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1 Introduction

1. The main purpose of this report is to describe some results obtained
recently in the study of the Fourier-inverse transform in hyperfunctions
and in a duality theory for hyperfunctions. The main motivation for
studying this type of arguments comes from an attempt to construct a
theory of the Fourier transform for second hyperfunctions which should
be parallel to the theory of the Fourier transform for hyperfuntions de-
scribed in [L2], $[\mathrm{L}3].\mathrm{W}\mathrm{e}$ denote by $B(U)$ the hyperfunctions on the open
set $U$ in $R^{n}$ and by $A(U)$ the subset of real-analytic functions. Germs of
hyperfunctions or real-analytic functions at $\mathrm{O}\in R^{n}$ shall be denoted by
$B$ , respectively by $A$ . Our results work best for the factor-space $B/A$.

Let us briefly recall the setting for the Fourier-inverse transform described
in $[\mathrm{L}2].\mathrm{W}\mathrm{e}$ denote by $\mathcal{H}$ the set of even sublinear functions $l$ : $R^{n}arrow R_{+}$

and, for given $l\in \mathcal{H}$ and $\epsilon>0$ , by $L^{2}(C^{n}, l(Re\zeta),$ $-\epsilon|Im\zeta|)$ , the space
of functions $\mu$ : $C^{n}arrow C$ which are locally in $L^{2}$ and satisfy

$\mu\exp[-\iota(Re\zeta)+\epsilon|Im\zeta|]\in L^{2}(C^{n})$ .

(Similarily, $L^{2}(R^{n}, l(\xi))$ denotes the space $\{f\in L_{lc}^{2}(\circ)R^{n};f\exp[-l(\xi)]\in$

$L^{2}(R^{n})\}.)$ If $\mu\in L^{2}(C^{n}, l(Re\zeta),$ $-\epsilon|Im\zeta|)$ is given, we can associate a
hyperfunction on $|x|<\epsilon$ with it in the following way: we fix a finite
number of open convex cones $\Gamma_{j}\subset\dot{R}^{n}=R^{n}\backslash \{0\},$ $j=1,$ $\ldots$ , $s$ so that
$\cup^{s}\underline{.}\Gamma-1j=\dot{R}^{n}$ and consider functions $\mu_{j}$ : $C^{n}arrow C,$ $j=0,1,$ $\ldots$ , $s$ so that
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a) $\sum_{j=0}^{s}\mu_{j}=\mu$ ,

b) $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\mu_{j}\subset\{\zeta\in C^{n};Re\zeta\in\Gamma_{j}\},$ $j=1,$ $\ldots$ , $s$ ,

c) $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\mu_{0}\subset\{\zeta\in C^{n}; |Re\zeta|\leq 1\}$ ,

d) $|\mu_{j}(\zeta)|\leq|\mu(\zeta)|,$ $\forall\zeta\in C^{n}$ .

Next, we define functions $zarrow h_{j}(z)$ for $j=0,1,$ $\ldots$ , $s$ , by

(1.1) $h_{j}(z)=(2 \pi)^{-n}\int_{C^{n}}\exp[\dot{i}\langle \mathcal{Z}, \zeta\rangle]\mu_{j}(\zeta)d\lambda$ ,

where $d\lambda$ is the Lebesgue measure in $C^{n}$ . It is then immediate that the
$h_{j}$ are analytic functions defined on the sets { $z=x+\dot{i}y\in C^{n}$ ; $|x|<\epsilon,$ $y\in$

$\Gamma_{j}^{\perp}\}$ ( $x$ and $y$ are assumed real, $\Gamma^{\perp}$ is the polar of $\Gamma$ ) for $j=1,$ $\ldots$ , $s$ ,
whereas $h_{0}$ is analytic on $\{z\in C^{n}; |x|<\epsilon, y\in R^{n}\}$ . Also denote by $b(h)$

(if $h$ is an analytic function defined on some wedge) the hyperfunctional
boundary value of $h$ . In particular, $u= \sum_{j=0}^{s}b(hj),$ $hj$ as in (1.1), is then
a hyperfunction in $B(x;|x|<\epsilon)$ . It is easy to see that this hyperfunction
does not depend on the particular way in which we have chosen the cones
$\Gamma_{j}$ , or splitted $\mu$ into $\dot{\mathrm{t}}\mathrm{h}\mathrm{e}$ sum $\mu=\sum_{j=0}^{s}\mu j$ . We call $u$ the Fourier-inverse
transform of $\mu$ and shall write that $u=\mathcal{F}^{-1}(\mu)$ . (This is similar to the
way in which Fourier-inverse transforms in hyperfunctions are considered
in [K], the nuain difference being that in $[\mathrm{K}]\mathrm{t}\mathrm{h}\mathrm{e}$ functions $\mu$ and $\mu_{j}$ are
defined on $R^{n}$ , rather than on $C^{n}$ . Indeed, we shall use the notation
$\mathcal{F}^{-1}(\mu)$ also when $\mu\in L^{2}(R^{n}, l(\xi))$ . In [M] a related construction is
attributed to Carleman. The fact that we work on $C^{n}$ and not on $R^{n}$ is
essential in our constructions and is related to the fact that our theory is
local.) We recall the following results from [L2]:

Theorem 1.1. $a$) Let $u\in B(x;|x|<\epsilon)$ . Then there is $\mu\in L^{2}(c^{n}, l(Re\zeta)$ ,
$-\epsilon|Im\zeta|)$ so that $u=F^{-1}(\mu)$ .

