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1. CoNTIGUITY RELATIONS

A “hypergeometric system” is a system of partial differential equations contain-
ing a parameter and admits a contiguity relation with respect to the parameter.
In the langauge of D-modules, this empirical fact is formulated as follows: Let
M(c) be a left Dx-module containing a parameter c, that is, a left Dx [¢]-module,
where Dx[c] = Dx ® Clc]. A contiguity relation for M(c) with respect to c is a
commutative diagram:

Q%(9) Q' (o) xldm™ Q%)

Dxl™ —

Dx|c]™e
(L.1) lzﬂ(c) lP‘(c) lPO(c)

2 c 1 c (¢]
Q% (ct+1) DX [C]mz Q" (c+1) DX[C]ml Q°(c+1) DX [C]mo
of left Dx[c]-modules such that the following sequence is a free resolution of M(c):

Q' (o) Q%)

. —— Dxldm == Dx[d™ —— Dx|™ —— M(c) —— 0

Here Q%(c) is an m;+1 X m; matrix of holomorphic partial differential operators
depending polynomially on ¢ and acting on Dx [c]™i+1 by right multiplication, where
each element of Dx[c]™+! is regarded as a row vector. As for the operators Pi(c),
we require that each P*(c) should be an m; x m; matrix of holomorphic functions
(not of partial differential operators) depending polynomially on c and acting on
Dx|[c]™ by right multiplication. ' :

Example 1.1. Consider Humbert’s confluent hypergeometric system @3 (b1,b2;¢):

{ Li(e)f == {202 + y0y0y + (¢ — )0y — b1} f =0,
Lo(c) f = {yd2 + 2050y + (c — y)9y — b2} f =0,

on X = P! x P! with parameters by, by and c, (see [2]). Let M(c) be the Dx|c]-
module associated to the system ®a(by,ba;c), where by, by are regarded as fixed.’
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Then M(c) has a contiguity relation:
0 —— pt 2@, py PO, pe

le (e | lP-l (c) lPO(c)

00— py LD, po @D, pe
where v
/c x Y 0 0 0
b1 T 0 0 0 0
o/n | b2 0 Y 0 0 0
PO=109 146, 0 =z o0 0
0 % & 0 j@=+y O
\0 0 1+b2 O 0 Y
(c 0 0y 010 0 \
0 ¢c 0z 0y 01 0
by 0 r 0 0 0 O O 0
0 by 0z 0 0 0 O z
P¢)=|bb 0 0 0y 00 0 —3%
0 bpb 0 00y 00 0O
0 0000O0GO0TGZO —%
0O 0 0 0 00 0 y %
\0O 0 00 0O0 OO %(az+y)}
c 1 0
P?(c) = ( biz+by T4y —1)
(by+ba)zy =zy O
( Oy -1 0 0 0 0 \
g 0 -1 0 0 O
0 Oz 0 -1 0 0
o 8 0 0 -1 0
Q%c) = 0 0 8 0 -1 0
o o &8 0 0 -1
-b; c—=x 0 T -y 0
—by 0 c—y O x y
\0 -—bz bl 0 r—1Yy 0
Oy —bo ' - =bax » \T
-0, by b1y
0 z0y z(6y + b2)
' 1 —(bg—xz+c) —y(by—z+c—by)
Q)= | -1 éy—y+c z(~—y+c—b)
0 10z —y(6z + b1)
0 8y 6y+b2' g
0 “a:z: _(6m+b1)
\0 1 0z + 6y +c )

Here 9y = 8/0y, 6, = y0y, and T' stands for the transpose of a matrix.



