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1 Introduction

The purpose of this article is to introduce a version of Evans-Perkins type stochastic
representation formula for a generalized {7, a, b, g}-historical superprocess (see the defini-
tion in §2). Here by Evans-Perkins type formula we mean an explicit stochastic integral
representation for historical functional of a certain class, which is similar to and is a his-
torical process counterpart of Ito-Clark formula (e.g. [U95, p.42]) in elementary stochastic
calculus. The key idea of demonstration of the It6-Clark type formula for historical super-
process is to derive a variant of stochastic integration by parts with respect to the historical
process in the Perkins sense [P92].

The review of the Evans-Perkins theory [EP95] is a good point to start. There are two
reasons why their integration by parts formula is so important. For one thing, it can
provides with a new formula of transformations of stochastic integrals closely connected
with the so-called historical processes. In addition, a generalization of formula itself is of
independent interest, and it is very useful as a theoretical tool of stochastic calculus in the
theory of measure-valued processes. For another, it has an extremely remarkable meaning
on an applicational basis. By making use of the formula S.N. Evans and E.A. Perkins
(1995) have succeeded in deriving a kind of It6-Wiener chaos expansion for functionals of
superprocesses [EP95].

S.N. Evans and E.A. Perkins have showed that any L? functional of superprocess may
be represented as a constant Cj plus a stochastic integral with respect to the associated
orthogonal martingale measure M (e.g. [EP94] ). Recently they have obtained the ex-
plicit representations involving multiple stochastic integrals for a quite general functional
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of the so-called Dawson-Watanabe superprocesses. Actually, the results are obtained in
the setting of the historical process associated with the superprocess [EP95].

2 Notation and Preliminaries

Let C = C¢ = C([0, ), R%) denote the space of R%valued continuous paths on R, =
[0, c0) with the compact-open topology. C = B(C) is its Borel o-field and

C. = B,(C) =0o(y(s), s<t)

denotes its canonical filtration. For y,w € C? and s > 0, we define the stopped path by
ye(t) = y(t A s) and let

y(t), for t<s,

y/s/w= { (1)

w(t —s), for t>s.

Mp(C) is the space of finite measures on C with the topology of weak convergence and we
define
Mp(C)t = {m € Mp(C); y=1vy', m—a.s. y}, t>0.

If P, denotes Wiener measure on (C, B(C)) starting at =, 7 > 0, and m € Mp(C)", define
P’r,m € MF(C) by

Prm(A) = [ Py s y//w € AYdm().
Let :
Qy(r, 00) == {H € C([r, ), Mp(C)); H, € Mp(C)!, Vt > T} ,

and put Qf = Qx[0,00). We write H for the totality of Borel sets of . We use the
notation H;(w) = w(t) for w € Qp as for the canonical realization of historical process.
Fix0<t; <--- <t, and ¢ € CZ(R™). For y € C we set

git) = @WEAt), -yt Ata)),

YY) = Pt ta) @) =vyt), -, y(t),

and P(t,y) = P(y). ¥; (resp. '1/)1-1- ) stands for the first (resp. second) order partials ;1
(resp. 0%y ) of 9. Vi : [0,00) x C — R% is the (C;)-predictable process whose j-th
component at (¢,y) is given by

n—1

Z I(t < ti+1)¢id+j(g(t))'

i=0
While, for 1 <4,j < d, ¢y : [0,00) x C — R is the (Cy)-predictable process defined by

n—-1n-1 )

Pii(t,y) == > > It < trrr Atiy1)OkariOias;(F(t)).

k=0 I=0
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Let us define the domains

o0

Dy = J{d(ts, - ta); 0SSt <o <to, Y€ C?(R”d)}U{l},

n=1

Do = {§; 9(t,y) = ¥(@") for some ¢ € Dy}.

Let Q = (9, F, {.E}DT, P) be a filtered probability space and let (w,y) = (w, y1, - - -, ¥a)
denote sample points in O = Ox C¢. Here T > 0 is fixed. When f is a function on [, c0)
x ) taking values in a normed linear space (E, || H) then a bounded (F;)-stopping time
T is a reducing time for if and only if ‘

I(r <t <T)|If(t,w,9)

is uniformly bounded. In addition we say that a sequence {T,} reduces f if and only if
~each T, reduces f and T, / oo holds P-a.s. We say that f is locally bounded if such a
sequence {T,} exists. We assume that

(LB) v € [0,00),a € S%,b € R* and g € R are (F})-predictable processes on [1,00) x Q
such that A = (y,a,b, gy I(g #)) is locally bounded.