$b)$ Assume that $\mu\in L^{2}(C^{n}, l(Re\zeta),$ $-\epsilon|Im\zeta|)$ is given so that $F^{-1}(\mu)=0$

in $B(x;|x|<\epsilon)$ . Also fix $\epsilon’<\epsilon$ . Then there is $l’\in \mathcal{H}$ and $\chi_{k}\in$

$L^{2}(C^{n}, \iota’(Re\zeta),$ $-\epsilon’|Im\zeta|),$ $k=1,$ $\ldots$ , $n$ , so that

$\mu=\sum_{j=1}(\partial/\partial\overline{\zeta}_{k})\chi_{k}n$ .
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Let us also write the preceding theorem for germs of hyperfunctions at $0$ .
It is then convenient to work with $(0, q)$-forms, identifying $(0, n)$-forms
with functions. If we denote in fact by $X_{(0,q)}$ the space of $(0, q)$-forms
with coefficients in $X$ , then it follows from the preceding result that the
inverse Fourier transform $F^{-1}$ establishes an isomorphism

$, \frac{\bigcup_{6>0,l}\in \mathcal{H}L_{(,)}2(0_{n}Cn\iota(Re\zeta),-\mathcal{E}|Im\zeta|)}{\overline{\partial}[\bigcup_{\in>0,l^{J}}\in \mathcal{H}L_{(n}^{2}(0,,-1)C^{n},l’(Re\zeta),-\epsilon|Im\zeta|)]},,arrow B$ .

Actually, “analysis” is much easier in the space $B/A$ than in B. (We will
give some arguments to justify this statement later on.) It is therefore
convenient to see what results one can obtain from the above for $B/A$.
Rather than working on all of $C^{n}$ , we may then work on

$U(c)=\{\zeta\in C^{n}; |Im\zeta|<c|Re\zeta|\}$ ,

or, actually, on what we call $‘\zeta \mathrm{g}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{s}$

” of these sets, $U(\mathrm{O})$ . We shall in
fact say that two functions $f’$ defined on $U(c’)$ and $f”$ defined at $U(c”)$

define the same germ at $U(0)$ if there is $c \leq\min(c, C’)r’$ so that $f’=f”$
on $U(c)$ . In this situation, we shall also write that $f’\sim f’’$ . Clearly
$\overline{\partial}$ is well-defined on such germs, so we can consider $(0, q)$-forms with
coefficients in $L^{2}(U(0), l(Re\zeta),$ $-\epsilon|Im\zeta|))$ . Moreover, if $f’\sim f’’$ , then
$\mathcal{F}^{-1}(f-f’’)\in A(x;|x|<\epsilon)$ . This justifies the following notation:

$L^{2}(U(\mathrm{o}), l(Re\zeta),$ $- \mathit{6}|Im\zeta|)=\bigcup_{\mathrm{c}>0^{L}(U}2(C),$ $l(Re\zeta),$ $-\epsilon|Im\zeta|)/\sim$ .

We have then the following result:

Theorem 1.2. $\mathcal{F}^{-1}$ defines by factorization an isomorphism:

(1.2) $\frac{X_{(0,n)}}{X_{(0_{n-}1})},arrow g/A$,

where $X= \bigcup_{6>0,l\in}\mathcal{H}L^{2}(U(\mathrm{o}), l(Re\zeta),$ $-\mathcal{E}|Im\zeta|)$ .

2 A duality theory for $B/A$

1. The reason why it is often simpler to work in the space $B/A$ than in
$B$ is that for $B/A$ one can develop a duality theory which is much more
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complete than what one can do for $B$ itself. We shall explain at first some
“positive” results in $B/A$ and then compare the situation with the one
in $B$ . The spaces which we need for a duality theory related to $B/A$ are

$A(U(C);-l(Re\zeta), \epsilon|Im\zeta|)=\{h\in A(U(c))$ ;
$h\exp[l(Re\zeta)-\epsilon|Im\zeta|]\in L^{2}(U(C))\}$ .

The topology is of course given by the $L^{2}(U(c))$ -norm of $h\exp[l(Re\zeta)-$

$\epsilon|Im\zeta|]$ .

The following two results imply that the spaces $A(U(C);-l(Re\zeta), \epsilon|Im\zeta|)$

are “rich spaces”, in the sense that they contain “many elements”:
Proposition 2.1. For any $c>0$ there is $c’>0$ and a domain of holo-
morphy $\Omega\subset C^{n}$ so that $U(c’)\subseteq\Omega\subset U(c)$ .
(From the point of view of the applications we have in mind, the $U(c)$

behave thus as if they were domains of holomorphy.)

Proposition 2.2. Consider $l\in \mathcal{H}_{f}\delta>0$ and $c<1$ . Then there is
$l’\in \mathcal{H}$ and a plurisubharmonic function $\rho_{*}U(c)arrow R$ so $that-l(Re\zeta;)\leq$

$\rho(\zeta)\leq l(Re\zeta)+\delta|Im\zeta|$ .

