Growth property of singular solutions of linear partial differential equations in the complex domain in C^{d+1}

By Sunao OUCHI (Sophia Univ.)

ABSTRACT. Let $P(z, \partial)$ be a linear partial differential operator with coefficients holomophic in a neighbourhood Ω of z = 0 in C^{d+1} . Consider equation $P(z, \partial)u(z) = f(z)$, where u(z) and f(z)admit singularities on the surface $\{z_0 = 0\}$. We assume that $|f(z)| \leq A|z_0|^c$ in a region $\Omega(\theta)$ which is sectorial with respect to z_0 . The main result of this paper is the following:

There is an exponent γ^* such that for some class of operators if $\forall \varepsilon > 0 \ \exists C_{\varepsilon}$ such that $|u(z)| \leq C_{\varepsilon} \exp(\varepsilon |z_0|^{-\gamma^*})$ in $\Omega(\theta)$, then $|u(z)| \leq C |z_0|^{c'}$ for some constants c' and C.

First we give the notations briefly. The coordinates of C^{d+1} are denoted by $z = (z_0, z_1, \dots, z_d) = (z_0, z') \in C \times C^d$. $|z| = \max\{|z_i|; 0 \le i \le d\}$ and $|z'| = \max\{|z_i|; 1 \le i \le d\}$. Its dual variables are $\xi = (\xi_0, \xi') = (\xi_0, \xi_1, \dots, \xi_d)$. N is the set of all nongegative integers $N = \{0, 1, 2, \dots\}$. The differentiation is denoted by $\partial_i = \partial/\partial z_i$, and $\partial = (\partial_0, \partial_1, \dots, \partial_d) = (\partial_0, \partial')$. For a multi-indes $\alpha = (\alpha_0, \alpha') \in N \times N^d$, $|\alpha| = \alpha_0 + |\alpha'| = \sum_{i=0}^d \alpha_i$. Define $\partial^{\alpha} = \prod_{i=0}^d \partial_i^{\alpha_i}$. We denote $\partial'^{\alpha'} = \prod_{i=1}^d \partial_i^{\alpha_i}$ by $\partial^{\alpha'}$.

We define spaces of holomorphic functions in some regions to state the results. Let $\Omega = \Omega_0 \times \Omega'$ be a polydisk with $\Omega_0 = \{z_0 \in \mathbb{C}^1; |z_0| < R\}$ and $\Omega' = \{z' \in \mathbb{C}^d; |z'| < R\}$ for some positive constant R. Put $\Omega_0(\theta) = \{z_0 \in \Omega_0 - \{0\}; |\arg z_0| < \theta\}$ and $\Omega(\theta) = \Omega_0(\theta) \times \Omega'$. $\mathcal{O}(\Omega) \quad (\mathcal{O}(\Omega'), \quad \mathcal{O}(\Omega(\theta)))$ is the set of all holomorphic functions on $\Omega \quad (resp. \ \Omega', \ \Omega(\theta)). \quad \mathcal{O}(\Omega(\theta))$ contains multi-valued functions, if $\theta > \pi$. We introduce $\mathcal{O}(\alpha(\theta))$ and $Asus \alpha(\Omega(\theta))$ which are subspaces of

We introduce $\mathcal{O}_{(\kappa)}(\Omega(\theta))$ and $Asy_{\{\kappa\}}(\Omega(\theta))$, which are subspaces of $\mathcal{O}(\Omega(\theta))$ and fundamental function spaces in this paper.

Definition 1. $\mathcal{O}_{(\kappa)}(\Omega(\theta))$ $(0 < \kappa < +\infty)$ is the set of all $u(z) \in \mathcal{O}(\Omega(\theta))$ such that for any $\varepsilon > 0$ and any θ' with $0 < \theta' < \theta$

(1)
$$|u(z)| \le C \exp(\varepsilon |z_0|^{-\kappa}) \quad z \in \Omega(\theta')$$

holds for a constant $C = C(\varepsilon, \theta')$. We put $\mathcal{O}_{(+\infty)}(\Omega(\theta)) = \mathcal{O}(\Omega(\theta))$ for $\kappa = +\infty$.

