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HIGHER-CODIMENSIONAL BOUNDARY VALUE
PROBLEMS AND F-MILD MICROFUNCTIONS
—LOCAL AND MICROLOCAL UNIQUENESS—

TOSHINORI OAKU AND SUSUMU YAMAZAKI
KFARE BEETA) , LE F KEK)

INTRODUCTION.

In this article, we shall state results of our recent paper [O-Y] about the higher-
codimensional boundary value problem for a general system of linear partial differential
equations with analytic coefficients. In general, we must impose some regularity con-
dition on the solutions in order to define their boundary values. We introduce the
notion of F-mild hyperfunctions as this regularity condition. Let M be a real analytic
manifold and N a closed real analytic submanifold of M of codimension d > 2. Then
the sheaf Eﬁl a Of F-mild hyperfunctions is defined on the normal bundle TyM of N
(strictly speaking, the sheaf ‘Bf” ar depends on a partial complexification L of M). Let
us take a local coordinate system (t,z) = (ty,...,t4%q,...,%,) of M such that N
is defined by t = 0. The restriction of ‘BIIT,I u to the zero-section of Ty M coincides
with the sheaf of hyperfunctions defined on a neighborhood of N which have ¢ as real
analytic parameters. Moreover, a section of B]I:,l s Which is defined on Ty M with the
zero section removed has also ¢ as real analytic parameters on a neighborhood of N.
Hence we may regard ‘Bﬁl M @s a tangential decomposition (specialization) of the sheaf
of hyperfunctions with real analytic parameters. We also define the notion of F-mild
microfunctions as a microlocalization of that of F-mildness. :

We take complexifications X and Y of M and N respectively such that Y is a closed
submanifold of X. We denote by Dy the sheaf on X of rings of linear partial differential
operators (of finite order) with holomorphic coefficients.

Let M be a coherent left Dy -Module; that is, a system of linear partial differen-
tial equations with holomorphic coefficients (in this article, we shall write Module with
a capital letter, instead of sheaf of modules). Then, our main result is the local and
microlocal uniqueness of F-mild hyperfunction solutions of a system of linear partial dif-
ferential equations which is Fuchsian along Y in the sense of Y. Laurent and T. Monteiro
Fernandes [L-MF] or in the sense of N. S. Madi [M] and S. Yamazaki [Y].

First, suppose that M is Fuchsian along Y in the sense of Laurent and Monteiro
Fernandes [L-MF]. In this case, not all the hyperfunction solutions of M are necessarily
F-mild, but we can obtain the local and microlocal uniqueness for F-mild solutions.
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Next, assume that M is a Fuchs-Goursat system in the sense of Yamazaki [Y], which is
a generalization of a Fuchs-Goursat operator due to Madi [M]. In this case, we consider
a kind of Goursat problem and prove the local and microlocal uniqueness of the F-
mild solution of M whose Goursat data are zero. Note that Yamazaki [Y] proved the
(micro-)local solvability of this Goursat problem for microfunctions with real analytic
parameters under a kind of (micro-)hyperbolicity condition. ‘

We should remark the following: The higher-codimensional boundary value problem
for hyperfunctions was initiated by M. Kashiwara and T. Kawai [K-K] for elliptic systems
of differential equations from the microlocal point of view. After that, M. Kashiwara
and T. Oshima ([K-Os], [Os]) defined the boundary values of an arbitrary hyperfunction
solution of M which is defined in {(¢,z) € R¢xR™; ¢, > 0(1 < i < d) } under a condition
stronger than that of Fuchsian system in the sense of Laurent-Monterio Fernandes [L-

§1. F-MiLbp HYPERFUNCTIONS.

We denote the sets of integers, real numbers and complex numbers by Z, R and C
respectively as usual. Further, we set N:= {n € Z; n > 1} and N := NU {0}.

