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The stationary distributions of Fleming-Viot
processes with selection

M 3k — Seiichi Itatsu

Department of Mathematics, Faculty of Science, Shizuoka University

1 Introduction of ‘Fleming-Viot processes
with selection

Let us denote the operator L of the infinitesimal generator in C(R¥)
by the following:
L=

K
JZ=1 X; (5@' 8:3, axj Z b

=1 J

DO —
‘ﬁ.

where bi(z) = XI, iz + 2i(TK 0vjz; — a1 OkTkT)), g > 0 for
i # jand Y, ¢;; = 0and 0;; = ;. This defines the infinitesimal generator
of a Markov process on Ax = {z = (21,---,2x) : 21 > 0,---, T >
0,21 +--- + zx = 1}, this process is called the Wright-Fisher diffusion
model with selection according to Ethier and Kurtz [4]. Here z; is a gene
frequency of type 4, ¢;; is mutation intensity of ¢ — j, and o; is selection
intensity of (i,j)-type. Put u(z) = ezp(} K., 0i;z:z;), and denote by
Ly an operator L in the case of o = 0 then

K
Lo(f(z)u(z)) = Zmz ij xj)fmamju + Z 2:(8i5 — %) fus Z oaiv
'i‘;j =1

+% Z xi(éij-xj)fumizj +Z[Z qijxj]fmiu+2[z qijaéj]fumi = ULf+fL0U

In the haploid case o;; = h; + h;. This operator can be generalized
according to Ethier and Kurtz [4].
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2 Ergodlc theorems of Flemlng-Vlot pro-‘
~ cesses with selection

Let E be a locally compact separable metric space and P(E) be the
space of all probability measures on E. For y € P(F) let us denote
(f,u) = Jg fdp. For any fi,---, fm € D(A) and F € C*(R™) let p(u) =
F({(fi, 1), -+ {fm, ) = F((f, n)) and let us denote |

t\:)lr—*

(Ee(n) i (i) = oo Y ) Py (£, 1)

HMS

{(Af,, ) ((fz © 7T)0', /1'2> - (fu“) <07 “’2>}Fzz(<f7ﬂ’>)

Here E is the space; of genetic types and A is a mutation operator in
C(E)(= the space of bounded continuous functions on F) which is the
generator for a Feller semigruop {T'(t)} on C(E)(= the space of contin-
uous functions vanishing at infinity) , u* is the n-fold product of u , and
o = o(z,y) is a bounded symmetric function on E x E which is selection
parameters for types x,y € E . According to [4], this operator defines a
generator corresponding to a Markov process on P(E) in the sense that
the Cp(g)[0, 00) martingale problem for £ is well posed. This process
is called the Fleming-Viot process. We consider another formula with

o(2,9) = h(z) + h(y):
O Lo = 5 3 () = Uy ) (1)
+;{(Afi,u) +{fihy ) = (Foo 1) B 1 }F (46, ).

Here we consider of the haploid case and that h = h(z) is a selection
intensity for type £ € E . The maximal coupling argument is applied to
the mutation process in Donnelly and Kurtz [1] and there it follows that
strong ergodicity of the mutation process guarantees strong ergodicity of

the Fleming-Viot process. Here the mutation process is strongly ergodic
~ with stationary distribution 7 is defined by that |

- lim \T*(t)v — 7| = 0.



146

We consider the uniform convergence of the Fleming-Viot processes under

the condition of uniform convergence of the mutation semigroup in the

sense ' .
| Jim [7(6) - (, M1 =0.

We consider the case of (1) and assume B = 0. Denote £ of (1) by £, .
Then we have

Lemma 1.([6]) Let g(u) = 3(o, 4*) . Then we have for ¢ € C(P(E))
Lo = €7 (Lo =) (%), |

where Y(p) = 1({0@, 1) — (o, 422 + (AP0, 12) + (870, 1) — (0, 42))
and 0 (z,y,2) = o(z,y)o(y, 2), and ®2o(z) = o(z,z) and A® is an
infinitesimal generator of the semigroup T(t) @ T(¢t) in C(E?) .
Theorem 1.([6]) Assume (A1): o0 € D(AP), A®qg € C(E?) , and let

D(Ls) ={p € C(P(E)) : v € D(Lo)}-

Then there exists a semigroup {T (t)} corresponding to (Ls,D(L,)) and

T(t)o() = e B lexplg(n) — [ w(m)dsho(io)

holds.
Theorem 2.([6]) Assume (A1) and that (A2): {To(t)} is ergodic and that
for some positive constants M and Ao and a stationary distribution llo

1T5(t)p — (p, To)1|| < Me™ ||

Then there exists a stationary distribution II such that for any e > 0 there
exist constants My = M(€),6 = 6(c) > 0 satisfying that

1T ()¢ — (@, N1 < Mie®=|y]l.

ifllpll <6
Theorem 3. (Ethier and Griffiths [2], Ethier and Kurtz [4], Shiga. [7],

Tavaré [8]) Let A be an operator as

Af@) =5 [[(76) - @)wiag),
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Then there exists a stationary distribution Ilg, such that the transition
probability P(t, u,-) of the semigroup {To(t)} satisfies that

llP(tal-‘a") — g llvar < 1 —do(?),
where || - [lvar 48 total variation and do(t) satisfies that
e™ME < 1 — d(t) < (14 0)e ™t

where \; = 4.

We will show an example with the assumption of Theorem 2 including
the case of the mutation operator in Theorem 3. Let us consider the
Fleming-Viot process defined by the generator of the form (1) with B =0
and o = 0. In [4] the ergodic theorem has been proved in the sense of weak
convergence under the condition that the mutation operator is ergodic in
the sense of weakly convergence. We have that

Theorem 4. Assume that {T'(t)} is ergodic and that (C):
for some positive constants Mo and Ao and a stationary distribution vo
such that for any f € C(E)

IT@)f = (£, vo)lll < Moe™IIf]].

