem 5.5 of Billingsley (1968), P.f7! = Pf™! and P.(fH)™' =
P(fH)™!. Since P,g;' = &y, it follows that Pp(fngn) ™" = P(fg)~! and P,(fognH) ' =
P(fgH)™'. By Theorem 5.4 of Billingsley, this together with the assumptions that
Fagn >0, fg > 0, and [ fagndPn = [gfgdP = 1 for all n > 1 imply that {fngn}
is {P,}-uniformly integrable. Since H is bounded, {fngnH?} is also {P,}-uniformly in-
tegrable. This, together with Py frngnH)™' = P(fgH)™! proved just above, gives the
desired conclusion.

For each u € Py(E), let QLM) € P(Zp) denote the distribution of the selective
Wright-Fisher model starting at p, and for each p € P°(E), let Q, € P(Q2°) denote the
distribution of the selective Fleming—Viot process starting at p. ‘

We have now done almost all the work required to prove the main result of this section.

THEOREM 3.8. Assume that h is continuous. Let {u(*} Cc Pum(E) C P°(E) and
p € P°(E) satisfy d°(u(™), u) — 0. For simplicity of notation, denote Q%{Z) by just QM).
Then QM &7} = Q,, on Q°.

Proof. First, we prove the theorem under the additional assumption (3.28). Let
T > 1 be arbitrary. We apply Lemma 3.7 with S = Q°, (fn,gn, f; g9) = (Fu,Gu, F,G)
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from Lemma 3.6, H an arbitrary bounded continuous Fr-1-measurable function on Q°,

and (P,, P) = (P(M ®37, P,) from Lemma 3.4. Lemma 3.6 gives the required convergence
of {f.} and {g,} and the continuity of f. Lemma 3.4 gives P, = P. The requirement
that [g fagn dP, =1 for all n follows from

A M —
(3.51) /R,} >dP<M>q>Ml=/

p—
=)

-M

R;M) OQMdP(M) =/

—
et

-M

M M
Riyiy dPOD = 1,

which uses (3.33), and of course [ fgdP = 1 because Joo RTdP, = 1. Thus, Lemma 3.8
implies that ' v

(3.52) HdQ™May! = [ HRM gpDgs1 / HRrdP, = / HdQ,.
Qo Qo [=] Qo

(We assumed H to be Fr_1-measurable so that it would be Fimm /M-measurable for
every M.) Since the collection of all such H (as T varies) is convergence determining,
QM = q,.

Finally, we need to remove assumption (3.28). Given arbitrary E, v, and h (satisfying
(1.3) of course), define

(3.53) E=Ex[01, ido=wx)\ k)= h(z),

where A is Lebesgue measure, and apply the theorem under (3.28), which we have just
proved. The initial distributions ™) and p can be replaced by u(M) x §, and @ X b, and
the distributions Q™) and Qu as well as the mapping ®)s will be distinguished from the
original ones with tildes. Letting 7 : E — E denote projection onto the first coordinate,
the mapping A : Cho( £)[0,00) = Q° given by A(@) = {@yr~!, t > 0} is continuous, and
hence

(3.54) QMg l — QMG N = Q,LxéoA“l- =Q,,

as required.

4. Characterization of the stationary distribution. If A is bounded, then it is
known that the Fleming-Viot process in P(E) with generator L}, has a unique stationary
distribution II,, € P(P(E)), is strongly ergodic, and is reversible. In fact,

. o0
(4.1) I (1) = P{ Zp,-égi e-},
where &;,§,,... are i.id. v and (pl, p2,...) is Poisson-Dirichlet with parameter # and

independent of &, &,, .. .. Furthermore,
(4.2) TIa(dp) = 2P Ty (dp) / / ¥ Ty (dv).
P(E) ,

These results can be found in Ethier and Kurtz (1994, 1998).

The following lemma was proved by Ethier (1997) under (1.2) and again extends (with
essentially the same proof) to (1.3), v
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LEMMA 4.1. Assume (1.3). Then IIo(P°(E)) = 1 and e?(hor) ¢ L(TI). In addltioh‘,
IT, defined by (4.2), is such that £y, is a symmetrlc linear operator on L2(Il). :

However it does not 1mmed1ate1y follow that IIj, is a reversible statlonary dlstrlbutlon
for the Fleming—Viot process with generator £;,. The theorems of Fukushima and Stroock
(1986) and Echeverria (1982) do not apply, again because of the unboundedness of .

We can now state the main result of this section.