Let M be a (d+n)-dimensional real analytic manifold and N an n-dimensional closed
real analytic submanifold of M. In this paper, we always assume that d > 2. There exist
complexifications X and Y of M and N respectively such that Y is a closed submanifold
of X. We assume that there exists a (d+ 2n)-dimensional real analytic submanifold L of
X containing both M and Y such that the triplet (N, M, L) is locally isomorphic to the
triplet ({0} x R, R%*+" R? x C™) by a local coordinate system (7, 2) of X around each
point of N. We call such a local coordinate system admissible. We use the notation
T=t++y-1s(t, s€RY), z=z++/~1y (z,y € R"), |z| = max {|z]; 1 < k < n}
and so on for an admissible local coordinate system (7, z). Hence by an admissible local
coordinate system the following inclusion relations are obtained:

N= {0} xR? &—— M=RZ¢ x R"

L

Y={0} xCr & L=R¢xCP

X =C%xC".

We shall mainly follow the notation of Kashiwara-Schapira [K-S]; we denote the normal
deformation of NV in M by M n and EY By an admissible coordinate system, we see-
thatMN——{rtm),reR (rt:):) € M}, .QM-—MNH{(rtm r> 0}, TyM ~
MNﬁ{ (r,t,x); r =0} and py,: My > (r,t,z) — (rt,z) € M.
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We denote by €,, and B,, the sheaf of microfunctions on Tj{}X and that of hyper-
functions on M respectively as usual. Further we set

Byim = Vn(Bum),

where vy () denotes the specialization functor along N. We shall define the sheaf of F-
mild hyperfunctions for the higher-codimensional boundary case. Note that the results
of this section were essentially contained in Oaku [O 4]. The main difference is that we
use the notion of normal deformation (cf. Kashiwara-Schapira [K-S]) here instead of the
real monoidal transform adopted in Oaku [O 4]. Let us set '

D(V,e,T) :={(t,z) € R x C"; (t,Rez) € V, |Imz| < &, Imz € T}

for a subset V of M, a constant € > 0 and a cone T of R™.
In general, we mean by Cl and Int the closure and the interior of a set respectively.

1.1 Definition. Let z* be a point of Ty’M and (r,z) an admissible local coordinate
system of X around & := 7y(z*) such that z(z) = 0. Then a germ u(t,z) of Bnim
at z* is said to be F-mild (with respect to a partial complexification L) at z* if there
exist a natural number J and holomorphic functions F;(7,z) (1 < j < J) defined on a
neighborhood of D(p,, (U N C1§2,,),¢,T;) in X such that

J
u(t,z) = Fj(t,z ++v/~=1T;0)

Jj=1

as a hyperfunction on p,,(U N §2,,). Here U is an open neighborhood of z* in M, ~ such
that the all the fibers of the mapping p,,: U N2, — M are connected, ¢ is a positive
constant and I'y,... ,I'; are open convex cones in R". We denote by ‘Bﬁi ar the sheaf
of sections of B N|M which are F-mild at each point of their defining domains. Sections
of Bf,l u are called F-mild hyperfunctions.

1.2 Remark. Let z* be a point of Ty M. Then F-mildness (with respect to L) at z*

of a section of B, does not depend on an admissible local coordinate system (7, 2)
of X taken in Definition 1.1. ‘

We denote the natural inclusion ’_Bﬁ! m > Byiar bY B
Let us denote by B4, the sheaf of hyperfunctions which have t as real analytic pa-
rameters on M. Moreover, set

A ._pA
By =B M| N
By the lemma below, we can regard an F-mild hyperfunction as a refinement of a

hyperfunction with real analytic parameters:
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1.3 Lemma. (1) The following equality holds:
BN |y = Bjar-
(2) There exists a natural monomorphism
LIVIYE 7';,1 fo\‘”M > ‘BIF\”M.

In particular, any germ of ‘Bﬁ” a8 F-mild on a whole fiber of Ty .

(3) Let u(t,z) be a hyperfunction on M\ N which is F-mild at any point of Ty M :=
TyM\TyNN. Then there exists a unique hyperfunction v(t,x) on M such that v(t,z) =
u(t,z) on M\ N and SSy;(v) N T%M = 0.

