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ABSTRACT. In this note, we approximate $L^{1}(\mathbb{R})$ by
$\mathrm{t}\mathrm{h}\mathrm{e}1\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r}k-x^{2m}$

sub-
space constructed by translations of the functions $xe$ and
$x^{k+1}e^{-}x^{2m}$ , where $m$ is a natural number $\geq 2$ and $k$ is a nonnega-
tive integer. We give an analogous result in the general dimensional
case. This result is induced by the simpleness of all zeros of certain
entir$e$ functions in the Laguerre-P\’olya class.

1. INTRODUCTION

This study is a joint work with Professor Haseo Ki (Yon-
sei University) and Professor Young-One Kim (Sejong Uni-
versity).

Given a certain set $\mathfrak{M}$ in the space $L^{1}(\mathbb{R}^{n})$ . Let us con-
sider all possible functions of the form

$\sum c_{j,k}f_{j}(x+\lambda_{j,k})$ , $(1.1)$

$j,k$

where $c_{j,k}$ are complex numbers, $\lambda_{j,k}$ are in $\mathbb{R}^{n},$ $f_{j}$ are in $\mathfrak{M}$

and the sum is finite. Every function of the form (1.1) lies
in $L^{1}(\mathbb{R}^{n})$ and the totality of these functions constitutes
a linear subspace in $L^{1}(\mathbb{R}^{n})$ . The closure of this set in
$L^{1}(\mathbb{R}^{n})$ is denoted by $I(\mathfrak{M})$ . $I(\mathfrak{M})$ is closed and translation-
invariant in $L^{1}(\mathbb{R}^{n})$ (i.e. if $f\in I(\mathfrak{M})$ and $\lambda\in \mathbb{R}^{n}$ , then $f(\cdot+$

$\lambda)\in I(\mathfrak{M}))$ and moreover it becomes an ideal in $L^{1}(\mathbb{R}^{n})$

(see [9]). lt is an important problem to find necessary and
sufficient conditions for the set $\mathfrak{M}$ so that $I(\mathfrak{M})=L^{1}(\mathbb{R}^{n})$ .
N. Wiener [10] solved this problem in the following.
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Theorem 1.1 (Wiener). $I(\mathfrak{M})=L^{1}(\mathbb{R}^{n})$ if and only if
there does not exist any point $x^{0}=$ $(x_{1}^{0}, \ldots , x_{n}^{0})\in \mathbb{R}^{n}$ at
which the Fourier transforms of all functions in $\mathfrak{M}$ become
zero.

Next let us consider more actual problem for approxima-
tion on $L^{1}(\mathbb{R}^{n})$ . Given $\phi$ in the Schwartz class $S(\mathbb{R}^{n})$ . Our
question is: How many monomials (or polynomials) $p_{j}$ are
necessary to satisfy $I(\{p_{j}\phi\}_{j})=L^{1}(\mathbb{R}^{n})$ ? The minimum
number of these monomials (or polynomials) is denoted by
$M(\phi)$ (or $N(\phi)$ ). In this note we answer this question in
the special case.

We consider the case that $\phi(x)=\phi_{m}(x)=\exp\{-\Sigma^{n}j=1x^{2}jm_{j}\}$

( $m_{j}\in$ N). Note that if $m_{j}=1(j=1, \cdots , n)$ , then
$I(\{\phi_{m}\})=L^{1}(\mathbb{R}^{n})$ and so $M(\phi_{m})=N(\phi_{m})=1$ . In fact the
Fourier transform of $\phi_{m}$ is $c\exp\{-\Sigma_{j}^{n}=1\xi_{j}^{2}/4\}$ , which has no
zero. We denote by $R$ the set of indices in $\{$ 1, $\ldots$ , $n\}$ such
that $m_{j}$ is not 1 and by $r$ the cardinality of $R$ . We are in-
terested in the case $R\neq\emptyset(r>1)$ . The set $\mathfrak{M}_{m,k}$ is defined
by

$\mathfrak{M}_{m,k}=\{\prod_{j\in R}x_{j}^{k_{j}\delta_{j}}+$ . $\phi_{m}(x)|\delta_{j}=0,1(j\in R)\}$ ,

where $k_{j}$ are nonnegative integers.