Let us next consider $L\in A’(U(C), -l(Re\zeta),$ $\mathcal{E}|Im\zeta|)$ . In view of the
Hahn-Banach theorem, we can assume that $L$ has the form

$L(h)= \int_{U(c)}h(-\zeta)\mu(\zeta)d\lambda(\zeta)$ ,

for some $\mu\in L^{2}(U(C), t(Re\zeta),$ $-\epsilon|Im\zeta|)$ . Of course, $\mu$ is not unique with
this property but we have the following result:
Proposition 2.3. Fix $\epsilon’\downarrow<\epsilon$ . Assume $\nu\in L^{2}(U(C), l(Re\zeta),$ $-\epsilon|Im\zeta|)$

is so that
$\int_{U(c)}h(-\zeta)_{l^{\text{ノ}}}(\zeta)d\lambda(\zeta)=0$,

for all $h\in A(U(c), -l(Re\zeta),$ $\epsilon|Im\zeta|)_{f}$ then it follows from the results in
$[H]$ that $\nu=\overline{\partial}\chi$ for some $\chi\in L^{2}(U(c’), \iota’(Re\zeta),$ $-\epsilon’|Im\zeta|)$ , provided
$c’>0,$ $l’\in \mathcal{H}$ are suitable.

(It is in this sense that we say that the spaces $A’(U(C), -l(Re\zeta),$ $\epsilon|Im\zeta|)$

are very rich. Also cf. proposition 2.6 below.)

Let us also give the following definition:
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Definition 2.4. Let $L,$ $L’\in A’(U(C), -\iota(Re\zeta),$ $\epsilon|Im\zeta|)$ . We say that
$L\sim L’$ if we can find $\epsilon’>0,$ $d>0,$ $c>0$ so that $|(L-L’)(h)|\leq c$ for any
$h\in A(U(c), -\iota(Re\zeta),$ $\epsilon|Im\zeta|)$ so that $|h(\zeta)|\leq\exp[d|Re\zeta|+\epsilon’|Im\zeta|]$ .

It follows then from above that we have

Theorem 2.5. $B/A$ is isomorphic to $\bigcup_{\epsilon,l}A’(U(C), -l(Re\zeta),$ $\epsilon|Im\zeta|)/\sim$ .

We conclude that we can represent $B/A$ in the form of a factor space
of analytic functionals. One can use this result to prove theorems on
propagation of singularities as in [L1].

2. Let us compare the situation in $B/A$ with that in $B$ . In fact, it
is standard to observe that for particular choices of $l\in \mathcal{H}$ the spaces
$A(C^{n}, -l(Re\zeta),$ $-\epsilon|Im\zeta|)$ are not $‘(\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{h}$

” at all. In fact, in the case $n=1$

the following result is classical (in the theory of non-quasianalytic classes):

Proposition 2.6. Assume that $l$ : $R^{n}arrow R_{+},$ $l(\xi)\leq 1+|\xi|$ , and $h\in$

$A(C),$ $h\neq 0$ , are given with $|h(\zeta)|\leq\exp[-l(Re\zeta)+A|Im\zeta|]$ . Then it
follows that

(2.1) $\int_{-\infty}^{\infty}\frac{l(\xi)}{1+\xi^{2}}d\xi<\infty$ .

On the other hand, it is very easy to construct sub-linear positive func-
tions $l\in \mathcal{H},$ $n=1$ , for which (2.1) does not hold and for such $l$ therefore
$A(C, -\iota(Re\zeta),$ $\mathcal{E}|Im\zeta|)=\{0\}$ . Of course this also shows that the spaces
$A(C^{n}, -l(Re\zeta),$ $\epsilon|Im\zeta|)$ are often trivial even when $n\geq 1$ , so that a
theory of duality similar to the above for $B/A$ cannot exist for $B$ .

3 Fourier inverses of elements in $A(U(c), \iota, -\mathcal{E}|Im\zeta|)$

1. The results in the following sections are for the moment not directly
related to our ongoing work on second hyperfunctions. They are however
a direct continuation of the results in the preceding two sections and
should shed a new light on the relation between ultradistributions and
hyperfunctions. We start with the following

Remark 3.1. If $h\in A(C^{n}, -^{\iota(R\zeta),\epsilon}e|Im\zeta)$ , then the restriction of $h$

to $R^{n}$ is an element in $L^{2}(R^{n})$ and as such has a Fourier inverse $F^{-1}(h)$

in $L^{2}(R^{n})$ . (Which is of course equal to its Fourier-inverse transform
calculated in terms of hyperfunctions in the sense of $[K]$ or $[M].)When$
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$l\in \mathcal{H}$ is rapidly increasing at infinity, then $\mathcal{F}^{-1}(h)$ has to be very regular
in terms of differentiability properties. Thus $e.g_{f}.\dot{i}fl(\xi)=(1+|\xi|)^{1/2}$ ,
then $\mathcal{F}^{-1}(h)$ is in the Gevrey class $\mathcal{G}^{2}(R^{n})$ of functions on $R^{n}$ for which
there exists $c>0$ so that $|(\partial/\partial x)^{\alpha}\mathcal{F}^{-1}h(X)|\leq c^{|\alpha|+1}|\alpha|^{2}|\alpha|,$ $\forall\alpha,$ ($c$ should
not depend on $x$ as long as $x$ stays in a fixed compact set in $R^{n}.$) The dual
of $A(C^{n}, -l(Re\zeta),$ $5|Im\zeta|)$ corresponds then in this case roughly speaking
to Gevrey-ultradistributions of order two. This gives an interpretation of
theorem 2.5: it shows that in some sense, the elements from $B/A$ are just
ultradistributions with weight $l$ factorized by A. We shall add additional
evidence in this same direction later on.