1.4 Theorem (the Edge of the Wedge Theorem for F-Mild Hyperfunctions).
Let z* be a point of TyM and (7,2) an admissible local coordinate system around
Tn(2*) such that 7y (z*) = 0 in this system. Let € be a positive constant, U an open
neighborhood x* in MN, and T'; (1 < j < J) open convex cones of R™. Let F;(r,z) be
holomorphic functions defined on a neighborhood of D(py,(U N CL12y,),e,T';) such that

J .
Jj=1

holds as a hyperfunction on ﬁM(Uﬂ £2,,). Then for any open convex cones I'; such that

I‘;- € I';, there exist a positive constant &, an open neighborhood V' of z* in M N and
holomorphic functions F;, (7, 2) defined on a neighborhood of D(p,,(V N CL$2,,),6,T% +
I'.) such that

J
Fi(r,2) =Y Fj(r,2),  Fy(r,2)+ Fy(rz)=0 Q<4 k<J).
k=1

We can prove this theorem by using the theory of Radon transformations for hyper-
functions (cf. A. Kaneko [Kn], K. Kataoka [kt]).
By this theorem, we obtain:

1.5 Proposition. There exists a morphism
7§|M: BKHM — Ty By
defined by
J .
T (u)(@) =Y F;(0,@+ V=1T;0)

j=1
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if a section u(t, z) of Bﬁl s 18 expressed as in Definition 1.1. In particular, ’Yﬁl M tnduces
an isomorphism:

d .
F -1
J:

This proposition means that the boundary value yf,] (@) (z) does not depend on
the direction along which the boundary value is taken. More precisely, let u(¢,z) be a
section of ‘Bf,l ar on an open set U of Ty M with connected fibers. Then there exists a
section v(z) of By on 7,5 (U) such that 'y]FVIM(u]V) = 75" (v)|y for any open subset V
of U.

§2. F-MILD MICROFUNCTIONS.

In this section, we microlocalize the F-mildness property. To this end, we introduce
new sheaves. |
Let us set ¢ty := i iy, Y —> X. Then we have the following commutative diagram:

T X M « N TyM ™ 1 Ty L

i 2 N U é\‘{
MxT&X&DNxT&XT—»TgYé&“TNMﬁT;,Y

M M Ly,

2.1 Definition. We set:

Char =H" (un (15" Ox @ oryyy)),

Bﬁw ::eﬁ|MlN =Hy(y' Ox) ® OTN/Y"A§|M

Thus €4, and B4,,, are sheaves on T},Y and N respectively.
N|M N|M N

By the same arguments as in the theory of microfunctions (cf. Oaku [O 3]), we can

obtain a natural epimorphism
<A . —1FA gA
SPNiM: TN ©N\M — 7 “N|M*
2.2 Lemma. There exists a natural monomorphism
F . qF ~15A
ON|M - (BNIM > TN BN]M‘

By this lemma, we can regard BE, . as a subsheaf of 75! B4 . .
g N|M N °NM
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- 2.3 Definition. The sheaf of F-mild microfunctions on T} ,,Ty L is defined by
N
~ A — —15
€§|M := Image(SPiv aﬁ]M: 7TN|1M BJF\}W — (7Y )i Ty 2 Glf\lﬂM)'

Sections of GIFV] u are called F-mild microfunctions. The morphism s'bﬁ” M aﬁl a induces
an epimorphism
F . _ -1 qF F
SPN|M Tvim By — Cvym-
For a section u of 31€‘M, SS]FV|M(u) denotes supp (spyy s (w))-

We remark that by definition Gf” ml T M = BJI:TI A

We also denote the natural inclusion CF,\; >— (‘7% ), 7y, éﬁl M bY &

2.4 Lemma. Let u(t,z) be a germ of ‘BJF\}]M at a point x* of TyyM. Then a point
p = (z*v/—1€%) of T7, mTyL is not contained in SS%IM(u) if and only if u(t,z) has
an expression as in Definition 1.1 such that £&* does not contained in I';° for any j.