Theorem 1.2. $I(\mathfrak{M}_{m,k})=L^{1}(\mathbb{R}^{n})$ .

As a corollary, we obtain $M(\phi_{m})\leq 2^{r}$ and $N(\phi_{m})=1$ .
In fact if we take the polynomial $p_{k}(x)=\Pi_{j\in R}(x^{k}j^{j}+X_{j})k_{j}+1$ ,
then we have $I(\{p_{k}\phi_{m}\})=L^{1}(\mathbb{R}^{n})$ by Wiener’s theorem.
The above theorem can be easily obtained by the following
theorem.

Theorem 1.3. All zeros of the Fourier transform of $x^{k}e^{-x}:2m$

$\varphi_{k}(\xi):=\int_{-\infty}^{\infty}X^{k}e^{-}x^{2}+mi\xi xdx$ (1.2)
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are real and simple ( $i.e$ . if $\varphi_{k}(a)=0_{\mathrm{Z}}$ then $\varphi_{k}’(a)\neq 0$),
where $m$ is a natural number and $k$ is a nonnegative integer.

In fact, the simpleness of zeros of $\varphi_{k}$ implies that $\varphi_{k}$

and $\varphi_{k+1}(=-i\varphi_{k}’)$ have no common zero in R. Since the
Fourier transforms of $\Pi_{j\in R}x_{j^{j}}^{k\delta_{j}}\cdot\phi m+(x)$ ( $\delta_{j}=0$ or 1) are
$c\exp\{-\Sigma_{j\not\in}R\xi_{j}^{2}/4\}\cdot\Pi_{j\in R\varphi}kj+\delta_{j}(\xi_{j})$ , which have no common
zeros in $\mathbb{R}^{n}$ . By Wiener’s theorem, we have Theorem 1.3.

We briefly explain the difficulty of the proof of Theorem
1.3. The function $\varphi_{0}$ satisfies an ordinary differential equa-
tion (see Section 2), but the order of this equation is greater
than two. For example, the simpleness of zeros of the Bessel
and Airy functions can be seen from second order differen-
tial equations. Unlike these case, another properties of $\varphi_{k}$

are necessary for our purpose. The fact that $\varphi_{k}$ belong to
the Laguerre-P6lya class plays a key role.

This note is organized as follows. In Section 2 we briefly
review the definitions of the Laguerre-P\’olya class and those
properties of functions in this class which will be used in
the proof of Theorem 1.3. Next the properties of the func-
tion $\varphi_{0}$ are studied in detail in [2]. We recall important
properties of $\varphi_{0}$ , and moreover show that $\varphi_{k}$ are in the
Laguerre-P61ya class. In Section 3, we will prove Theorem
1.3.

Last we remark that the above theorems positively solves
the conjectures which are given in [2], Section 4, in more
general case.

I would like to thank Professor Katsunori Iwasaki to
teach me the relationship between the multiplicities of ze-
ros of some Fourier integrals and the harmonic analysis on
$L^{1}(\mathbb{R}^{n})$ . $1$ also thank Professor Hyeonbae Kang for inform-
ing Professor Young-One Kim of my conjecture in [2]. If
any reader is interested in our result, he should refer to the
better version [3].
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2. KNOWN RESULTS

2.1. The Laguerre-P\’olya class. An entire function $\psi$ is
said to be in the $Laguerre-P\acute{o}’\iota ya$ class if $\psi$ can be expressed
in the form