Then there exists a stationary distribution Ilg such that for any € > 0O
there exist constants M = M(€), A\; = Ai(€) > 0 satisfying that

1 To(t)¢ — (o, o)1]l < Me™|lg]|.

where \; = min(1 — ¢, Ag) .

For the proof the next Theorem will be used. For any k define a semigroup
{T:(t)} on C(E*) with the generator A®) by T, (t) =T () ®--- @ T(¢) (k
fold direct product of T'(t)), then we have

Theorem 5(Ethier and Kurtz[4]). Let S = Y32, C(E) be a space of
direct sum of Banach spaces and define a Markov process on S with the
generator

LF(f)= (F(cbﬁf)f)_F(f))+£E%F(Tk(t)/;)—F(f)

1<i<ji<k
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for f € C(E*) where
((I)gc)f)(xh e 7xk—'1) = f(wl) Tt "xj—l)xi;xj) ° :)xk-—l)

fork>2and1<i<j<kand f € C(EF).

This process {Y (t)} is a dual process to the Fleming- Viot process as a
sense of the followings. IfY (t) € C(E¥) , put N(t) = k, then (N (t), Y (t))
satisfies that :

E[(f, 1)) = EL(Y (t), ¥ )]
where Y (0) = f.
Proof of Theorem 4. Let 7 = inf{t > 0; N(t) = 1}, then from the above
theorem

(3) Eul{f, pe)] = E[Y (), sV O); 7 < 2] + BLY (2), sV O 7 > 8].

Here N(t) is a death process, which jumps from k to k¥ — 1 with rate
k(k—1)/2 for k > 2. Denote 7o the hitting time at 1 of the death process
started from an entrance boundary at oo, then P(7 > t) < P(19 > t) =
1 — di(t), and by [2] we have that e=t < 1 — d(t) < 3e~t. So we have

[BIY (¢), ¥ O); 7 > 8] = B[Y (), ) 7 > #]| < 67| f|
and by the condition (C) |
B[Y (), s"O);m < 8] = BIY (7), w0); 7 <]

= |E[T(t—7)Y (), u) — (Y (1), 0); 7 < 1]
(4) < MoE[e ™) £l < Moe™ " Ee™]|f|].

Therefore by (4) we have
[BL (S, )] = ELY (), )] < Mie™| ]

with My = 6 + Mo. Because Up{w(n) = (f,u*) : f € C(E)} is
dense in C(P(E)) and by the Riesz’ representation theorem the Theorem
holds.Q.E.D. | ‘



3 The stationary distribution

On the stationary distributions of £,, we have

Theorem 6. Assume (A1) and (A2) with M > 1. Then under the
assumption of Theorem 2 for any 0 < X < Xo/(2M — 1) there exists
§ = 6(\) > 0 such that if ||| < & sthen the stationary distribution IT
satisfies

I =cV[1+QRY[1 + QR} + B + FFQR} — AR} 'L,

where Py = (-, IIp)1,Q = ¢¥x,V = e9%x, Ry = (A — Lo)~! , R} is the
adjoint operator of Ry and c is a suitable constant.
For the proof the next Lemmas are used.

Lemma 2. Let S be a locally compact space and 11 is a distribution on
S. Assume B is a bounded operator on L = C(S) with 1 — B is invertible
and ((1 — B)=21,11) # 0. Let Py = (-, Ilo) and U = Py + B . IfU has an
eigenvalue 1 with eigenfunction ©o, then we have that gy = (1 — B)~11
and

(@07H0> =1
let
(5) Py = {((1- B)™1,I)~'(-, (1 - B*)"'Te)(1 - B)™'1,
then
UP, = P,U = Py,

and Py is a projection. If in addition |B|| < 3, then the nest relation
holds -
IU - Al <7|| BJ.

Proof. Because ¢y is an eigenfunction, we have
(o, o)1 + Bywo = o,

so that
| o = (o, o) (1 — B)™'1.
Obviously P, of (5) is a projection. Let By =U — Py , then

B, = By — P, + By,

149
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and we have - .
I1Bo — Al < IBI{A - I1BI)7*+ (1 = |1 BI)™'}.

Therefore the inequality holds. Q.E.D.

Lemma 3. Under the assumption of Theorem 2. we have that
IO = Lo)™t = (A= Lo) 7 S A2 = A )Ml
IMA = Lo)™ = Boll < MA/(X+ Xo) + A7 (L = X7l l) 7 el

Proof. By the assumption of Theorem 2
IARA = Boll < MA/(A + Do),
By
Eo — Eo - ’(p

we have |
R = 14+ RaQ]" 'Ry

The inequality is obtained by
(6) ARy — Po = =M1 + RaQ] 7 'RAQR — AR, + Po.

. Q.E.D.
Proof of Theorem 6. By the assumption of the theorem we have for
0 < A= X/(M —1) by Lemma 3 there exists § = §(\) such that for

e,

IAR) — Rl < 1/2
is satisfied. Put B = ARy — Py. Then ||B|| < 1/2. By Lemma 2. we have

RoP,=PR,=\1P

with some projection Py = (-, II;)o and IT) = ¢(1— B*)~!1l;. By Lemma
3 II; is eigenfunction of AR} corresponding to an eigenvalue 1 of mul-
tiplicity 1, so by Lemma 1 it is the stationary distribution multiplied
- by constant x e™9. Therefore the stationary distribution is in the form
cV (1 — B*) . | o Q.E.D.
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