Let us set
A -1
eN’|M = (tLIY)! tyx Cur-
Then we see that €§|M|N = BI’%,'M. Let us denote by spﬁuv_,: 7r;,1 ‘Bﬁ‘M — GJ“\‘,IM
the spectral morphism. Therefore we obtain a natural morphism

A | pA A
AN|M - eNjM - GNIM'
2.5 Lemma. The morphism aﬁl um induces a natural monomorphism
Lot -1 pA F
AN|Mm: Ty ) Tvx eN]M > G'N|M:

such that the restriction of this morphism to the zero-section coincides with o NIM:
T ‘Bﬁ]M > 3JFV|M of Lemma 1.3 (2).

Let ’)’f\lqM: eIJ%IM —> Gy and 'yjf;lM: (B§|M — By be the restriction morphisms.
Then, these morphisms induce isomorphisms

d d
Ciiar >otiChme = Cns B/ 2t Bavw = By
Jj=1 | Jj=1

We shall define restriction and boundary value morphisms.
First, induced by a natural morphism 1,171 Oy — Oy there exists a natural morphism

~A | GA
IN|M: GNIM — Cy.
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We also denote the restriction of this morphism to the zero-section by the same notation:
~A . pA

Then, these morphisms induce isomorphisms
GA d 54 | RA 4. za

Next, by Lemma 2.4, we see that ’yf” M ’Bﬁ, M 7'1(,123 y induces a morphism

which in turn induces an isomorphism

e/ 3 Zt €Ra = (Th ) T .

2.6 Lemma. The following diagram is commutative:

-1 _—1mA SpNtM
Tnim TN By —— (%) Tva eNiM
Q Q
< 3
VN < VN M (2
F
-1 F SPNiM . PF
Tnim BNm » Cnim
F F
A CONiM & [YNMm
& &
-1 -1 SPN ot 1
WNIMTN 'BN ——— | TY)'TYW GN
)}vy )}‘7
z, "
Vv '3
=~ A
-1 -1 SPN|M t 1 -134
—»
"NMTN Bnim Ty ) Ty Cyme
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§3. FUCHSIAN SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS.

Let Dy be the sheaf on X of rings of linear partial differential operators (of finite
order) with holomorphic coefficients. Let M be a coherent (left) D, -Module on X; that
is, a system of linear partial differential equation with with holomorphic coefficients.
Recall that Y is non-characteristic for M if Ty X N char(M) C T X, where char(M)
denotes the characteristic variety of M. We denote the inverse image of M by ¢y in
D-Modules by t3' M; that is,

iy M:i=Dy_,x ® iyt M~ Oy ® M.

-1
ty ‘Dx ty” Ox

Let us set My == 35" M).

First, we recall the non-characteristic case: If Y is non-characteristic for M, then
1y M is concentrated in degree zero; that is, we can identify 15! M with My, and that
_JQ[—Y is a coherent Dy.-Module. Moreover, we can prove that a;{/ hyperfunction solution
of M which is defined on a wedge domain with edge N is always F-mild, thus having
boundary values with no further assumption. This case was studied by P. Schapira
([Sc 1], [Sc 2]) by using the theory of microlocalization of sheaves. The local uniqueness
in this boundary value problem was proved in T. Oaku [O 4]. K. Takeuchi [T] formulated
microlocal boundary value problem by using the theory of second microlocalization and
proved the microlocal uniqueness in this case. We can obtain another proof to the
microlocal uniqueness by a natural extension of the method used in Oaku [O 4] (see
[O-Y] for details).

Now in this section, we shall state the uniqueness theorem in the boundary value

| problems for D-Modules of a Fuchsian type and of a Fuchs-Goursat type in the frame
work of F-mild microfunctions.

First, assume that M is a Fuchsian system along Y in the sense of Laurent-Monterio
Fernandes [L-MF]. Recall that a coherent D y-Module M is a Fuchsian along Y if and
only if for any (local) section u € M, there exists a differential operator P such that
Pu =0 and that P can be written in a coordinate system (7, z) with Y = {(7,2); 7 = 0}
as follows:

P(1,2;0,,0,) = Z P,s(z) 8.° +Q(r,20,,d,),

0<|a|=|B|<ord P

where ord denotes the (usual) order of a differential operator, and the conditions below
hold: '

(a) For any n € C%\ {0}, it follows that > Péﬂ(z) n*qP £ 0;
- |a|=|B|=ord P
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(b) For any j € Z, it follows that Q Jy? C J,7*!. Here J; denotes the defining ideal
of Y in X with a convention 3Yj = 0y for j <0.
Note that all the cohomologies of ti;* M are coherent Dy -Modules by Théoréme 3.3
of Laurent-Schapira [L-S] and that we may choose the coordinate system above as
admissible.