112

- 2. MArPING CONES

From the contiguity relation (1.1), one obtains a D Xxpl-mOdﬁle N(c) containing
a parameter as follows: Let y be an inhomogeneous coordinate of P! and set 8, =
8/8y, 6; = ydy. Given a nonzero polynomial ¢(c) € C|c] independent of ¢, set

FH(e) = $(8y) — P'(8y + )0y
Then the contiguity relation (1.1) induces a commutative diagrani

Q2 (5y+c) Ql (5y+c) QO (614 +c)
—_— ——— —_

DX)_(]P’I [C]m2 DXXIF’1 [C]m1 DXx]pl [C]mo
(2.1) lﬁ(c) lf‘(c) lf"(a)

2 1 o
Q*(6y+c) Dot [C]m2 Q" (6y+c) Q°(6y+c)

Dxxpr [c]™ Dxxp[c]™,
where the horizontal lines are exact. Let N(c) be the Dxyp:[c]-module having
M(f(c))[—1] as its free resolution, where M(f(c)) is the mapping cone of the mor-
phism (1.2). Namely, N'(c) is the Dxyp1 [c]-module such that

D3(c) D?(c)
_—

 — Dxxpl[c]m4+m3 DXx]P’l[C]ma_*_mé =, Dyypr[dmetm

1 c (8]
L@, pomldmtme 2 Dy pmldme —— N(c) —— 0

is a free resolution of AV(c), where the operator D¢(c) is given by

iy Q (8, +¢) 0
0= ()L ST 05y -5y

In this situation, we say that A/(c) is obtained as the mapping cone of a contiguity
relation for M(c). We observe that N(c) is a system of partial differential equations
on X x P! having singularities along the hypersurface X x {oo}. It is an empirical
fact that a confluent hypergeometric system N(c) often appears as the mapping
cone of a contiguity relation for another hypergeometric system M(c), at least
locally around an irregular singular point. :

Example 2.1. Let @g’) (b1,...,bp;c) denote Humbert’s confluent hypergeomet-
ric system on X = (P!)” with parameters by,...,b, and c, (see [1]). Note that

@;1) (b1;¢) is Kummer’s equation and ®5(by,be;c) = @;2) (b1,bg; ¢) is considered in
Example 1.1. If M(c) is the system @g")(bl, ..., bn;c) and ¢(c) = ¢ — bpt1, then
N(c) is the system <I)§"+1)(b1, vesbpy1s0).

3. GEVREY COHOMOLOGY GROUPS

Let N(c) be a Dxxpt[c]-module obtained as the mapping cone of a contiguity
relation for a Dx|[c]-module M(c). We are interested in computing the extension
groups Extp, . (N (o), Ox[[1/y]]s,a) for generic values of ¢ € C. Here Ox[[1/y]ls,q



is the sheaf of (formal) Gevrey functions, that is, Ox[[l/ ys,s consists of the func-
tions f =Y 2, un(z)y~™ with u,(z) € Ox such that for any n,

lunll < C(£,0)07(n))*~! (Vb > a),

Where C(f,b) is a constant depending only on f and b. It can easily been seen that
all the formal extension groups Ext*(N(c), Ox[[1/9]]) are trivial, but the Gevrey
extention groups Ext*(N(c), Ox[[1/y]ls,a) are, in general, nontrivial.

The main idea for tackling the problem is to introduce an auxiliary complex
C of Dx-modules (called the harmonic complez), quasi-isomorphic to the solution
complex RHom(N(c), Ox[[1/y]]s,a), in such a manner that computing the coho-
mology groups H*(C) is more accessible than computing Ext*(N(c), Ox[[1/y]]s.c)
directly. In the next section we construct such a complex C by expressing it com-
binatorially in terms of the contiguity operators P*(c) as well as the differential
operators Q*(c). The construction of C is formal, that is, it does not require anal-
ysis. However, determing admissible indices (s, a) for which C is quasi-isomorphic
to RHom(N(¢), Ox[[1/y]]s,a) depends strongly upon hard analysis, that is, upon
Gevrey estimates of solutions to certain finite difference equations arising from the
contiguity relation. The necessary analysis is developed in [3] In this report we
restrict our attention to the algebraic aspect of the theory, 1eavmg the analytic
aspect to the above-mentioned paper.