In view of the preceding remark it seems interesting to analyze Fourier-
inverses of functions from $A(C^{n}, -l(Re\zeta),$ $\epsilon|Im\zeta|)$ in more detail. Actu-
ally we shall start our analysis with a study of Fourier-inverses of elements
in the larger space $A(C^{n}, l(Re\zeta),$ $\epsilon|Im\zeta|)$ or, rather of the restriction of
such functions to $R^{n}$ . Indeed, such functions lie in $L^{2}(R^{n}, l(\xi))$ , so again
we can define $F^{-1}(h_{|R}n)$ in the sense of hyperfunctions. We have the
following result:

Theorem 3.2. Consider $h\in A(C^{n}, l(Re\zeta),$ $\mathcal{E}|Im\zeta|)$ . $\mathcal{F}^{-1}(h)$ is real-
analytic for $|x|>\epsilon$ and is rapidly decreasing at infinity. In addition, $\dot{i}f$

$x^{()}$ is fixed with $|x^{0}|>\epsilon_{f}$ then there are constants $C_{1},$
$C^{;},$

$C^{\prime/}$ so that

(3.1) $|\partial_{x}^{\alpha}(\mathcal{F}^{-1}h)(X)|\leq c_{1}c^{;|\alpha}||\alpha|^{|\alpha|}$ for $|x-x^{0}|<c’’$

Here $c’,$ $c”$ depend only on $c,$ $\epsilon,$

$x^{0}$ and $c_{1}$ depends in addition on the norm
of $h$ in $A(U(c)_{f}l(Re\zeta)_{f}\epsilon|Im\zeta|)$ .

4 The local Fourier transform

1. We describe here a calculus for a Fourier transform which is defined
only locally and characterizes functions or hyperfunctions only locally.
The inverse of this transform will be the Fourier-inverse transform in
hyperfunctions which we have considered above. (Recall that this Fourier
inverse transform referred also to hyperfunctions which were defined on
subsets in $R^{n}.$ ) The local Fourier transform will be defined only modulo
exponentially decreasing functions, whereas for the inverse transform,
it should be calculated only modulo real-analytic functions. We also
notice right away that our Fourier transform is closely related to the
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FBI-transform of Sj\"ostrand. In particular part of the results which we
consider are quite close to what happens in Sj\"ostrand’s theory.

To make the definitions easier to understand, let us assume at first that
$f$ is a $L^{1}$ -function defined in a neighborhood of $|x|\leq A$ . We define its
FBI transform then by

(4.1) $(FBI_{A}f)( \xi, y)=\int_{|x|\leq}A2\exp[-\dot{i}\langle x, \xi\rangle-1\xi||_{X}-y|^{2}/]f(_{X)d_{X}}$ .

Part of the usefulness of the FBI-transform comes from the fact that it
is quite easy to recover $f$ on $|x|\leq A$ from its FBI-transform. This comes
from the remark that

$\int_{R^{n}}|\xi|^{n/2}\exp[-|\xi||x-y|2/2]dy=(2\pi)n/2$

It follows in fact from this that

$\int_{R^{n}}(FBIf)(\xi, y)|\xi|n/2dy=(2\pi)^{n/2}\hat{f}(\xi)$ ,

where $\hat{f}$ is the standard Fourier transform of $f$ . One of the basic classical
remarks is now that if $f$ is real-analytic in a neighborhood of some point
$x^{0}$ which satisfies $|x^{0}|<A$ , then $FBI_{A}f(\xi, y)$ will be exponentially de-
creasing for $y$ in a neighborhood of $x^{0}$ . We shall use this later on in the
following form:

Remark 4.1. Assume that $f$ is real-analytic $for|x|\geq\epsilon$ . Also fix $B$ with
$\epsilon<B<A$ . Then there are $c>0,$ $d>0$ , so that

$|FBI_{A}f(\xi, y)|\leq c\exp[-d|\xi|]$ , for $B\leq|y|\leq A$ .

2. In (4.1) we assumed $f$ to be a function in $L^{1}(x;|x|\leq A)$ , but we can
consider the FBI-transform also in more general situations by slightly
changing definitions. Let us in fact assume that $f$ is a hyperfunction
supported in $|x|\leq A$ , say. $f$ defines then a real analytic functional
concentrated in $|x|\leq A$ . In particular it follows that if we fix some
complex neighborhood $U$ of $\{x, |x|\leq A\}$ , then there will be some constant
$c$ so that

$|f(h)| \leq c\sup_{z\in U}|h(z)|,$
$\forall h\in A(Cn)$ .
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(Here we have already assumed that we have associated with $f$ an analytic
functional on $A(C^{n}).)$ Then we define $(FBI_{A}f)(\xi, y)=f(\exp[-\dot{i}\langle_{X}, \xi\rangle-$