3.1 Theorem. Let M be a Fuchsian system along Y. Then, the boundary value mor-
phism 7J€|M: GJF\}‘M — ('), Ty x Cx induces a monomorphism

7J€|M: Homp (M, ezlme) >— (7Y )1 Tyx Homqp (My, Cy)-

Note that not all the hyperfunction solutions of M are necessarily F-mild, contrary
to the non-characteristic case.

We can prove this theorem by the Cauchy-Kovalevskaja type theorem (Théoréme
3.2.2 of Laurent-Monterio Fernandes [L-MF}).

By virtue of Lemma 2.5 we have the following corollary:

3.2 Corollary. Let M be a Fuchsian system along Y. Then, the restriction morphism
')'/]“\‘”M: (‘,’_,"\‘”M — €y induces a monomorphism

”anM: %OmDX(Ma el/\‘IIM) >— Homq (My, Cp).

Next, we shall give similar theorems for a matrix of Fuchs-Goursat type introduced by
Madi [M] and Yamazaki [Y]. To state the results, we define boundary value morphisms,
which we shall regard as Goursat data, as follows: By an admissible coordinate system,
we may assume that X = C¢ x C?, Y =C?, L=R¢ x C?, M =R¢ x R? and N = R”.
For 1 < i < d, let us set L, := {(t,2) € L; t;, = 0} and M; := M N L;. Then the
inclusion L, — L induces the following commutative diagrams:

Moreover, we have the following commutative diagram:

TyM M T3 Ty L

A

TyL, —2— Ty L - in O Pin

O N pi TiN

Ty M, 8 T M. . O

TRY +— Y= Ty M, XTRY —= Ti, Ty L

Then we have the following:



83

3.3 Lemma. There exist natural morphisms

~A nA
TN Cx ni — Cvpar,s

~A,
7N[zM By NiM BN;M 5

and
’YN|M (i) Pim eN|M - GN|Ma

’YN[M Oin 93N[M — BN|M )

such that the following diagram is commutative:

"TN‘M ¥i 1'BNiM P » ("01) 0im €N|M
R\
V;IlM %;Z’ 'Ysz[zM %;;’
7rNilM :BN]M "Pine » (oiy )1 Tive é}/\lrlM
Tim Fnim
M SPJF\:'lM,- GF\
* CN i
- S|, -

k3

o (b -1 oA ,
7TN;M TiN 93N|M » iy )1 Tiy e Cu,-

3.4 Lemma. Letl = (l,...,l;) be a d-tuple of non-negative integers and f(t,z) a
germ of €§|M at p = (zg;vV/—1(£*,dx)) € TRY. Then the following gonditions are
equivalent: '
(1) There exists a germ g(t,z) of 83‘%,|M at p such that f(t,z) = t' g(t,z).
(2) Forany0< k; <, -1 (1<i<d)

Toiar (85,5 f(t,2)) =

Moreover in this case, g(t,z) is unique.

For a vector | = (liy--.,1;) € RY, we set [l]+ = ()4 --- 5 [lg]y), where [I;], =
max{l;,0}. We fix J € N, m® = (m{,... ,m{?) and k*) = &), ... ,k{7) € N?
with m(”) >k (1<v<J)andset m = (mM),... ,;mU)and k = (kW,...  kU)) e

(Ng“)?. Set 1, := (1,... ,1) € N%,
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3.5 Definition. Let P(r,z;9,,8,) = (P*¥)(r,2;0,,8,))] ,—; be a matrix of size J x J
whose components is in Dy defined in a neighborhood of the origin. Then, P is said
to be of Fuchs-Goursat type with weight (k, m) (with respect to T-variables) if it can be

written as a form

PW(7.2:9,,8,) = Z P (1,2:0,),°,

1Ory
0<agm®)

where each P{*") is a differential operator satisfying the following:
(1) The order ord P4 of P is at most |m®)| — |a;
(2) There exist Po’ **)(r, 2) and P2 ") (1, 28,) (0 < @ < m®) such that

PWM)(1,2;0,) = rle=m®+L pLuw) (7 5) 4 ple=m®+EO 414, p2)(7 22 5,),

Let T() = (Tl('/), e ,TOEV)) (1 < v < J) be indeterminates and set
T :=(TW,..., TW).