4. HARMONIC COMPLEX

To construct the harmonic complex C, we first set

. Pi(n —
P = (n-—gldegzi)i(c)’ @n=Qn—c)

n=0,1,2,...),

where deg P*(c) is the degree of P*(c) as a polynomial of c. Then P} and @}, define

the operators P : O% — OF and Q% : O% — OF*+'. The following assumption .

is very natural for the operators P! and Q; arising from hypergeometric systems.

Assumption 4.1. Assume that P? and Q% admit factorial asymptotic expansions:

o0
Pi~ 3 Phi(n— o), (n — +00),
7=0

"= é Q" (n—c); +’ of1)  (n— +o0),
where (z); and (x); are defined by :
(@) = (__1)3']'»! '($>‘::c(a:—f1)-..(:c—j+1)
T gz +1) - (z+5-1) I (—=1)35! '

and that there exists a direct sum decomposition O = Ui@U} with the associated
projections X* : O%* — Ug and Y* : O — U? such that

Xipi0xi — Xi, O XTpPR0yE — 07
Yipud xi — O, Xipulxi = 0,
I - Z': U} - U} is invertible,

where I is the identity operator on U and Z* := Y*P»0Y?,
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Definition 4.2. Under Assumption 4.1 we define C* and d¢ : C¢ — C**! by
Ct=U3"1,
. ) NV .
di = Qz—l,O + Z Q'L-l,g E Atj—l’
j=1 JeS;

where S; is the set of all nonempty subsets of {1,2,...,j}. The operators Aj :
U* — U* (J € S;) are defined as follows. We first set

ik , -
i (E—1L4!m-1! m-1 im
jk—_mzzl (k+m—1)! '——k.—mP ’

J

for 0 < k < j, where a4 = max{a,0} and

j fala+1)--(a+j-1) (1=1,23,...).
Using the operators P;k defined a,bove,;we next set

1

A =X'Plyp+ I+ EXiPi’l)(Il — ZY) (Y Py, — b k1 2Y),

for 0 < k < j, where I is the identity operator on U* and §;; is Kronecker’s symbol.
Then for each J = {j1,72,...,Jk} € S; with j1 < j2 <-+ < jk, the operator AY is
defined by A% = A% A AL LA

Jreir—1""Jr—1dk—2 Ja2j1%%710°

Lemma 4.3. C so defined is a complez, i.e., d* maps C* into C*+1 and d*+1d* = 0.

5. QUASI-ISOMORPHISM

Theorem 5.1. For suitable Gevrey indices (s, a), we have for any ¢ € C\ Z,

(5.1) RHomp,,, (N (), Ox[[1/ylle.a) 22 C.

A Gevrey index (s, a) for which (5.1) holds is said to be admissible. To describe
admissible Gevrey indices, we set

s= mz_ax{deg Pi(c) — s'} — deg ¢(c) + 2,
§ = mindeg Pi(c) —deg é(c) + 2;

where

p' =min{j; X'P¥Y* #0},
¢ =min{j; YIPH X £ 0},
r* =min{j; YIP¥Y!#£ O},
s =min{p* +¢" — 1, 7 }.
- Case s < s < 8 (s,a) is admissible for any a > 0. -
- Case s = s or §: admissible values of a can be determined explicitly in terms of .

the coefficients P“J of the asymptotic expansion of PZ, though the description of
them are rather complicated (and hence omitted). See [4] for details.
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Example 5.2. Recall that if M(c) = (") (b1,...,bn;c) and qb(c) =¢—bpy1, then
N(e) = <I>(")(b1, bn+1;¢), (Example 2 1). In this case the harmonic complex C
is isomorphic to the de Rham complex Q(Pl )n[ 1] shifted by one, and s =1, § = 2.
Theorem 5.1 implies that , ‘ '

.dimExti(N(C),(’)X[[l/y]]s,a) = dim H*(C) = { (1) 8 ; (1); .

where the second equality follows from Poincaré’s lemma.

H. Majima [5] also computed the Gevrey extension groups for the Humbert
system <I>( )(bl, ,bp;c).
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