THEOREM 4.2. Assume (1.3). Then I, defined by (4.2), is a reversible stationary
distribution for the Fleming—Viot process with generator L, and it is the unique stationary
distribution for this process.

Proof. The reversibility is known if h is bounded, so let hx = (—K) V (h AK). Then
@3 [ ol T 00 M) = [ T (6)i00) T ()
P(E) PE)

for all p,4) € C(P(E)) and t > 0, where {Tx, (t)} is the semigroup corresponding to Lp .
Using Lemma 2.1 and the notation of Section 2, as well as (4.2), we see that (4.3) implies
that

(4.4) ./’P(E) P()EP# [ (ue) R €2 x4 Ty (dp)
- /7><E) () EP# [ip(pe) RY ¥ 1P Tl (dp)

for all 9,9 € C(P(E)) and t > 0. Letting K — oo and using Lemmas 2.2 and 4.1 to justify
the interchanges of limits and integrals, we deduce the reversibility (hence stationarity) of
II;,.

For the uniqueness of II;, we can apply essentially the argument used by Ethier and
Kurtz (1998) in the case of bounded h. There is one additional step needed, so we provide
the details.

Suppose the conclusion fails. Then by Lemma 5.3 of Ethier and Kurtz (1998) there
exist mutually singular stationary distributions II;,IIs € P(P°(E)). We will show that
this leads to a contradiction.

Let P(E x E) have the topology of weak convergence, let Q = C'p( ExE)[0,00) have the
topology of uniform convergence on compact sets, let F be the Borel o-field, let {fi, t > 0}
be the canonical coordinate process, and let {.7-}} be the correspondmg filtration.

Define the operator A on B(E x E) by

(45) (AD(ar,22) = 30 [ (F0,9) = F(a, 22wl

and the functions ﬁl and hy on E x E by

Let P ¢ P(Q) be (the distribution of) a neutral Fleming-Viot process with type space
E x E, mutation operator A, and initial distribution

@) | R CEVRICL ACRL ACT!



142

With the projections 7,72 : E X E — E defined by m;(x1,22) = zi, observe that, on
(Q, F, P), {fizmt, t > 0} and {fizm;}, t > 0} are Fleming-Viot processes with generator
Lo and initial distributions II; and II,, and that they couple, that is, there is a stopping
time 7 < 0o P-a:s. such that utﬂ'l = [Ty for all t > 1 P-as.

Let us define

(4.8) P(Ex E)={p € P(E x E): pr; ' € P°(E) for i = 1,2}

and, for yu,v € P°(E x E),

(@9)  d(wy) = W/)+Z / (1A sup (e, umt) ~ (e, um ) ) dr
0<p<lr

where d is a rpetric on P(E x E) that induces the topology of weak convergence. Then
(P°(E x E),d°) is a complete separable metric space and d°(u,,p) — 0 if and only if
fn = u and e”? is {pm7t} U {pamy - unlformly integrable for each p > 0. We now

define
(4.10) QO = C(’PO(EXE),JO) [0, OO) - Q = C(P(EXE),J) [O, OO‘).
Let Q° have the topology of uniform convergence on compact sets, let F° be the Borel

o-field, let {fis, t > 0} be the canonical coordinate process on 2°, and let {F?} be the
corresponding filtration.

Then, exactly as in Lemma 1.3,
. P -~ t —~ —~
410 R = expf (i) = (i) = [ |50 = (B )
+ 30,0} = (R )] ds

is a mean-one {7 }-martingale on ({2°, F°, P). Thus, we can define Q; and Q; in P(Q")
by

(4.12) dQi=R"dP on £, t>0,i=1,2,

and exactly as in Lemma 1.4 we conclude that, for i = 1,2, Q; is a solution of the Qe
martingale problem for L,—H with initial distribution II;. Letting '

(4.13) v = inf{t > 0+ () + (B3, ie) > NV}
there is a constant cy (T') > 0 such that

(4.14) BY >en(T), 0<t<TA7n,i=12
Cpnseqﬁently, fori=1,2,

(4.15) IL(G) = Q {ar7;" € G} 2 en(T)P{firm; ' € G, v > T}
> en(T)P{firm;' € G, 7w > T, 1< T}
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for all Borel sets G. But the right side of (4.15) does not depend on i and is a nonzero
measure in G if first T is chosen large enough and then N (depending on T') is chosen large
enough. This contradicts the assumed mutual singularity of II; and II; and completes the
proof. '
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