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On asymptotic estimates for coefficients of divergent solutions to
second order non-homogeneous linear ordinary differential
equations.

Nakamura Yayoi
Ochanomizu Univercity

ARHAE (BEOKKFK)
1 Introduction |

Conseder a second order linear ordinary differential equation

&Y pay=0 1y

pz)=z" +aq 2™+ ... +an

This equation has a irregular singular point at infinity with irregularity m + 2.
It is known that this equation has integral solutions in following four cases:

() p(x)=z+a; (le.m=1)

(i) p(z) = z*+ajz+a; (ie. m=2)
(iii) p(z) = 2™
(iv) p(z) = % + czP~?

In these cases, each equation will be transformed into confluent hypergeometric differential equation.
Especially, the solution of the equation (1) with coefficient (i) is Airy function and (ii) parabolic cylinde
function. R . :

Let O and O be the ring of convergent power series and the ring of formal power series in z, respectively.
Then, for a linear ordinary differential operator P with coefficients in holomorphic function, we see the
following isomorphism of linear spaces due to Deligne;

HY(S',Ker(P : Ao)) = Ker(P;0/0 — &/0)

where Ag is sheaf of germs of functions asymptotically developable to the formal power series 0 on the
circle St. ‘
To pay attension to this isomorphism, by vanishing theorem due to [3] in asymptotic analysis, we

obtain the asymptotic estimates for coefficients of divergent solutions to non-homogeneous linear ordinary
2

differential equations about the differential operators P = -;——2- - p(z).
. z
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In this note, we see the numerical calculation about the estimation about the case of (iii), (iv). By
these calculation, we can see the estimate and the asymptotic estimate for coeflicients of a solution of
the non-homogeneous differential equation are almost the same.

2
2 About the operator P = —(1— —z™
| dzx?

The differential equation
2

Py= (-&% -zMy=0 (2)

has irregular singular point at £ = co. The irregularity of P at z = co equals iy (P) =m+2. Put

U,,={:::eC;I:z:|>0,2,‘:_37r<arg:r:<2,‘74-1

k=0,1,... .
m+2 m+2w}’ 07 b 7m+1

Then {U,k=0,1,...,m+ 1} forms an open sectorial covering at £ = 0o, and put

Sk=UkﬂUk+1={w€C;|$|>0,

2k T
argz—m+27r < m+2},k_—0,1,...,m+1,
where Up, 42 = Up.

We have now a unique entire solution y = y; of the differential equation (2) with the asyrmptotic
representation:

ye~wi bz (1 4+ Z BngNz’%L)exp{(—l)k“—rF-i—izg#}

N=1

ends to infinity in any closed subsector of the open sector Up. Where w = emFa and, for

z t
= 0,1,..., the quantities By are decided by

as
N

Bmaa 1) = H m‘)%m{ ’ ( i +1)+ Zm("; +2) + l(m2+ 2)(£(m2+ 2) + 1))

On the other hand, we have the solution with above properties:

4 _ % ;1—2 +00 m+2
=ami2l 2?7 =" () b (¢ 4 — )iy
1) (4 %‘hﬂ?’ +00  miz |
Yober = (-1)™7 (53 ) / ez—it-v C+am)e-d-= (¢ + ._4_)—%—#;’”(.
;-7 0 m+2

Then each y; gives subdominant solution in Sk.
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2.1 Coefficient and its asymptotic estimation of the solution

By using above representations of solutions, we can choose a basis of H(S*, Ker(P : Ag)) in the following
way: :
Put 1-cocycle about {Up, Ui, ..., Un+1} by

(uf®), (,5) = (0,1);(1,2), .., (m,m + 1), (m + 1,0)},

(k) Yi z € Sk i:k,
'J = 0 $€Sk z;ék,

for k=0,1,...,m+1.

In this 51tuat10n, the pair of cohomology classes of {u(o)} {u(l)}, {u(m+1)} forms a basis of
HY(SY, Ker(P : Ap)).