If P is of Fuchs-Goursat type with weight (k,m), we define the indicial polynomial of
P by
Tp(z;T) = det ( Y Bhe(0,2) Ia(T(")))
m(V)—k(V)gagm(V)’

d
where Z,(T®) = [] Z, (T\")) with
=1’

1, (TJ'(U)) = !

7

() (mp(¥) (v)
T, (Tj —1)---(Tj —aj-’rl) (o
1 (a; =0).
Consider the following condition:
(A). There exist a positive constant C > 0 and a neighborhood W of the origin in C"

such that for any z € W and 8 € N,*

J v
|IP(z;ﬁ+m(1) — kD g+m) - k(J))l >CI(B+ 1d)m< )’
v=1

Under the notation above, we can prove the following theorems:
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3.6 Theorem. Let P be a matric of Fuchs-Goursat type of size J x J with weight
(k,m). Let p = (z*;v/—1(£",dz)) be a point of T}, pTyL with Ty(z*) = 0. Assume
that P satisfies (A). Let u(t,z) = Y(u, (¢, 2),... ,u; (t,z)) be a germ of (GﬁlM)EBJ at p.
Suppose that u(t,z) satisfies
P(t,z;0,,0,) u(t,z) =0,
g e @y u, (t,2) =0 (1<v<J, 1<i<d, 0<G <m{” -k - 1).
Then it follows that u(t,z) =0 at p.
3.7 Theorem. Let U be an open set of Tq*«N m Ty L such that each fiber of
Tynt (%) (U) — IRY
s connected and intersects with T}N M‘_TYLi for any 1 < i < d. Let P be a matriz of

Fuchs-Goursat type of size J X J with weight (k,m). Assume that P satisfies (A) and
that a section u(t,z) € I'(U; Gﬁw)@" satisfies

{ P(t,z;0,,0,) u(t,z) =0,

FYJFV’fM(atiji u,(t,z))=0e€ I'(UN T;’NMiTYLi; e§|Ml.) (O <j. < m® _ ) _
Then it follows that u(t,z) = 0. '

The proofs of Theorems 3.6 and 3.7 are based on Lemma 3.4 and The Cauchy-
Kovalevskaja type theorem (Theorem 1.3 of [Y] which is an extension of Théoreme
(1.1) of Madi [M]).

By Lemma 2.5 we have also the following corollary:

3.8 Corollary. Let P be a matriz of Fuchs-Goursat type of size J x J with weight
(k,m). Assume that P satisfies (A) and a germ u(t, ) of (GJ“\‘,IM)‘BJ at (0;4/—1(£*,dx))
€ Ty X satisfies
P(t,z;0,,0,) u(t,z) =0,
{ 8, %u,l, =0 (1<v<J, 1<i<d, 0<j; <md —k —1).
Then it follows that u(t,z) = 0 at (0;4/—1(£*,dx)).

3.9 Remark. (1) Since the induced system M,y is not necessarily a coherent Dy-
Module in cases of Theorems 3.6 and 3.7, we must impose boundary (or rather initial)
conditions on each hypersurface M;, rather than the boundary conditions on N. This
might be regarded as a hyperfunction (or microfunction) version of the Goursat problem,
rather than the higher-codimensional boundary value problem.

(2) In [Y], we discussed the solvability of the Goursat problem for a Fuchs-Goursat
type in the framework of microfunctions. By Corollary 6.8, in the differential case we
can conclude a uniqueness of each solution of Theorem 4.2 and Corollary 4.5 of [Y].
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