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Turbulent acoustic streaming excited by resonant
gas oscillation with periodic shock wave
in a closed tube
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Abstract: The fundamental resonant gas oscillation with periodic shock wave
in a closed tube is studied by executing large-scale computations of the 2-D
Navier—Stokes equations for compressible flow with a high-resolution upwind
finite-difference TVD scheme. In a quasi-steady state of gas oscillation,
acoustic streaming (mean mass flow) with large Rs is excited in the tube, where
Rs is the streaming Reynolds number based on a characteristic streaming
velocity, the tube length, and the kinematic viscosity. In the case of Rs = 560,
relatively strong vortices are localized near the tube wall, and the resulting
streaming pattern is almost stationary but quite different from that of the
classical Rayleigh streaming. Streaming of Rs = 6200 involves unsteady
vortices in a region around the center of the tube. Turbulent streaming
appears in the result of Rs = 56000, where a lot of vortices of various scales
are irregularly generated throughout the tube.

PACS numbers: 43.25.Cb, 43.25.G{, 43.25.Nm

Introduction

We shall consider streaming motions excited by the fundamental resonant gas oscillation in a
two-dimensional closed tube filled with an ideal gas. The tube, whose length is L and width
is W, is closed at one end by a solid plug and the other by a piston (sound source) oscillating
harmonically with an amplitude a and angular frequency w (see Fig. 1). When the source
frequency is in a narrow band around a resonant frequency, the resulting gas oscillation may
not be a sinusoidal standing wave with fixed loops and nodes but a nonlinear oscillation of large
amplitude including periodic shock waves traveling in the tube repeatedly reflected at the sound
source and closed end.?

Such large-amplitude oscillations can induce streaming motions of large streaming
Reynolds number Rs = UgLg /v, where Us is a characteristic magnitude of streaming, Ls(= L)
is a linear dimension of the system, and v is the kinematic viscosity. For Rs >> 1, streaming in
the tube can become a turbulent flow, as the jet-like streaming.?3 In the present letter, we shall

‘numerically demonstrate when and how the streaming motion in the tube becomes turbulent.
Since very large-scale computations are required, we restrict ourselves to the case that the
angular frequency at the sound source, w, is equal to the fundamental resonance (angular)
frequency com/ L, where cq is the speed of sound in an initial undisturbed gas.

In practical applications of high-intensity resonant oscillations in a closed tube, an

available model of streaming has so far been limited to that induced by the linear sinusoidal
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standing wave with fixed loops and nodes; however, it should be a steady creeping motion of
Rs < 1.3-6 Understanding of turbulent streaming may be indispensable to the development of
such applications.
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Fig. 1. Schematic of the model.

Problem

We shall consider the fundamental resonance in the closed tube in a case of wide tube and low
frequency. That is, the tube length L satisfies the condition '

Lw
=" (1)
and the width W is sufficiently large compared with a typical dimension of the Stokes boundary
layer on the wall,
_@ = Ar > e= vw y (2)
Co Co ‘

where A = W/L is an aspect ratio of tube, € is a normalized typical linear dimension of the
Stokes boundary layer on the wall.

The sound source is a piston located at z = 0 for ¢ < 0, which begins oscillating
harmonically with amplitude a and angular frequency w at ¢ = 0, where £ = z*w/cp and
t = wt*. The acoustic Mach number at the source, M, is supposed to be sufficiently small
compared with unity,

M=% <. (3)
Co

In the present study, we assume that M is comparable with ¢, i.e.,

€
Q=

= O(l)’ (4)

=

where a is a nondimensional constant. The
then be given as

8

oustic Reynolds number at the sound source may

2w
Re=—, (5)
which is sufficiently large compared with unity. In addition to condition Re > 1, if the
dispersion and attenuation effects” due to the Stokes boundary layer are sufficiently small, a
shock with discontinuous wave front will be formed. The dispersion effect can be estimated
by a nondimensional parameter ¢/(A+vM), because, as shown below, a nondimensional wave
amplitude at an almost steady state (quasi-steady state) is of O(vVM).