By vanishing theorem in asymptotic analysis, we have 0-cochain {v((,k),vgk), . 5,3_1} k= 0 1,...,m+
1, such that

) = —o® + o, (i, ) = (0,1),(1,2),, (m,m + 1), (m + 1,0),

where each vgk) are defined in U; for j = 0,1,...,m + 1 and asymptotically developable to formal
power-series f)(")(z) =Y sv(m,k,r)z" ",k =0,1,...,m+ 1, respectively. Then

Pug-’) = —Pvgk) + va‘).

In S;, we have
Pvgk) = ij(-k).
Put ®
(k) - P‘Ui z €U
9" (x) { P zeu;
Then '
f® (=) = { 9®)(z) z€C

limg 0o 9*¥)(2) =00
" define holomorphic funcfion, and
Pi(2) = fP(a).
Hence, by the vanishing theorem due to [3] in asymptotic analysis, ([#(9], [o(V)],..., [6(™+D)]) forms a
basis of Ker(;d;,- ~2m,0/0).
Moreover, we can have estimates for the coefficients v(m, k, 7).

1 ——2, 2 2r_
2k 1 — —_ -"-?I—+]‘ - 1
v(m, 2k +1,r) (=1)=+ i m+2 m+2 +2(m+2) 2
F(%_m-{-z) (m+2)F( l 1 2r+1+l._1)'
m+2'2 m+2"m+2 2’

I‘(m-i-Z + 2)
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v(m,2k,r) = (- 1)% "'#527” (m+2)(m+2 ~w m+2)1 el
MGG, or 1 1 2e41 1
Itz + 2) m+2’2 m+2 m+2 "2 7

And we can have asymptotic estimates for any sufficiently large number r,

v(m,k,r) ~ wvp(m,k,r)

= 2m(—w'+l+’°) 2 B Py -2 H-ip( 2 - )

m-+2 4
m M
T3
provided 1< M<r.
d2
2.2 About the operator P = i (2% + czP™1)
T
The differential equation ,
—_— d 2p -1 —
Py= (35~ (&% +cz”))y =0 3
has irregular singular point at z = co. The irregularity of P at z = 0o equals i (P)=2p+2. Put
2k — 3 2k +1
= C; = - .
Us {ze szl > 0, —— 3 ) T <argz < 2p+27r} k=0,1,...,2p+1
Then {Up,k=0,1,...,2p+ 1} forms an open sectorial covering at z = co, and put
v d
S =UrNUgy1 = {:c € C;lz| > 0, |argz — pyre 77 < 2p+2} yk=0,1,...,2p+1,

where Ugpyq = Up.
We have now a unique entire solution y = y; of the differential equation (3) with the asymptotic
representation:

(oo}
yew Frhe= 2 (1 4 Y Bangpany(w ™ PHDE)EN =N e~ (@)

N=1
as z tends to infinity in any closed subsector of the open sector Up. Where w = emT™ and, for
N =0,1,..., the quantltles By are decided by

N-1
Bonp41)(c) = g-+1—1))7‘-’— 3] H (P+c+2p+1))(p+c+2p+1)—1),
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By(c) = 0,2 # 2N(p+1).

On the other hand, we have the solution with above properties:

(_.___)%(—iﬂl) —$'+’(C+"h') 3(sgh-1) 3 +1)
Y2k m ¢ (C + ""‘) d¢,

(_1)%(°—1-‘r+1)+1( 2 )Ml«ﬁﬁ-)
(-1 (,,+1 + 1) +1)

Then each y; gives subdominant solution in the sector Sj.

Yoky1 =

+o0 ‘
/ e+ - (¢ 4 __?_)é(:—;-}—x)dc_
0 r+1

2.3 Coeflicient and its asymptotic estimation of the solution

By using above representations of solution, we can. choose a basis of H!(S!,Ker(P : Ap)) with following
way: ;
Put 1-cocycle about {Up, Uy, ...,Uzpt1} by

i, 6,9 = (0,1),(1,2),...,(2p, 2 + 1), (2p + 1,0)},
(k) Yj :BESJ' i=k,

i = 0 z¢€ Sj i # k,

for k =0,1,ldots,2p + 1.