$|\xi||x-y|^{2}/2])$ . It is useful to note that one can extend $\xiarrow(FBI_{A}f)(\xi, y)$

to an analytic function $\zetaarrow(FBI_{A}f)(\zeta, y)$ for $\zeta\in U(1)$ . In fact, let us
for this purpose denote by $|\zeta|^{\sim}$ the expression $|\zeta|^{\sim}=(\zeta_{1}^{2}+\cdots+\zeta^{2})^{1/2}$ ,
where the square root $t^{1/2}$ is defined for $t\in\{t’\in C;Imt’>0\}$ by the
condition ${\rm Re} t^{1/2}\geq 0$ . Then the function

$(\zeta, y)arrow(FBI_{A}f)(\zeta, y)=f(\exp[-i\langle_{X}, \zeta\rangle-|\zeta|^{\sim}|x-y|2/2])$

defines the desired analytic extension to $|Im\zeta|<|Re\zeta|$ . The following
remark is trivial:

Remark 4.2. If $f\in B$ and supp $f\subset\{x;|x|\leq\epsilon\}$ , then there is $l\in \mathcal{H}$

and $c$ so that

$|(FBI_{A}f)(\zeta, y)|\leq c\exp[l(Re\zeta)+l(Im\zeta)+\epsilon|Im\zeta|],\dot{i}f|Im\zeta|<|Re\zeta|$ .

3. Together with the FBI-transform, we shall now consider the “local
Fourier transform”

$(F_{l_{oC},A},Bf)( \zeta)=\int_{|y|\leq}B)(FBI_{A}f(\zeta, y)dy$ ,

where $B<A$ : the parameter $y$ has “disappeared” in view of the integra-
tion. From remark 4.2 we obtain

Remark 4.3. Let supp $f\subset\{x;|x|\leq\epsilon\},$ $\epsilon<A$ . Then there is $c,$ $l\in \mathcal{H}$

so that

$|(\tau_{l_{\mathit{0}}c},A,Bf)(\zeta)|\leq c\exp[l(Re\zeta)+l(Im\zeta)+\epsilon|Im\zeta|],$ $if|Im\zeta|<|Re\zeta|$ .

Also the following result, in which we compare the local Fourier transform
with the standard Fourier transform in a particular case, is quite easy.

Proposition 4.4. Let $B_{1}<B<A$ be fixed and assume that supp $f\subset$

$\{x;|x|\leq B_{1}\}$ . Then there are $c,$ $d_{Z}$ so that

$|(\hat{f}-\mathcal{F}_{lo}C,A,Bf)(.\zeta)|\leq c\exp[-d|\zeta|],\dot{i}f|Im\zeta|<|Re\zeta|/2$.

4. The assumption that the support of $f$ lies in a rather small set is too
restrictive in what follows. In fact, we are mainly interested in the case
when $f$ is real-analytic in some region of form $\epsilon\leq|x|\leq A’$ for some
$A’>A$ . The first remark is here the following:
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Remark 4.5. Let $0<\epsilon<B<A<A’$ be $g\dot{i}ven$ and assume that
$f\in B(|x|<A’)$ is real-analytic for $|x|>\epsilon$ . Define a hyperfunction $f_{A}$

as follows:

(4.2) $f_{A}(x)=f(x)$ for $|x|\leq A,$ $f_{A}(x)=0$ , for $|x|>A$ ,

and consider $\mathcal{F}_{l_{oc},A},Bf_{A(\zeta)}$ . Then $F_{loC,A},Bf_{A(()}$ does not depend modulo
an exponentially decreasing term on the choice of $A$ , B. This follows
indeed from remark 4.1.
Since we are interested only in a calculus modulo exponentially decay-
ing terms, we shall write henceforth sometimes (

$‘ F_{l_{\mathit{0}}c,A,B}f$
” rather than

“
$F_{l_{oC},A,B}fA$

”

5. We now consider an extension of remark 4.2.

Theorem 4.6. Consider $\epsilon<\epsilon’<B<A<A’$ and let $f\in B(x;|x|<\mathrm{A}’)$

be real-analytic for $\epsilon<|x|<A’$ . Then there are constants $c,$ $c_{1}$ and
$l\in \mathcal{H}$ so that the function $R^{n}\ni\xiarrow(F_{l_{oC}},A,Bf)(\xi)$ can be extended to
an analytic function $F:\{\zeta\in C^{n}; |Im\zeta|<c|Re\zeta|\}arrow C$ satisfying

(4.3) $|F(\zeta)|\leq c_{1}\exp[\iota(Re\zeta)+\epsilon’|Im\zeta|],\dot{i}f|Im\zeta|<c|Re\zeta|$ .

Remark 4.7. Here the interesting part is not so much the fact that
$\xiarrow(F_{loc,A,B}f)(\xi)$ admits an extension (which fact is trivial), but the
estimate we can obtain for it.

The following two results now show how the local Fourier transform is
related to the Fourier-inverse transform considered above.

Theorem 4.8. Let $f\in C^{\infty}(x;|x|<A)$ be real-analytic for $|x|>\epsilon$

and fix $B$ with $\epsilon<B<A.$ Then $f-F^{-1}F_{lc,A,B}Of$ is real-analytic for
$|x|<B$ .

Theorem 4.9. Assume $h\in A(U(C,),$ $0,$ $\epsilon|Im\zeta|)$ and fix $A,$ $B$ with $A>$

$B>\epsilon$ . Then there are constants $c,$ $d$ such that

$|(h-\mathcal{F}_{l_{\mathit{0}}c},A,B\cdot F-1h)(\zeta)|\leq c\exp[-d|Re\zeta|],\dot{i}f|Im\zeta|<|Re\zeta|/2$.