Under the conditions (1)—(4), we shall numerically solve the initial- and boundary-
value problem of the two-dimensional Navier-Stokes equations for compressible flow. We
assume that the temperature on the solid surface is constant. The gas in the tube is considered
to be air (the ratio of specific heats is 1.4 and the Prandtl number is 0.7). Sutherland’s formula
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is adopted for the temperature dependence of shear viscosity, and the bulk viscosity is neglected
for simplicity. The flow field is supposed as symmetric around y = Am /2, where y = y*w/co.

Numerical method

We need to use a numerical method capable of resolving discontinuous shock waves, and
therefore an upwind finite-difference TVD scheme by Chakravarthy® is employed, since the
capability of the method has already been confirmed in the analysis of the near field of oscillating
circular piston.? The 2-D Navier-Stokes equations are directly solved without introducing any
further assumptions. The turbulent streaming motion is not artificially excited but self- generated
in the numerical solution for the case of sufficiently large Rs.

The lower half of the tube, M (cost — 1) < z < wand 0 < y < An/2, is subdivided
into a 300 x 60 nonuniform mesh, where the minimum grid size is less than ¢/4. Mesh points
are clustered near the lower wall, sound source, and closed end, and hence we can resolve the
Stokes boundary layer and a secondary boundary layer®? of thickness of O(1/ v/Rs). The time
step is 2m/120000 and the CFL number is about 0.5. The cpu time for 250 periods of oscillation
of piston exceeds 200 hours on the supercomputer at Hokkaido University.

The important parameters which characterize the present problem are the source Mach
number M, the normalized thickness of Stokes layer, €, and the aspect ratio A: A =0.1and ¢
is chosen as 4.5 x 10~%. The latter corresponds to source frequency w/2x = 250Hz in the air
of the standard state. We have computed three cases of M = 0.000036, 0.0004, and 0.0036.
The parameters and results are summarized in Table 1. Short animations of main results can be
seen at URL: http://www.hucc.hokudai.ac.jp/b11422.1

Table 1. Parameters and main results.

Mach number SPL* SPL** Rs = ™ €

at Source (Source) (Max) =— Wi Shock Streaming
finite stationary
0.000036 104.9dB 147.5dB 560 0.75 thickness flow pattern
0.0004 125.8dB 161.9dB 6200 0.23 discontinuity unsteady
0.0036 144.9dB 172.4dB 56000 0.08 discontinuity turbulent

* SPL for the plane progressive wave radiated by the corresponding sound source.
** SPT, based on the rms value of pressure perturbation at closed end in the quasi-steady state.

Resonant gas oscillation with periodic shock waves

First of all, we shall present the evolution of on-axis velocity amplitude from the initial state
of uniform and at rest (Fig. 2). The amplitude initially grows in proportion to M?. At a large
t of O(1/v/M), an almost steady state (quasi-steady state) is established, where the maximum
amplitude of oscillation during one period is almost constant of O(vV/M). The quasi-steady state
 is supported mainly because of the balance of energy input at the source and energy dissipation
at the shock front.

Figure 3 shows the wave profiles in the quasi-steady state. A wire-framed yellow disk
in the figure is merely a virtual image of sound source. Note that our computations are neither
three-dimensional nor axisymmetric. Since ¢/(AvM) is not so small for M = 0.000036 (see
Table 1), the dispersion effect due to boundary layer prevents shock front from steepening
[Figs. 3(a) and 3(b)]. For the cases of M = 0.0004 and 0.0036, the shock front develops into a
discontinuity. From Figs. 3(a), 3(c), and 3(e), one can readily see that the profile of axial fluid
velocity has a small peak in the boundary layer (Richardson’s annular effect).