In this situation, the pair of the cohomology class of {ujoj) +1b {u(,lj) PR IR {uﬁpi'll)} forms a basis of
HY(S,Ker(P : Ap)).

By vanishing theorem in asymptotic analysis, we have 0-cochain {'v(()k), vgk) ye vgf,ll} k=0,1,...,2p+
1 such that

uy =~ +o),,43) = (0,1),(1,2),...,(2p, 2 + 1), (20 + 1,0),

where each vgk) are defined in Uj, for j = 0,1,...,2p + 1 and asymptotically developable to formal
power-series 9(¥)(z) = Yoroov(2p+ 1,¢,k,7)z" ",k =0,1,...,2p+ 1, respectively. Then

Pui(-;-c) = —Pv,(k) + PvJ(k).

In S;, we have

(k) Pv(k).
Put @
(k) — P‘Ui z€el;
9 (z) { PP zeU;.
Then

(k)
k _ ¢ (z) zeC
f®)(z) = { limy oo ¢®)(z) 7 = 00
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define holomorphic function, and
Pi{(z) = f¥)(z).
Hence, by the vanishing theorem due to [3] in asymptotic analysis, ([6(%], [(1)], ..., [#(?+D)]) forms a
basis of Ker(a‘gg- — (2% + czr~1); 0/ 0). »
Moreover, we can have estimates for the coefficients v(2p+ 1,¢,k,r).

v(2p+2,¢,2k+1,r)

Ol S 2 1 .
= DNt "+ 1
( 1)» 1 27rir(p+1)(p+1) P 1(p+1)p 1
I‘(—%(i—'ﬁ—-l))r(ﬁ) ( T __1_(c+1__) r _l(c—-1_~1)._1)
PG-34t -1) p+1 2p+1 p+1 2p+1 7

v(2p + 2,¢,2k, 1)
= L yship T st 2 -5k

27
r(é(ﬁ-}-u))r(f,-ﬁ)ﬂ r _1_(c—l+1) r +1(c+1+1),_1)
TG+ D) p+12p+1 7pr1  2p+1 )

And we can have asymptotic estimates for any sufficiently large number r,

v(2p+2,¢,k,r)

~ vm(2p+2,c,k,r)
M-1

. 1, ) ~ —
= —5=w"" D Bangpiny(w T k) (p + 1)FHC -G HE)-1
N=0
1 i 1 -

provided 1 < M < r.

3 numerical calculation

We shall confirm that the estimate and the asymptotic estimate for a coefficient are almost the same by
numerical calculation by using symbolic computation system Mathematica.

3.1 About the operator P = 5:—2 —z™

3.1.1 —(-i—z- ~z° and r = 200
dz?

Put m = 5 and r = 200.



When k is even number, we can have

v(5,2k,200) = 5.78091954996038444069056453 x 1013
—1.31945716325290011156745834 x 1019310 x i.

If we take M equals 50, we have

vso(5,2k,200) = 5.780919549960384440690564229 x 10'%3
—1.319457163252900111567458271 x 10*°310 x i.

Hence we have the module v(5, 2k, 200) of vso(5, 2k, 200)

v(5, 2k, 200)/vs0(5, 2k, 200) = 1.000000000000000000000000053.

This shows that v(5,2k,200) and vso(5, 2k, 200) are almost the same.
When & is odd number, we can have

v(5,2k +1,200) = —2.572751234767002988887166675 x 101%3
—5.34237298705158039109245417 x 10'°310 x i.

If we take M equals 50, we have

vso(5,2k +1,200) = —2.57275123476700298888716654 x 100

~5.342372987051580391092453892 x 101°310 x 4.

Hence we have the module v(5,2k + 1,200) of vs0(5, 2k + 1,200)
v(5, 2k + 1,200)/vs0(5, 2k + 1, 200) = 1.000000000000000000000000053.

This shows that v(5,2k + 1,200) and v50(5, 2k + 1,200) are almost the same.

3.1.2 35‘:—2 —z!° and r = 400

Put m = 19 and r = 400.
When k is even number, we can have

v(19,2k,400) = 3.453077065783857557918438705 x 107
—7.170388411113402004415825685 x 1078 x 1.