Notice that the above assumption implies that g is locally bounded.
Now we introduce the martingale problem formulation of historical processes in stochastic
calculus on historical trees (cf. [P92], [P95] ). For 7 > 0 and m € Mp(C)", we define

d d
Yo ailts, )it y) + bt w, ) - VO, y) + g(t,w, )P ()

i=13=1

Arm(t,y) = AW

l\DIv—t

for ¢ € Dy. We write (i, f) or sometimes p(f) for the integral [ fdu when p is a measure
and f is a suitable p-integrable function. Suggested by [DkTn98], we may define

Definition 1 (cf. [P95], §2 ) A predictable process K = {K;,t > 7} on Q) with sam-
ple paths a.s. in Qpy[r,c0) is a generalized {7, a,b, g}-historical process (GHP) (or
(A, —yA?/2)-historical process) if and only if K, € Mp(C) for allt > T, a.s. and
P[K(1)] < o0, and if there exists a probability measure P on Qy [7‘, 00) such that it satisfies
the martingale problem (MP) with initial data {r,m} and {v,a,b,g}: forV ¢ € D,

Z() = (Keyb) — (m,$) - [ (Ko, AG)(s)yds, 127, @

is a continuous (F;)-local martingale satisfying Z,(y) = 0 and
- t _
(Z () :[r /W(S,w,y)w(y)sz(dy)ds, Vt>7T, a.s.

Remark. The existence and uniqueness of the law of K is essentially due to [F88] (cf.
[DIP89)).
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Set T, = [s,0), and in particular Ty = [, 00). Define C(Mz(C)) := C(Ty; Mp(C)), and
we write C(t) = (7,t] x C for the integral domain. When F is the o-field or the usual
filtration, then f € F indicates that the function f is F-measurable and P(F) is the totality
of (F)-predictable functions, and bP(F) denotes the whole space of functions that are all
bounded elements of P(F). We use the symbol U(Mg(C)) for an admissible subset of the
space C(C(Mp(C)); R); more precisely U(Mp(C)) is the totality of real valued continuous
functions F' on C(Mg(C)) such that for some compactly supported finite measure L(dt)
on Ty, the estimate

|AF(hg)| < [ a(t,O)L(d)

holds for all h,g € C(Mp(C)), where we define AF(z,y) := F(z +y) — F(z).

3 Predictable Representation Property

Let {Tn} be a reducing sequence. Take a sequence {%,,}, %, € Dy such that ,, converges
bounded pointwise (bp for short ) to ¥, namely,
Yu =9, bp (n—oco).

An application of dominated convergence theroem together with the local boundedness of
v implies that :
(Z(Yn — Ym))s =0 as n,m — 00

for Vt > 7, a.s. Therefore we obtain

Proposition 1 There is an a.s. continuous adapted process {Z;(y); t > T} such that

sup IZt(iﬁn) - Zt(¢)| —0

T<t<N
holds in probability ( w.r.t. P ) asn — oo for VN > .
To proceed our discussion, we need the following lemmas.

Lemma 1 (cf. Corollary 2.2, p.11, [P95]) Let T be a reducing time for (v,g). Then
we have

(a) 0 < PIKr(D)] < Plsup, <z [Ku(D)] + (Z(1))1] < co.

(b) If P[K,(1)?] < 0o forp € N, then

P{( sup |Kt(1)|> + (Z(l))gw} < 00.

T<t<T

Lemma 2 (cf. [EP94, p.123]) Dy is dense in bB(C) relative to the bounded pointwise
convergence topology.
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We may use Lemma 1 to obtain

sup |Zy(¥n) — Z(¥)] — 0 in L2

T7<t<TN

as n — oo, for VN € N. Clearly Z;(¢y) is a continuous (F;)-local martingale whose
quadratic variation process is given by

2@ = [ [ 2s,0,u00 0 K d)ds. ®)

By virtue of Lemma 2, it is a routine work to show that this Z; extends to an orthogonal
martingale measure

{Z:(y); t=7, ¥ €bdB(C) }. |
Consequently, the mapping ¢ — Z,(¢) is a continuous local martingale satisfying Eq.(3)

for eaxh ¢ € bB(C), and ¢ — Ziar, (¥) is an L?-valued measure on B(C) for each t > T,
N € N. By a trivial localization argument, we may define the stochastic integral

2) = [ [ wls,0,)dM(s,) @

( 3 an orthogonal martingale measure M = M¥ in the sense of Walsh [W86, Chapter 2] )
such that

(2D = [ (Kars,0)(s,0)%)ds, ©)

Vt > 7, a.s., as long as 9 belongs to L}, .(K,P). Here L2 (K, P) denotes the L? space of
(F: x C)s>,-predictable functions f and

i
[_ /7(S’y)f(37y)2Ks(dy)d8 < 0
for Vi > 7, P-as.