Definition 2. $\mathcal{O}_{reg,c}(\Omega(\theta))$ is the set of all $u(z) \in \mathcal{O}(\Omega(\theta))$ such that any θ' with $0 < \theta' < \theta$

(2)
$$|u(z)| \le C|z_0|^c \quad z \in \Omega(\theta')$$

holds for a constant $C = C(\theta')$.

We say that $u(z) \in \mathcal{O}(\Omega(\theta))$ is slowly increasing in $\Omega(\theta)$, if $u(z) \in \bigcup_{|c|<+\infty} \mathcal{O}_{reg,c}(\Omega(\theta))$.

Now let $P(z, \partial)$ be an *m*-th order linear partial differential equation with coefficients in $\mathcal{O}(\Omega)$

(3)
$$P(z,\partial) = \sum_{|\alpha| \le m} a_{\alpha}(z)\partial^{\alpha} = \sum_{|\alpha| \le m} z_0^{j_{\alpha}} b_{\alpha}(z)\partial^{\alpha},$$

where $j_{\alpha} \in \mathbf{N}$ is the valuation of $a_{\alpha}(z)$ with respect to $z_0, a_{\alpha}(z) =$ $z_0^{j_{\alpha}}b_{\alpha}(z)$. Let us define some quantities for $P(z,\partial)$:

 $\begin{cases} e_* := \min\{j_\alpha - \alpha_0; \alpha \in \mathbf{N}^{d+1}\}, \ \Delta = \{\alpha \in \mathbf{N}^{d+1}; j_\alpha - \alpha_0 = e_*\}\\ k^* := \max\{|\alpha|; \ \alpha \in \Delta\}. \end{cases}$

Put

(5)
$$\mathfrak{P}(z,\partial) = \sum_{\alpha \in \Delta} z_0^{j_\alpha} b_{\alpha,0}(z') \partial^\alpha.$$

Let us introduce an index which plays an important role in this paper.

Definition 3. (Minimal irregularity)

(6)
$$\begin{cases} \gamma^* := \min\{\frac{j_{\alpha} - \alpha_0 - e_*}{|\alpha| - k^*}; \alpha \in \mathbf{N}^{d+1}, \ |\alpha| > k^*\}, & \text{if } k^* < m, \\ \gamma^* := \infty, & \text{if } k^* = m. \end{cases}$$

Let us introduce conditions on $P(z, \partial)$.

Condition 0. If $\alpha = (\alpha_0, \alpha') \in \Delta$, then $\alpha' = (0, 0, \dots, 0)$. The following condition is more strict than Condition 0.

Condition 1. $P(z, \partial)$ satisfies Condition 0 and $b_{(k^*, 0, 0, \dots, 0)}(0) \neq 0$. Suppose that $P(z, \partial)$ satisfies Condition 0. Then $\mathfrak{P}(z, \partial)$ is an ordinary differential operator,

(7)
$$\mathfrak{P}(z,\partial) = \sum_{\alpha \in \Delta} z_0^{e_*} b_{\alpha,0}(z') z_0^{\alpha_0} \partial_0^{\alpha_0},$$

and $\{z_0 = 0\}$ is regular singular. Define the indicial polynomial $\chi_P(z', \lambda)$ of $\mathfrak{P}(z,\partial)$,

(8)
$$\chi_P(z',\lambda) := \sum_{\alpha \in \Delta} b_{\alpha,0}(z')\lambda(\lambda-1)\cdots(\lambda-\alpha_0+1).$$

Further suppose that $P(z, \partial)$ satisfies Condition 1. Then $\chi_P(z', \lambda)$ is a polynomial of λ with degree k^* in $\{z; |z| \leq R\}$. Hence there exist real constants a_0, a_1 and b_0 such that all the roots of $\chi_P(z', \lambda) = 0$ for $|z| \leq R ext{ are contained in } \{\lambda; a_0 \leq \Re \lambda \leq a_1, \ |\Im \lambda| \leq b_0 \}.$

Now let us consider

(Eq)
$$P(z, \partial)u(z) = f(z).$$

We have results concerning the growth properties of solutions of (Eq).