5 The spaces $\mathcal{E}_{-l_{\mathcal{E},c}}$, and $\mathcal{E}_{-l,\in,c}/A$
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1. Let $\epsilon,$ $A,$ $B$ be fixed with $0<\epsilon<B<A$ . Also consider $c>0$ . We
denote by $\mathcal{E}_{-l_{\mathcal{E}},C}$, the space of functions $f$ so that $F_{l_{\mathit{0}}c,A,B}f$ is analytic on
$|Im\zeta|<c|Re\zeta|$ and satisfies for some constant $\tilde{c}$

(5.1) $|(\mathcal{F}_{loC,A},Bf)(\zeta)|\leq\tilde{c}\exp[-l(Re\zeta)+\epsilon|Im\zeta|],$ $|Im\zeta|<c|Re\zeta|$ .

The smallest constant $\tilde{c_{\vee}}$ for which (5.1) is valid is called the norm of $f$ in
$\mathcal{E}_{-l,\in \mathrm{i}C},\cdot$ Note that for suitable $l$ tfie assumption implies that $\tau^{-1}F_{l_{\mathit{0}}c,A,B}f$

is $C^{\infty}$ and real-analytic for $|x|>\epsilon$ . Since we also know that $f$ -

$F^{-1}\mathcal{F}_{l_{oC},A},B_{\vee}f$ is real-analytic for $|x|<B$ , we can conclude that we have:

Proposition 5.1. If $l\in \mathcal{H}$ increases sufficiently rapidly at infinity, $it$

follows that $\mathcal{E}_{-l_{\mathcal{E}},C},\subset C^{\infty}(x;|x|<B)$ and the elements $f\in \mathcal{E}_{-l,\in,c}$ are
real-analytic for $\epsilon<|x|<B$ .

Remark 5.2. If $h\in A(U(c), -l(Re\zeta),$ $\epsilon|Im\zeta|)J$ then $f=F^{-1}h\in$
$\mathcal{E}_{-l,\in,c’}$ for some $c’$ . Indeed, $(\mathcal{F}_{l_{oC}},A,B\mathcal{F}^{-1}h-h)(\zeta)=O(\exp[-d|\zeta|])$ so
that $F_{loc,A,B}f$ satisfies (5.1).

2. Let us now consider $u\in B/A$ . Then we can find $\epsilon,$
$l\in \mathcal{H}$ and $\mu\in$

$L^{2}(C^{n}, \iota, -\epsilon|Im\zeta|)$ with $u=F^{-1}(\mu)$ in $B/A$ . We can then at first define
a functional on $A(U(C), -l, \epsilon|Im\zeta|)$ associated with $u$ by

(5.2) $T(h)= \int_{U(c)}h(-\zeta)\mu(\zeta)d\lambda(\zeta)$ .

We also write $u(\mathcal{F}^{-1}h)=T(h)$ (this is thus the definition of $u(\mathcal{F}^{-1}h)$ )
in this situation, although the values of $T(h)$ depend on the choice of
$\mu$ . However, different values of $\mu$ will lead to equivalent analytic func-
tionals. Conversely, $u$ is determined uniquely in $B/A$ by this duality.
Indeed, if $u(\mathcal{F}^{-1}h)=0$ for any $h\in A(U(c), -l(Re\zeta),$ $\epsilon|Im\zeta|)$ , then
$\mu=\sum_{k=1}^{n}\overline{\partial}_{k\chi k},$ $\chi_{j}\in L^{2}(U(C), l’(Re\zeta),$ $-\epsilon’|Im\zeta|)$ , so $u=\mathcal{F}^{-1}(\mu)$ is
real analytic near zero.
The functional (5.2) leads to a useful test of regularity:

Proposition 5.3. Let $u\in B/A$ be given and let $T$ be associated with a
representant of $u$ as in (5.2). Then $u$ vanishes ($\dot{i}.e$ . $some_{f}$ and then for
that matter, any representant $v$ of the class $u$ in $B/A$ is real-analytic) if
and only $\dot{i}f$ there is $d>0,$ $\epsilon’>0,$ $c_{1}>0$ so that $h\in A(U(C), -l, \epsilon|Im\zeta|)_{f}$

$|h(\zeta)|\leq\exp[d|Re\zeta|+\epsilon’|Im\zeta|]$ implies $|T(h)|\leq c$ . (This must happen
for any $T$ which gives $u$ . We say in this situations also that $T\sim 0.$)
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Remark 5.3. It is part of the statement that the condition regarding $T$

does not depend on the choice of $\mu$ in (5.2), provided of course that $\mu$ is
a representation function for $u$ .

We also note that if in (5.2) we replace integration on $|Im\zeta|<c|Re\zeta|$

by integration on $|Im\zeta|<c’|Re\zeta|$ for some $c’<c,$ $c’>0$ , then the
functional $T’(h)$ so obtained is equivale.nt with $T(h)$ .