We write f € L*(K,P) (resp. L2 (K,P) ) if, in addition,

P {/:/fy(s,w,y)f(s,w,y)2Ks(dy)ds} <oo, V>0,
ely,
e P { / ” / (8,0, 1) f(s,w,y)sz(dy)ds} < oo,

Theorem 1 (Predictable Representation Property) If V ¢ LQ(Q,}" , P), then there
is an f in L2 (K, P) such that

V =P[V]+ /Too/f(s,w,y)dMK(s,y), P—a.s. (6)

The proof of Theorem 1 will be given in the suceeding section.

Remark. The predictable representation property was proved by Evans-Perkins (1994)
[EP94, Theorem 1.1] for the (Y, —X2?/2)- superprocess with a Hunt process Y as its under-
lying process. In [EP95] a variant of the stochastic integral representation formula of the
above type was proved for the (Y, —\2/2)- historical process with a Markov process Y.



47

4 Proof of Theorem 1

If f € bB(C), then the moment P[K;(f)] is uniformly bounded as ¢ ranges over a compact
subset of [1,00). We have the following explicit formula for the moment, namely,

Lemma 3 P[K,(f)] = P ,[f(Y?)] holds for every [ in bB(C) under v € Mp(C)", where
Y? is the corresponding stopped path-valued process.

We set £ := {(s,y) € [r,00) x C; y* =y } and define a measure Qs on (C, C) by
Qs,y(A) = Py(s){w € C; (y/S/’LU) € A }7 Ae 07 (Say) € E
Then a similar argument as in [F88] (cf. Theorem 2.1.3, [DP91]) allows us to show

Proposition 2 Assume that Ty, f(y) = Pyslf(y/s/Y"**%)] satisfies the semigroup prop-
erty for (s,y) € E, t > s, and f € blB(C). Then we have

Plexp {—(K:, f)}] = exp {—(m, Ve )},

for all f € bpl3(C) and m € Mp(C). Moreover, {V;;} forms a semigroup on bpC, and
Voif () = vss(y) s Borel measurable as a function of (s,9,t) in B x [r,00) with t > s,
and is the unique solution of

t—s

0ua®) = PuolF @/ Y0 = 5 [ P s, 0)vuran(y/ s/ V)

Proof of Lemma 3. According to the same discussion as in Theorem 2.1.5 '[DP91, p-19],
we can deduce from Proposition 2 that under v € Mg(C)"

P[<Kt7f>] = <V7G7,‘yf>7 _____ (*)
where Gt f (y) = Qsy[f(Y2)]. A simple computation reads
W,Gref) = [ Quali(HW(fy)
= [ L, 700 Petw e C; tw/r/w) € dc} | vidy)
= [0 [ Rantu/n/Y) € deyuia
= [ SO Prudy) = Pr[F(),

because we made use of the Fubini theorem in the second line. By (*), this concludes the
proof Q.E.D.

Suggested by the argument [MP92, pp.331-332] (also see [EP95 Pp- 1779-1780]) we define

F™ = {pebB([r,00)) x C);(t,y) = o(t,yt) for all t>r,
the map t + p(t,Y) is P, —a.s. right continuous, V¢ 2>}
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under v € Mp(C)t, and F™ is the set of bounded functions </ in B ([r,00)) x F x C such
that
Y(,w,) €FY, P—as.,
and the condition (C) is compatible with the definition of K in §2.
(C) For H, € Mg(C)t, P-as. for all ¢ > 7 with Y as its corresponding path-valued
process, and for all ¢ € F'™,

Mt((p) = <Ht7‘p(ti')> - (V,(P(Tf)) - /('rt]<Hs,w(s,w, '))dsa t2> 7, lunder ve MF(C)Tv

is a continuous (F3);>, martingale for which M,(¢) = 0 and

M= [ [ Ao v)ies,)* Ha(dy)ds.

Let A™ denote the set of pairs (p,) in F™ x E™ such that
Zi= oY)~ o(nY) - | (s Y)ds, ez
T,t

is & (C{)s>r-martingale under P, where C? is the o-field generated by C,, and the P, ,-null
sets in C.

Proposition 3 There exists for each n € N a function g, = gn(t,w,y) in bP(C; x F)
such that

V= P[V] + lim /( / Ga(s,w, y)dMX (s, y),

n—00

with L*(P)-convergence.