Theorem 4. Suppose that $P(z, \partial)$ satisfies Condition 1. Let $u(z) \in \mathcal{O}_{(\gamma^*)}(\Omega(\theta))$ be a solution of (Eq). Suppose that $f(z) \in \mathcal{O}_{reg,c}(\Omega(\theta))$. Then there is a polydisk U centered at z = 0 such that $u(z) \in \mathcal{O}_{reg,c'}(U(\theta))$ for any $c' < \min\{c - e_*, a_0\}$.

Theorem 5. Suppose that $P(z, \partial)$ satisfies Condition 0. Let $u(z) \in \mathcal{O}_{(\gamma^*)}(\Omega(\theta))$ be a solution of (Eq). Suppose that $f(z) \in \mathcal{O}_{reg,c}(\Omega(\theta))$. Then there is a polydisk U centered at z = 0 and a constant c" such that $u(z) \in \mathcal{O}_{reg,c''}(U(\theta))$.

We show Theorem 4 by constructing a parametrix and Theorem 5 follows from Theorem 4. The proof theorems and the details of this paper will be appeared in the forthcoming paper.

We give some examples satisfying Condition 1: (a). Operators of normal type with respect to ∂_0 ,

$$\partial_0^{k^*} + \sum_{lpha_0 < k^*} a_lpha(z) \partial^lpha_1$$

(b). Operators of Fuchsian type.

(c). Other concrete examples are

$$I_d + z_0^2 \partial_0 + z_0 \partial_1^2$$
, $z_0 \partial_0^2 + a(z) \partial_0 + \partial_1^3$.

The present paper follows Ouchi [4]. The class of operators considered in [4] was more strict than that of this paper. The main Theorem in [4] was the following:

If u(z) grows at most some exponential order near $z_0 = 0$, that is, for any $\varepsilon > 0$ $|u(z)| \leq C_{\epsilon} \exp(\varepsilon |z_0|^{-\gamma^*})$ near $z_0 = 0$, and if f(z)hehaves asymptotically $f(z) \sim \sum_{n=0}^{+\infty} f_n(z') z_0^n$ as $z_0 \to 0$ in a sectorial region $\Omega(\theta)$, where $|f_n(z')| \leq AB^n \Gamma(n/\gamma^* + 1)$, then u(z) has also the asymptotic expansion like f(z) as z_0 tends to 0.

It was an extension of the main result of [1] and [2]. But in the present paper we treat a wider class of operators which contains that of [4]. So even if f(z) has a Gevrey type asymptotic expansion, u(z) does not always have. Hence, Theorem 4 in this paper is somewhat different. Roughly speaking,

if u(z) grows at most some exponential order near $\{z_0 = 0\}$, and if f(z) has the slowly increasing singularities on $\{z_0 = 0\}$, then the growth order of singularities of u(z) are also slowly increasing.

We can show the results in [4], by using Theorem 4.

REFERENCES

 Ouchi,S., An integral representation of singular solutions and removable singularities to linear partial differential equations, Publ. RIMS Kyoto Univ. 26, 735-783 (1990).

- [2] Ouchi, S., The behaviour of solutions with singularities on a characteristic surface to linear partial differential equations in the complex domains, Publ. RIMS Kyoto Univ. 29, 63-120 (1993).
- [3] Ōuchi, S., Genuine solutions and formal solutions with Gevrey type estimates of nonlinear partial defferntial equations, J. Math. Sci. Univ. Tokyo 2 (1995), 375-417.
- [4] Ōuchi, S., Singular solutions with asymptotic expansion of linear partial differential equations in the complex domain

Sunao ŌUCHI

Department of Mathematics, Sophia University Kioicho Chiyoda-ku, Tokyo 102, JAPAN