$\psi(X)=cX^{n-\alpha x^{2}}e+\beta x_{\prod_{j=1}^{\infty}(}1+x/a_{j})e-x/a_{j}$ ,

where $c,$ $\beta,$
$a_{j}$ are real, $\alpha\geq 0,$ $n$ is a nonnegative integer

and $\Sigma a_{j}^{-2}<\infty$ . By the classical results of Laguerre [5] and
P\’olya [7], $\psi$ is in the Laguerre-P61ya class if and only if $\psi$

can be uniformly approximated on disks about the origin
by a sequence of polynomials with only real zeros. (For
a modern proof of this theorem see Levin [6], Chapter $8_{\mathit{1}}^{\backslash }$.
Thus, it follows from this result that the class is closed
under differentiation; that is, if $\psi$ is in the Laguerre-P\’olya
class, then $\psi^{(n)}$ are in this class for $n\geq 0$ . Moreover, any
easy calculation shows that the logarithmic derivative of a
function $\psi$ in , $\psi(x)\neq ce^{ax}$ , is strictly decreasing:

$\frac{d}{dx}(\frac{\psi^{/}}{\psi}(X))<0$ , $x\in$ R.

The details about the Laguerre-P\’olya class are seen in $[1],[4]$ .

2.2. The function $\varphi_{k}$ . The properties of $\varphi:=\varphi_{0}$ , which
is sometimes called as an integral of Hardy and Littlewood,
are studied in detail. For studies of this integral and the
proof of the results below in $(\mathrm{i}\mathrm{i}\mathrm{i}),(\mathrm{i}\mathrm{v})$ , see the paper [2].

(i) It is easy to check that $\varphi$ is an entire and even func-
tion (i.e. $\varphi(-\xi)=\varphi(\xi)$ ). The restriction of $\varphi$ on the real
axis belongs to the Schwartz class $S(\mathbb{R})$ .

(ii) The function $\varphi$ satisfies the following ordinary dif-
ferential equation:

$\varphi^{(2m-1)}(\xi)-\frac{(-1)^{m}}{2m}\xi\varphi(\xi)=0$ , (2.1)
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where $\varphi^{(k)}$ means $k$-times derivatives of $\varphi$ .
(iii) By saddle point method, we obtain the asymptotic

expansion of $\varphi$ at infinity.
$\varphi(\xi)\sim\Phi(\alpha\xi\frac{2m}{2m-1})$ as $\xiarrow\infty,$ $0<\arg\xi<\pi$ ,

(2.2)

where $\Phi(X)=\sqrt{\frac{2\pi}{2m(2m-1)}}X^{\frac{1-m}{2m}}e^{(2m}-1)x.\Sigma^{\infty x-}j=1^{C}ij(c_{j}\in \mathbb{R}$

and $c_{0}=1$ ) and $\alpha=(2m)^{\frac{-1}{2m-1}}\cdot \mathrm{e}\mathrm{x}\mathrm{p}\mathrm{f}(2m-3/2)\cdot\frac{\pi i}{2m-1}\}$ . Note
that the Stokes phenomenon occurs on the lines $\arg\xi=n\pi$

$(n\in \mathbb{Z})$ .
(iv) P\’olya [8] shows that all zeros of $\varphi$ exist on real

axis. The set of zeros of $\varphi$ is denoted by { $\pm a_{j}$ ; $0<a_{j}\leq$

$a_{j+1}(j\in \mathrm{N})\}$ . The asymptotic expansion (2.2) implies that
all but finitely many zeros are simple and the asymptotic
distribution of zeros of $\varphi$ is the following:

$j=ca^{\frac{2m}{j2m-1}}+ \frac{m}{2(2m-1)}+^{o}(j^{-}1)$ as $jarrow\infty$ ,
(2.3)

where $c= \pi^{-1}\{(2m)^{\frac{-1}{2m-1}}-(2m)^{\frac{-2m}{2m-1}}\}\cos\frac{\pi}{2(2m-1)}$ . Moreover
the differential equation (2.1) directly implies that the order
of zeros of $\varphi$ is not greater than $2m-2$ (i.e. there does not
exit any point $a\in \mathbb{R}$ such that $\varphi(a)=\cdots=\varphi^{()}-2(2ma)=$

$0)$ . Therefore we have $I(\{e-x^{2m}, \ldots , x^{2m-2x^{2}}e^{-}\}m)=L^{1}(\mathbb{R})$

by Wiener’s theorem.
(v) By $(2.2),(2.3)$ , we obtain the infinite product repre-

sentation:

$\varphi(\xi)=\frac{1}{m}\Gamma(\frac{1}{2m})\prod_{j=1}^{\infty}(1-\frac{\xi^{2}}{a_{j}^{2}})$ (2.4)

The formulas $(2.3),(2.4)$ imply that $\varphi$ is in the Laguerre-
P\’olya class. $\ln$ fact, the formula (2.3) yields $\Sigma a_{j}^{-2}<\infty$ .
Note that $\varphi_{k}(\xi)=(-i)^{k}\varphi((k)\xi)(k\in \mathrm{N})$ , then $\varphi_{k}$ are also
in this class.
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3. PROOF OF THEOREM 1.3

First we prepar$e$ the following lemma.

Lemma 3.1. Suppose $F$ is in the Laguerre-P\’olya class and
does not take the form $ce^{ax}$ For any $a\in \mathbb{R}$ and $k\in \mathrm{N}_{f}$ if
$F^{(k1)}-(a)\neq 0$ and $F^{(k)}(a)=0$ , then $F^{(k+1)}(a)\neq 0$ .

Proof. Now $F^{(k)}$ are also in the Laguerre-P61ya class. As
mentioned in Section 2, since $F^{(k)}(\xi)\neq ce^{a\xi}$ , the derivative
of $F^{(k)}(\xi)/F^{(k-1)}(\xi)$ is negative for $x\in$ R. Thus $F^{(k+1}$ )

$F^{(k-1})-(F^{(k)})^{2}$ at $a$ is also negative, and $\mathrm{s}.\mathrm{o}F^{(k+1)}(a)\neq$

$0$ . $\square$

Now we will prove Theorem 1.3.

Proof of Theorem 1.3. First let us show the simpleness of
zeros of $\varphi(=\varphi_{0})$ . Suppose that there is a point $a\in \mathbb{R}$ such
that $\varphi(a)=\varphi’(a)=0$ . By the differential equation (2.1),

$\varphi^{(+)}(2m-1k\xi)-\frac{(-1)^{m}}{2m}\{\xi\varphi^{(}(k)\xi)+k\varphi((k-1)\xi)\}=0$ for $k\geq 0$ .

From this equation, we have $\varphi^{()}-1(2ma)=\varphi^{(2m)}(a)=0$ .
Then Lemma 3.1 implies that $\varphi^{()}-2(2ma)$ must be zero. In
a similar fashion, we obtain $\varphi^{()}-3(2ma)=\cdots=\varphi^{(2)}(a)=$

$0$ . By the differential equation (2.1), this implies that $\varphi$

identically equals zero. This is a contradiction.
Next suppose that there is a point $a\in \mathbb{R}$ such that

$\varphi^{(k)}(a)=\varphi^{(k+1)}(a)=0$ for $k\in \mathrm{N}$ . Then Lemma 3.1 implies
$\varphi(a)=\varphi’(a)=0$ . Therefore the above argument induces a
contradiction. Thus all zeros of $\varphi_{k}(=(-i)^{k}\varphi)(k)$ are also
simple.

The proof of Theorem 1.3 is complete. $\square$

4. QUESTION

Let us consider the value of $M(\phi_{m})$ in more detail. In
the case $r=1,$ $M(\phi_{m})$ is 2, which is the best possible. But
there is a room for improving the inequality $M(\phi_{m})\leq 2^{r}$
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for $r\geq 2$ . Actually we can easily obtain $M(\phi_{m})\leq 3\cdot 2^{r-2}$

by differential equation (2.1). If the following question is
solved positively, we obtain $M(\phi_{m})=r-1$ .
Question 1. Let $l\geq 4$ and $m\geq 1$ be integers. Do there
exist nonnegative integers $k_{1},$

$\ldots$ , $k_{l}$ such that the zero sets
of $\psi^{(k_{1})},$

$\ldots$ , $\psi^{(k_{l})}$ are mutually disjoint?
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