Proof. Recall the condition (C). By virtue of Theorem 2 and Proposition 2 of Jacod

(1977) [J77] (e.g. [EP94, p.124] or [EP95, p.1796]), we can deduce that for each n € N
there exist suitable pairs

(90}“ ¢111), e ((pg(n), 1/,11:f(n)) €A™

(relative to Kj), &, - -+, 6N ™ € bP(F), and {t,}. C (7, 0) such that t, / co (asn — o0
) and

n—00

V =P[V]+ lim _/(Tt ]/ Z{n (5,w)k (s (s,y)dM* (s,y),

where the convergence is in L2(P). Moreover, we can choose a bounded (Ct)t>.- predictable
function 7 such that -

//C(t) &(s,w)p(s,y)dM" (s,y) = //C(t)E(s,w)n(s,y)dMK(s,y), P—as., Vt>r,
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for each (p,y) € A™™ and each £ in bP(F;), and also that the y-section
{(s,9) € [1,00) x C; (s,y) #n(s,y) }

is a countable set. By the property of stochastic integral and the Fubini type theorem, we
readily obtain

plf [ eoasi [ [ enrr| - plf C(tﬂ&(s)?{so(s,y)—n(s,y>}2d1fsds]
| < Co-P[[ [{o(s,) = n(s,0)PKold)ds]
— Go [ P[Kulles —n)] ds.

for some constant Cy. By Lemma 3, the last term in the above can be replaced by

[ P [l ¥) ~ (s, ¥*) ) s,

which, indeed, becomes null if we apply the Fubini theorem again because we employed

the condition

{p(s,Y) —n(s,Y)}?ds = 0, Vt>71, Prpm—a.s.

(it

So that, by making use of the above-mentioned 7, we have only to set
n(8,w,y) Zé’ 8, )M (8, y)

for each n. This completes the proof. Q.E.D.

By virtue of the arguments in the proof of Proposition 3, we have that
2

0 = lim // ’vdMKs // ,’dMKS
= dm /L 9 y) (8;9) — . Y) (s,9) .
- nlklm lgn () — gk(')“Lgo(K,P)'

Hence there exists a limit function f in L? (K, P) such that

0 = Jim P | [ [ 1(6,0,0)00u(0,8) = Fls,0,1) P K (dy)ds]

n—00

= lim Pl//c(oo)gn‘(s,w,y)dMK(s,y) ~//C(oo) f(s,w,y)dMK(s,y)

2

n—00

Immediately this implies from Proposition 3 that

V = P[V]+ lim // w(8,w,y)dM* (s, 1)
Coo

:// swydMK(sy)

- which completes the proof of Theorem 1.
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5 Canonical Measure and Campbell Measure

For y € D = D(R;R?), we define y*~(s) as y(s) itself if s < t and as y(t—) if s > t.
Q(s,y) is a o-finite measure on C(Mp(D)) such that

Q(s,y*7; {heC(Mp(D)); 7<3t<s, h(t)#0})=0,

which can be defined by the canonical measure R(7,t,y;d({) [D93] associated with the
law of K; = K(t) and the path restriction mapping 7 (cf. §2, pp.1781-1782 in [EP95])
together with a discussion involved with the Dawson-Perkins theory(1991) (e.g. Theorem
2.2.3(pp-27-28) and Proposition 3.3(pp.38-39) in [DP91]). Here R is characterized by

log Pag, loxp(Key =)l = [ (79 1) Ris, 1,5 d0)
F F

(cf. Lemma 1 in [Dk99c]; see also [DP91, Proposition 3.3, pp.38-39]). Let F' be a real
valued Borel function on C(Mg(C)). Assume that

IBAF\R) = [ AR 9)Q(s v do) ™

is well-defined and bounded below for all s > 7, y € C, and h € C(Mg(C)). For a bounded
(Ft)-stopping time T, we define the Campbell measure Pr associated with K () by

Pr(A x B) := P(K(T, A) - Ig{K(T)})/m(C) (8)

forany Ax B € (CxQ,CxF) (cf. [P95], p.21; or [DP91], p.62). Notice that K, = m. Since
the mapping (s,y,w) — I, [AF](K(w)) is bounded below and measurable with respect to
the product of the predictable o-field associated with the filtration (C;) and the o-field F, we
can apply Lemma 2.2(p.1783) [EP95] together with the projection operation argument and
the predictable section theorem (e.g. Theorem 2.14(p.19) or Theorem 2.28(p.23), [JS87];
see also [E82|, pp.50-52), to deduce that there exists a (C; X Fi):>-predictable function
PriF|(s,y,w) : (1T,00) X C x £ — R such that

Pr{I®[AF)(T)/(C x F)r} = PrlF)(T,w,y) (9)

holds Pr-a.s. for all bounded (F;)-predictable stopping times T > s. It is quite interesting
to note that in particular

P [ I9AF|(TW)K(T,dy) = P [ PriFI(T,y)K(T,dy).