3. We want to give an interpretation in $x$-space to the duality $u(\mathcal{F}^{-1}h)$ ,
and more generally, to $u(f)$ for $f\in \mathcal{E}_{-l_{\mathcal{E}},C},\cdot$ The first step is that if $u$ is
fixed, then we can define for suitable $l,$ $\epsilon,$ $c$ a functional $S:\mathcal{E}_{-l_{\Xi},C},arrow C$

by

$S(f)= \int_{U(c)}(F_{l}oc,A,Bf)(-\zeta)\mu(\zeta)d\lambda(\zeta)$ ,

where $\mu$ is chosen again with $u=F^{-1}(\mu)$ . This is thus in close analogy
with (5.2) Also here $u$ is determined in $B/A$ by its action on $\mathcal{E}_{-l_{6,\mathrm{c}}},\cdot$

Assume in fact that $S(f)=0$ for any $f\in \mathcal{E}_{-l,\epsilon,c}$ . Since $F^{-1}h\in \mathcal{E}_{-l,\in,c}$

(by remark (5.2) if $h$ lies in $A(U(C), -l(Re\zeta),$ $\mathcal{E}|Im\zeta|)$ , it follows that
$S(F^{-1}h)=0$ for any $h\in A(U(c)),$ $-\iota(Re\zeta),$ $\epsilon|Im\zeta|)$ . It also follows then
in fact that $h-\mathcal{F}_{l_{\mathit{0}}c,A,B}\mathcal{F}-1h=0(\exp[-d|\zeta|])$ , with uniform “constants”
if we are given an estimate $|h(\zeta)|\leq\exp[d|Re\zeta|+\epsilon|Im\zeta|]$ . We next write

$\int_{U(\mathrm{c})}h(-\zeta)\mu(\zeta)d\lambda(\zeta)$

$= \int_{U(c)}[(h-\tau loC,A,B\mathcal{F}^{-}1h)(-\zeta)+F_{l}oc,A,B\mathcal{F}^{-1}h(-\zeta)]\mu(\zeta)d\lambda(\zeta)$ .

We conclude that $h\in A(U(c), -l’,’\epsilon|Im\zeta|)$ and $|h(\zeta)|\leq\exp[d|Re\zeta|+$

$\epsilon|Im\zeta|]$ together imply that $| \int_{U(c}$ )
$h(-\zeta)\mu(\zeta)d\lambda(\zeta)|\leq c$ . This implies of

course that $\mathcal{F}^{-1}(\mu)$ is real-analytic on $|x|<\epsilon$ .
We have thus associated a functional on $\mathcal{E}_{-l_{6},C}$, with $\mu$ . Conversely, if a
continuous functional is given on $\mathcal{E}_{-l_{\mathcal{E}},C}$, then we can use that
$F^{-1}[A(U(c), -l(Re\zeta), \epsilon|I\prime m\zeta|)]\subset \mathcal{E}_{-l_{5,C}}$, and obtain a functional on
$A(U(c), -l(Re\zeta),$ $\epsilon|Im\zeta|)$ . This functional will then define an element
in $B/A$ so we can associate hyperfunctions with functionals on $\mathcal{E}_{-l_{\mathcal{E}},C},\cdot$

One can check that if one starts from some hyperfunction $u$ , associates
with this a $\mathrm{f}\dot{\mathrm{u}}$nctional on $\mathcal{E}_{-l_{\Xi},C}$, and then associates with this functional
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an hyperfunction as above, then one reobtains, modulo a real analytic
function, the hyperfunction from which one started in the first place.

4. We want next to transform the integral

$\mathit{1}^{(\mathcal{F}_{lA},)}oC,Bf(-\zeta)\mu(\zeta)d\lambda(\zeta)$

into an expression calculated in the space of the $z$-variables (which is the
complexification of the base-space). We may assume for this purpose that
$u=b(H)$ for some $H\in A(U\cross\dot{i}G_{d})$ , where $U=\{x\in R^{n}$ ; $|x|<A’,$ $A’>$

$A\},$ $G$ is some open convex cone in $\dot{R}^{n}$ and $G_{d}=\{y;y\in G, |y|<d\}$ . If
$\mu$ : $C^{n}arrow C$ is a representation function of $H$ in the sense that

$H(z)= \int_{C^{n}}\exp[\dot{i}\langle \mathcal{Z}, \zeta\rangle]\mu(\zeta)d\lambda,$ $|_{X|}<A’,$ $y\in G_{d}$ ,

we may thus assume that it satisfies
(5.3)

$|\mu(\zeta)|\leq c\exp[\iota(Re\zeta)-(A+c’)|Im\zeta|-H\mathrm{r},d(Re\zeta)]$ for some $c’>0$ ,

where $\Gamma=G^{\perp}$ and where $H_{\Gamma}( \xi)=\sup_{x\in G_{d}}\langle x, \xi\rangle$ is the supporting func-
tion of $G_{d}$ . Denote $\Omega(\epsilon)=\{x\in R^{n}; |x|<\epsilon\}$ . We also associate with
$f\in \mathcal{E}_{-l,\in,c},$ $\delta>0,$ $t^{0}\in G,$ $\delta>0$ small, the analytic functional $f_{\delta,t^{0}}$ on
$A(z;|X|\leq A, y\in G_{d})$ :

$h arrow\int_{1}x|\leq Af(x+\dot{i}t^{0}\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(x, \Omega(\mathcal{E})))h(_{X+}\dot{i}t\mathrm{d}0\mathrm{i}\mathrm{s}\mathrm{t}(x, \Omega(\epsilon))+\dot{i}\delta t)0d_{Z}$