If we take M equals 37, we have

v37(19,2k,400) = 3.453077065783893137203967499 x 107
—7.170388411113475885563500981 x 1078 x 4.

Hence we have the module v(19, 2k, 400) of v37(19, 2k, 400)

v(19, 2k,400) /v37(19, 2k, 400) = 0.99999999999998969635346939.
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This shows that v(19,2k,400) and vs7(19, 2k,400) are almost the same.
When k is odd number, we can have

v(19,2k +1,400) = 6.89228977853905057503399197 x 107 _
—3.979265358972426994974539153 x 107 x 4.

If we take M equals 37, we have

vs7(19,2k +1,400) = 6.892289778539121500751656574 x 1078
—3.979265358972467995918249507 x 107 x i.

Hence we have the module v(19, 2k + 1, 400) of v37(19, 2k + 1,400)

v(19, 2k + 1, 400)/v37(19, 2k + 1,400) = 0.99999999999998969635346939.

This shows that v(19,2k + 1,400) and v37(19,2k + 1,400) are almost the same.

3.2 P= & — (.7:2” + cmp_l)
) ~ dx?

2
dz?
Put p = 4 and r = 100.

When k is even number, we can have

3.2.1 — (2% + 22°) and r = 100

v(10,2,2k,100) = —3.767003417074743939251665848 x 10?8
—5.184835397614809175077327119 x 10?8 x i.

If we take M equals 19, we have

v19(10,2,2k,100) = —3.767003420044648200708650666 x 10?8
—5.184835401702531706077014179 x 10%8 x .

Hence we have the module v(10,2,2k,100) of v19(10, 2,2k, 100)

v(10,2, 2k, 100)/v15(10, 2, 2k, 100) = 0.999999999211600327821899299 + 0.10~38 x i

This shows that v(10,2,2k,100) and v19(10, 2, 2k, 100) are almost the same.
When k is odd number, we can have

v(10,2,2k +1,100) = —2.358251967861247883193952833 x 10?9
+3.245855372479788578747727395 x 10%9 x 1.

If we take M equals 19, we have

v19(10,2,2k +1,100) = —2.3582519540410331435767629207 x 1029

+3.245855353457894874109400001 x 10%9 x .

123



Hence we have the module »(10,2,2k + 1,100) of v15(10,2, 2k + 1, 100)
v(10,2,2k + 1,100)/v19(10, 2, 2k + 1, 100) = 1.000000005860363951330673108.

This shows that v(10,2,2k + 1,100) and v19(10, 2, 2k + 1, 100) are almost the same.

d? 40 19 -
3.2.2 i (z*” + 10z*°) and r = 500

Put p = 20 and r = 500.
When k is even number, we can have

v(42,10,2k,500) = —1.033415566729374674610622875 x 10%0
—2.358703594391783120486533442 x 109 x i.

If we take M equals 19, we have

v19(42,10,2k,500) = —1.033415566623428208513677288 x 1050
—2.358703594149967234273282553 x 109 x i.

Hence we have the module v(42, 10, 2k, 500) of v19(42, 10, 2k, 500)

v(42, 10, 2k, 500)/v15(42, 10, 2k, 500) = 1.000000000102520679500807233 + 0.10~%7 x i

~ This shows that v(42, 10,2k, 500) and v19(42, 10, 2k, 500) are almost the same.
When k is odd number, we can have

v(42,10,2k +1,500) = —3.018188293136985920927825471 x 10°0
+2.00243709397029281822076316 x 10°1 x i.

If we take M equals 19, we have

v19(42,10,2k +1,500) = —3.018188293136015310277848565 x 10°0
+2.0024370939696488601304956088 x 10°1 x .

Hence we have the module v(42, 10,2k + 1, 500) of v19(42, 10, 2k + 1, 500)

124

v(42, 10, 2k + 1,500)/v10(42, 10, 2k + 1,500) = 1.000000000000321587176050042 + 0.10~35 x i.

This shows that v(42,10,2k + 1,500) and v19(42, 10,2k + 1,500) are almost the same.
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