We shall introduce an approximation map. For each | € N, let us choose a partition
A(l) = {t®(j); 1 < j < k[l]} such that 7= t®(0) < V(1) < --- < tO(k[l]) < o0,

llim {sup At[l;k]} =0 and llim tO(k[l]) = +o0.
—00 k 500
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The approximation map W[l from C(Mr(C)) into C(Mp(C)) is defined by
Wl(g)(®) = {Sb(t® (i + 1)) - gtV (1)) - b (3) - (¢ (i + 1)) }At[l; 4]~

if t € [tO(i),tD (G + 1)), and := gtV (k1)) if ¢ > tW(k[l]), for any element g of C(Mr(C))
with Sb(k) = k — t. Immediately we get

Lemma 4 (cf. Lemma 4, [DK98a]) Let F' be an element of C(C(Mp(C)); R). Then
for all g € C(Mp(C)) .
lim (F' o W[I])(g) = F(9).

l—00

6 Random Measures and Assumptions

We shall introduce the assumptions for our main results (Theorem 2, Theorem 3 and
Theorem 4) which are stated in the succeeding section. C* denotes the image of C' under
the map: y ~ yt. We define a measure K*[s,t] on C* by K*[s,t](F) := K;({y : y* € F'}).
Then the measure K*[s, t] is atomic with a finite set of atoms, and we write Lis,t]( C C*)
for the locations of these atoms. For s € (a, b], let As[p] be the random measure on C that
places mass (s, y) at each point y in (L[b, ¢])* = Lis, c|. With some localization arguments
in stochastic calculus, the Perkins-Girsanov theorem of Dawson type [P95] guarantees the
existence of a probability measure Qy on (€, F) such that

tATN
—= =ex “1(s)I 0)dM¥ (s,
menl [ o eat) £ 0 s

= [ [ £ 0k s

For brevity’s sake we rather write &(t ATy ) than the above. On this account, K. r, satisfies
the martingale problem (MP)[yn,an,bn, 0] instead of (MP)[v,a, b, g], where we set fy =
f-I(r < t < Ty). Moreover, for s € (a,b], y € C*, the symbol M]|s, y] denotes the mapping
of the set of functions {m : (7,00) — Mp(C)} into itself and is defined as follows: i.e.,
{M[s,ylm}:(F) is equal to m;(F) if t < s, or is equal to my({y' € F: (y')* #y}) if t > s.

Let us now introduce assumptions for our principal results.

(A1) g:[1,00) x 2 x C — Ris a (F; x C;)*-predictable process such that gy~ -I(g # 0)
is locally bounded.

(A.2) For any predictable function f on [7,00) x I x C* x , the counting measure n*
satisfies

p fc 1 ((s,8] x I)Gi(dz) = m(C*)(t — s)

where G, is a marked historical process corresponding to K and N; is the martingale
measure associated with Gy (cf. §7 for details).
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(A.3) There exists a random measure A, on (7,00) x C such that

/ /c(oo> F(s,9)Ap(ds @ dy) = Li /Cf (3, 9)Aslip] (dy)ds

holds for any suitable predictable function f.
(A.4) U(s,y)E(t A Ty)™! is uniformly bounded in s, K-a.e. y, Qy-a.s.
(A.5) There exists some constant Cy (> 0) such that

,//C(t)\ll(s,y)2 EXNTN) 2 v(s,y) K (dy)ds < Gy

holds Qy-a.s., for all t > 7.
Note that we shall assume (A.1)-(A.5) hereafter all through the whole paper.

7 Stochastic Integration Formulae : Main Results

The followings are our main results in this paper. The first one is a finite dimensional
version of Evans-Perkins type stochastic integration by parts formula. Let K be a pre-

dictable measure-valued process whose law is specified by a general martingale problem
(MP) [Tv K’T7 77 a, b) g]

Theorem 2 (cf. [Dk98b]) Assume that @ : C(Mp(C)) — R is a cylinder function with
bounded representing function ¢ : [M(C)}¥ — R and base 7 < t(1) < --- < t(k), such that

Ap(e,8)] < @ YB(C)
j
for some positive constant ¢y, for all o, f = (8;) € [M(C)J¥. Then fort>rT

P @(K) U(s,y)dM* (s,y) p = P Pr(®](s, y)¥ (s, y)7(s, y) Ks(dy)ds
Cc(t) Cc)

holds where ¥ is a bounded (C; x F)y»,-predictable function, K, is a GHP, and Pr([®] is a
predictable function determined by (9) in accordance with the given ®.

Remark 1. The assertion of the above theorem is quite similar to Theorem 2.4(p.1785, §2,
[EP95)).

Theorem 3 (Stochastic Integration By Parts) Let F € U(Mgp(C)). If ¥ is an ele-
ment of bP(C; x JF), then for all t > s,

P{F(K)//C(t) V(s,y) dM"(s,y)}

= P[ [ PrlFl ¥ Kdds. (10
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Remark 2. Note that it is not hard to‘extend the assertion in Theorem 2 to .the case of a
more general functional F(K). As a matter of fact, once the integral formula as given in
Theorem 2 is established, it is a kind of routine work to generalize it(cf. §3, [Dk98a]). We
shall refer to this generalization in §9.