$=f_{\delta,t^{\mathrm{O}}}(h)$ ,

where we assume that $\delta>0$ and the norm of $t^{0}$ are small enough in order
to have that $t^{0}$ dist $(x, \Omega(\Xi))+\delta t^{0}\in G_{d}$ for $|x|\leq A$ .
Also note that $f_{\delta,t^{\mathrm{O}}}$ can be regarded as a density on the set $xarrow x+$
$it^{0}\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(X, \Omega(\xi))+\dot{i}\delta t^{0}$ . Actually, $f_{\delta,t^{\mathrm{O}}}$ is just the translation by $\dot{i}\delta t^{0}$ of
the analytic functional $f_{0,t^{0}}$ , where explicitly

(5.4) $f_{0,t} \mathrm{o}(h)=\oint_{|x|\leq}A+f(X\dot{i}t^{0}\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(X, \Omega(\epsilon)))h(X+\dot{i}t^{0}\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(x, \Omega(\epsilon)))dz$ .
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(Here $h$ is asumed real-analytic in a neighborhood of $\{x;|x|\leq A\}$ . Note
that for $|x|\leq\epsilon$ we integrate on a real contour.) At the level of Fourier-
Borel transforms of analytic functionals, it follows thus that

(5.5) $(Ff_{\delta,t^{0}})(\zeta)=(\mathcal{F}f_{0,t}\mathrm{o})(\zeta)\exp[-\delta\langle t^{0}, \zeta\rangle]$ .

As for $f_{0,t^{0}}$ , it is carried by the set { $x+\dot{i}t^{0}$ dist $(x,$ $\Omega(\epsilon));|x|\leq A$ }. (Recall
that analytic functionals have a “carrier” rather than a “support”.) One
can now show that if $t^{0}$ is suitably small, then the functional

(5.6) $f arrow\lim_{\deltaarrow 0}f_{\delta},t^{0}(H)=s’(f)$ ,

exists for any $f\in \mathcal{E}_{-l,\in,C}$ and is essentially equivalent with $S(f)$ , in the
sense that the two functionals $S$ and $S’$ both determine $u=b(H)$ in $B/A$.

The upshot of this discussion is roughly speaking that there are natural
spaces of functions, namely the spaces $\mathcal{E}_{-l_{\Xi},C},$ , so that the elements in
$B/A$ can be regarded as functionals on these spaces. We conclude this
report with some remarks on the spaces $\mathcal{E}_{-t,\in,c}$ . Our first remark is that:

Proposition 5.5. $\mathcal{E}_{-l,\epsilon,c}$ -classes are stable under multiplication.

This is a consequence of the following proposition.

Proposition 5.6. Let $l\in \mathcal{H}$ be given. Then there is $l’\in \mathcal{H}$ with the
following properties: $a$) $\dot{i}ff,$ $g\in A(U(c), -l’,C\sim|\llcorner Im\zeta|)$ ; then $h$ defined for
$\xi\in R^{n}$ by

(5.7) $h( \xi)=\int_{R^{n}}f(\xi-\theta)g(\theta)d\theta$ ,

lies in $L^{2}(R^{n}, -\iota)$ and admits an analytic estension to the set $|Im\zeta|<$

$c’|Re\zeta|$ which stays in $A(U(C’), -l, \mathcal{E}|Im\zeta|)$ .

$b)$ A similar statement is valid $\dot{i}ff\in A(U(C), l, \epsilon|Im\zeta|)$ , and $g\in A(U(c)$ ,
$-l,$ $\epsilon|Im\zeta|)$ . In that case, $h$ defined by (5.7) stays in $L^{2}(R^{n}, \iota’)$ and
admits an analytic extension to an element in $A(U(C^{;}), l’, \epsilon|Im\zeta|)$ .

Finally, we want to discuss the relation between the spaces $\mathcal{E}_{-l_{6},C}$, and
inhomogeneous Gevrey classes introduced in $[\mathrm{L}\mathrm{R}].\mathrm{W}\mathrm{e}$ recall at first the
following definition from [LR]:
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Definition 5.7. Consider $l\in \mathcal{H}$ and let $f$ be a $C^{\infty}$ function defined on
$|x|<A’$ . We write that $f\in \mathcal{G}_{l}(x;|x|<A’)\dot{i}f$ we can find for every
$A<A’$ a sequence $karrow f_{k}$ of $C_{0}^{\infty}(X;|x|\leq(A+A’’)/2)$ functions so that
$f(x)=f_{k}(x)$ for $|x|<A$ , so that

$|\hat{f}_{j}(\xi)|\leq c(cj/l(\xi))^{j},$ $\forall j,\forall\xi\in R^{n}$ ,

and so that the sequence $jarrow f_{j}$ is bounded in $\mathcal{E}’(R^{n})$ . We say that such
functions $f$ belong to the $\zeta\zeta\dot{i}nh_{om}ogeneouS$ Gevrey class” $\mathcal{G}_{l}$ .

We have then the following result:

Proposition 5.8. Let $l’\in \mathcal{H}$ be given. Then we can find $l\in \mathcal{H}$ with the
following property: assume that $f\in G_{l}$ on $|x|<A+c$ and that it is real
analytic for $\epsilon<|x|<A+c$ . Then $f\in \mathcal{E}_{-l^{JJ}},\mathcal{E},c’$ if $\epsilon’>\epsilon$ .

The proofs of the results in this report will appear elsewhere.
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