Theorem 4 (A Variant of Evans-Perkins Type Formula) Let F € U (M 7(C)).
F(K) = PIF(K +/ /Pr s, 9)dM (s,y) (1)

where Pr(F|(s,y) is a P(C; x JFi)-measurable version (relative to Pr) of

P | [ o AP Qs 50 | (0 e
C(MF(C)) "

8 Marked Historical Processes’ and Girsanov-Dawson
-Perkins Theorem

Set I =1[0,1], E* = C x I and C* = C(Ry, E*), and let C* (resp. C; ) be the Borel
o-field (resp. the canonical filtration) of C*. Put z = (y,n) € E*. Let G be the correspond-
ing counterpart historical process of K starting at (7, ), defined on the stochastic basis
(Q, H, My, P*). Suppose that ¢ : (r,00) x C x Q@ — I be an element of P(C; x H,). Given
any cadlag functionn : R, — I, we can construct a o-finite counting measure n* on R, xI
by assigning an atom of mass one to each point (s, z) such that n(s) —n(s—) =z # 0. Put

At,z,w) :=n"({(s,2) € [1,t) x I; (s,y,w) > z}) (12)
and B(t,z,w) = I{A(t,z,w) = 0}. Then we can define an Mp(C)-valued process K|p] (t)
by .
KlpJ)(0) = [ HIH@) Bl 2)Gi(da). (13)
- Put

hpN) = [ [ el )N, and Lie.G)= [ [ (sv)els ) Clda)ds
with C*(t) = (7,t] x C*. Then we define

Alel(t) := exp{ L, N) ~ 5 (.G} (14)

Note that Afp](t) is a H-martingale. The new probability space (Q, H, P*[¢]) is defined
by P*[p|{F} = P*{F - Al](t)} (cf. [Dk98a]) for any F € bH; with
H:=\H (15)
t>7
(see Theorem 2.1(pp.125-126) and Theorem 2.3b(p.127), [EP94]). It is easy to show the
following proposition if we apply Dawson’s Girsanov theorem [D93] (see also [P95]).

Proposition 4 (cf. Theorem 5.1, p.1798, [EP95]) The law of K [¢] under P[] is equiv-
alent to the law of K under P. Co ‘
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9 Sketch of Proofs of Main Theorems

§9.1 Generalization of the Cylinder Function Case: Proof of Theorem 3
As mentioned in Remark 2 of §7, the essential part of an extension of the Evans-Perkins
type integration formula is compressed into the study on its finite dimensional case, namely,

Theorem 2. The general case easily follows from a kind of routine work [Dk98a]. We define
a real valued function L* on C(Mp(C)) b ‘

Lfa) = [ 9(t,0)L(@) = (L,g(,C). (16)

In connection with the measure L (see §2), we introduce the finite measure L(l) = L(l, dt)
which concentrates its mass on {t)(j); 0 < j < k[l]} (cf. [Dk98a, P 5]). We have (L* o
W) [g] = (L({1),9(-,C)) for g € C(Mp(C)). Recall that

/g(t,C) Q(s,y;dg) = /E(C) R(s,t,y;d§) = 1

holds (cf. Lemma 3, [Dk99a}) with ease for s < t from Lemma 3.4(pp.41-43), [DP91]. Then
it is easy to verify the followings:

P [ [ Qv LK dds = lmP [ [ {Qsy* ) (Lo Wi} K.(dy)ds

Cc)
holds with g € C(Mp(C)) for all £ > 7, and

p [ /C(t) Pr{F)(s, y)Z (s, v) K.(dy)ds

~ lmP / /C o PrIF o Wl (5,4) Z(5,9) K. (dy)ds. (17)

l—o00

holds for all ¢ > 7 if Z € P(C, x F;). Since, for each n > 1, P{Ki(C)"} is uniformly
bounded on compact intervals, we can readily deduce that P{(L* o W[i])[K]"} is bounded
in [ for each n > 1. Moreover,

P{F(K) //C(t)\ll(s,y)dM(s,y)} :ll_igloP{ (Fow(y // (s,y) dM(s y)}

To complete the extension discussion in this section we have only to observe that F' o W{l|
satisfies all the conditions of Theorem 2 (cf. Lemma 22, pp.9-10, [Dk98a]). Thus we have a
finite dimensional special case of stochastic integration by parts formula related to historical
processes as far as Proposition 4 in §8 is valid. Hence, combining the above results, we
obtain

P{F(K) //C(t)\lf(s,y)dM} - ll_iglop{ Fo W) // (s, dM}

= limP / ” Pr{F o Wl]] v(s,y)¥(s,y) K,(dy)ds

l—o0

= P [ [ PriFNs,) 1) ¥(s,) Kaldy)ds,

which concludes Theorem 3.
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§9.2 Stochastic Integration by Parts: Proof of Theorem 2

Since the complete proof is longsome and tiresome, computation in details will be sacrificed
for the sake of simplicity and clearness. The basic idea is due to §7 in [Dk99a].

Thanks to (A.1), it suffices to verify the integral formula for a special {v~,an,bn,0}-
historical process K., under Qy instead of the generalized K (GHP) with P. Indeed,
since dP = £(t A Ty)~1dQy, what we have to show is as follows:

(The Modified Stochastic Integration By Parts Formula)

Qu {8(tATN) oK) [ [ (s, u)dM (s, y)}

- aufeanmo | C(t)Pr[@Ks,y)v(s,y)ws,mKsATN(dy)ds}.

Note that both sides above are well-defined by virtue of (A.4). Notice that Eq.(12)-(14)
remains valid even for ¢ = ¥ . £71. Hence, by the auguments on exponential martingale
formalism for the historical process, A[¥ - £7!](¢) is a H;-martingale and the measure

Qn[¥-E71 is given by Qu[{-}A[¥-EY]]. Then it follows from Dawson’s Girsanov theorem
(Proposition 3 in §8) that, for any positive &,

Qu{@(K.nzy)} = QuleE YO (K nry [VET)) }.

Immediately,

Qv {0(Kamy) - (Al¥E](1) - 1)}
+ QN{(cb(K.ATN EUET) — B(Kony)) - (Ae¥ET () - 1)}
= Qu{®(Knry) — (K, [f9E7) }.

For simplicity we denote by I; (resp. I ) the first (resp. second) term at the left hand side
of the above equality, and put

I3 = the right hand side with the minus sign.

Then we find that the convergence 7
el (A[e¥EY({) —1) — //C( | U(s,y) EENTN) ' dM(s,y), Qy—as. (¢—0)
t

is true (cf. Lemma 8, [Dk99a]). Hence we readily obtain

13{1(;18_1 L=Qun {‘I)(K.,’\TN) -//C(t) U(s,y) EEATN)! dM(s,y)}.
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Paying attention to the fact that
liE}K*[e\Ilgfl; Cl(t) =0, Qu—a.s.,

we can show that lim.jge! I = 0, as well.
It remains to treat the third term I3. In order to discuss the convergence of I; divided
‘by €, we need the following:

Key Lemma (cf. Lemma 12, [Dk99a]) »
Qv [ [{oMis,lKam) - (K ar) PAv.g-1(ds @ dy)

= - QN//Pr[q)]’y(s:y)qj(say)g*l(t/\TN)sz/\TN(y)ds-

On the other hand, for € > 0 we have

Qn[0(Klep]) — @(K) / F]

— . e=hel(r0)xO) / | C(oo){CI)(M[s, Y|K) — ®(K)}A,(ds ® dy) + R(e,®,¢) (18)

where the residue function R satisfies | R(¢, ®, ¢)| < o(e). From (18) we get the convergence
lime_1 I; = —QN// Pr(®] ~(s,y) - ¥ E1 dK ppyds. (19)

In fact, a simple application of the above-mentioned Key Lemma yields the requlred result.
To complete the proof, we have only to combine the above results.

§9.3 Cluster Representation Argument: Proof of Key Lemma
~ For the proof of Key Lemma, although it is very technical, we are based on the cluster
representation argument [D93] (see also [DP91]). For the details, we refer to the arguments
stated in §8 in [Dk99a]. The following lemmas are merely essential parts of the discussion.
For any y € C*, R(s,t,y) denotes the canonical measure (cf §5) in the theory of cluster
random measures (e.g. [D93], [DP91]). Actually, R is a o-finite measure such that

R(S7 t’ Y MF(C)) = Ts;t-

Here the crucial point is that the total mass rs; does not depend on y. So T, {dR(s,t,y)
becomes a probability measure. It is interesting to note that K; is a sum of indepen-
dent nonzero clusters with laws T;th(s,t,y; dh), conditional on L[s,t] (see §6). Further-
more, conditional on F5, L[s,t] can be regarded as a Poisson point process with intensity
7s47(8) K. This is one of the most important points for the computation in terms of clus-
ters growing from the points of L[s,#;1;] in what follows. We define a measure S by the
following equation: for Vg € bB([Mr(C)]*~* — R),

/9(77!+1,"' y M) Ssy(dmis1 ® - - ® dnp)

[ 9(httiin). - R(6) - Hblt o) # 0}QUs,v; dh)



57

where Q(s,y; dh) is a o-finite measure-on C(Mp(C)) (cf. Eq.(7) in §5). S, is the normal-

ization of S; 4, given by dS;’ := 7y, ,dSs,. Moreover, we define

s tz+1

E(s; E). // /tp (t1), K(t) 2771+17 ’iﬂi)
X <§_§1> Sou(dnipa ® - ®dr),
where E = {y1, -+, ym}(# 0). . |
Take the mass ¢ as (VE1)(s,y) at each point y (cf. §6). For simplicity we set
Al®)(M; 5,9, K) = ®(M[s, 4K ary,) — (K azy,). |

Recall the assumption (A.3). Immediately we can get

Qu [ [ ARIM:s,u, K) Ave-s(ds @ dy)

= Q[ [ AlelMss,y, KONwEdy)ds

b

= [ dsQy { Y. AlR|(M;s,y, K) - (‘115‘1)(3,‘2/)} :
at YyEL{s,u]

In the following calculation, we may take muchvadvantage of those concepts such as i) the

Markov property of Kj; ii) the infinite divisibility of the law of historical process; iii) the

Poisson nature of the location L[s,t;.;]. Hence we can proceed with the computation. In

fact,

{ > AR)(Mss,y, K)- (qfsfl)(s,y)}

yEL[su]

= QN{ Y. P{A[e]- Ve F\ o(Lls, u])}

LyEL[s i

)

- QN{ 5> {Stes Ll \ {u)) — Zlos Lis, )} - wE~

| yEL[s,u]

! fs} } (20)

It is easy to see the following lemma.

Lemma 5 The last expression of (20) is equivalent to
Q[ (VE(,9) - ras7(6,9) Karm (d9) [exp (~raen Ku(C))
1 -
S = [ormy [ E s vnd) — Sl vy}

[Cc™

X (T51t1+1)mK§m(dyl> Tty dym)] .
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A simple computation implies that the integral expression in Lemma 5 is also equal to

Q[ [ [0 f
x P{p(K(t1), -, K(t)) —o(K(t1), K(t), K(tiq1) + My, - -+, K () + me) | Fs}
X Tstyeg - S;,y’— (dnl+l }---® dnk)] .. (21)

While, taking (7), (8) in §5, the Campbell measure theory, and predictable section argument
into consideration, we readily obtain

Lemma 6 The followinf equality holds for all s,y:

Pro(@)(s,y) = [ [+ =D [ro - Sty (dmia @ @) -
X P{QP(K(tl)7 e ’K(tl)a K(tl+1) + Mg, 7K(tk) + 77k) - @(K(tl)a Tt 7K(tk))|‘7_—8} .

Therefore, an application of the above assertion with Lemma 5 implies
-y /C o Pri®10 - YE ) (5,)dK rds
= /; ds {QN /C(——Pr[@])'y : ‘Ilg_lsz/\TNds} = /:Jr Eq.(21)ds = /; Eq.(20)ds
= Qu [ [ ARIM;s,y, K)Ave-s(ds @ ),

which completes the proof.

10 Evans-Perkins Type Formula: Proof of Theorem 4

Since P[K;(C)?] is uniformly bounded on compact intervals, our major premise guaran-
tees the finiteness of the quantity P[F(K)?]. Therefore we can apply Theorem 1 (§3) for
F(K) to obtain that

PK) =PI+ [ [ fls,9)dM"(s,9),P - as (22

holds for some f in L2 (K,P). While, it follows from the covariance formula in the theroy
of stochastic integration that

P [(/ I (oo)f(s,y)dM’%s,y)) (/ L (t)\P(s,y)dM"(s,y))] (23)
= P[[ [ 60¥6 00K (dn)ds]

for all t > 7 and ¥ in bP(C; x F;). Rewriting the left hand side of Eq.(23) we get

Pr() [ [ 0,0 (s,9)] 4
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by employing the predictable representation property (22). Hence we may apply Theorem
3 (§7) to rewrite (24), because the stochastic integration by parts formula is valid for any
bounded (C; % .ﬁ)—predictable functions. So that, from (23)

pf[ 1 o T vl )dKods = P / / F)(s,1)¥(s,y)7(s, y)dKds.

On this account, the general theory of Hilbert spaces shows th';atv |

P/: /C{f(s,y)'— Pr(F(s,y) ¥*v(s,y) Ks(dy)ds = 0

Therefore the uniqueness argument allows us to conclude that [ foq) fdM is equivalent to
[ Jow PrlF]dM, P-a.s. Note that Pr|F](s,y) become null for Ks-a.s. y, for any s > ¢, by its
construction, as long as we choose ¢ largely enough for the support of m to be contained in
[f, t]. Consequently, the above integral [ [ Pr[F]dM can be replaced by [ [o(o) PriF]dM,
which completes the proof. This goes quite similarly as in the proof of Theroem 2.5 in
[EP95]. '
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