Roughly speaking, the fluid motion outside the boundary layer can be regarded as
the superposition of resonant oscillation and streaming motion. Accordingly, in the case that
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streaming velocity is relatively large and irregular (see Figs. 4 and 5), the axial velocity outside
the boundary layer is slightly uneven as shown in Figs. 3(c) and 3(e). Since entropy (and also
vorticity) is convected by streaming, the profiles of density and temperature also possess the
same unevenness. Pressure profile, on the other hand, is hardly affected by the boundary layer
and streaming, and hence it is almost independent of the distance from the lower wall.
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Fig. 2. Evolution of wave amplitude. The wave amplitude on the symmetric axis
is evaluated as maximum of u minus minimum of u at t = nw/2 (n = 0,1,2,...),
where u = u* /co is the axial component of nondimensionalized fluid velocity.

Fig. 3. Snapshots of wave profiles of the normalized axial velocity u = u*/co and
sound pressure p = (p* —po)/poc3. (a) u and (b) p for M = 0.000036 at ¢t = 879.5,
(c) u and (d) p for M = 0.0004 at t = 589.5x, and (e) u and (f) p for M = 0.0036
at t = 461.57. Each color bar indicates the value of u or p.
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Fig. 4. Streaming patterns. The color bar denotes the strength of vorticity of
streaming. (a): M = 0.000036 at t = 9187 (Rs = 560), (b): M = 0.0004 at
t = 6287 (Rs = 6200), (c): M = 0.0036 at t = 5007 (Rs = 56000).

Excitation of turbulent streaming

The normalized velocity components of acoustic streaming (mean mass flow) are defined as

w=(2)- (&) % L. (R)= ©

* where p = p*/po is a normalized density, u = u*/cp and v = v*/cp are x and y components
of the normalized fluid velocity, and the bar denotes the time average. A typical streaming
velocity in each case is of O(M), i.¢., square of the maximum fluid velocity of O(v'M). The
nominal streaming Reynolds number Rs can therefore be estimated as 7 /ce (see Table 1). We
have numerically confirmed that, as in the linear standing wave problem, us and vs are nearly
equal to @ and U, because oscillation of p is out of phase with that of fluid velocity and hence
the so-called velocity transform® is small compared with the magnitude of us. We have also
confirmed that div us = divpu = O(M) in all cases. '
The color contours in Fig. 4 indicate the distribution of curlus. In the case of
M = 0.000036 (Rs = 560), the streaming pattern shown in Fig. 4(a) is almost invariant from
t = 4407 to at least t = 918w. Since Rs is not small, vorticity in the Stokes layer is hardly
diffused and, in addition, the streaming velocity is not large enough to propagate the vorticity in
the vicinity of wall to all over the tube. As a result, some strong vortices are localized near the
wall and the flow pattern in Fig. 4(a) is quite different from that of the classical slow streaming
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of Rs < 1 excited by the linear standing wave.3~¢ Figure 4(b) shows the streaming pattern
for M = 0.0004 (Rs = 6200), in which several unsteady vortices are produced and they are
confined in a region around the center of the tube, at least up to £ = 628x. Turbulent streaming
appears in the case of M = 0.0036 (Rs = 56000), where irregular and unsteady vortices of
various scales are produced throughout the tube [see Fig. 4(c) and Fig. 5(c)].

Figure 5 shows the temporal evolution of us/M. Comparing with Fig. 2, one can see
that us at x = 7 /2 abruptly grows when the oscillation attains the quasi-steady state. We here
remark that ug is very small at z & 7r/2 in the classical streaming of Rs < 1.3~

In the case of Rs = 560, although the streaming pattern shown in Fig. 4(a) is almost
stationary, the local streaming velocity shown in Fig. 5(a) gradually varies for t > 5007. The
axial streaming velocity for Rs = 6200 in Fig. 5(b) is unsteady after the oscillation has reached
the quasi-steady state. However, we cannot examine whether the fluctuation of streaming is
irregular or not because the numerical result for Rs = 6200 is limited to t < 628; the required
computation to answer the question is too large to be executed. In the case of Rs = 56000

[Fig. 5(c)], us fluctuates irregularly throughout the tube.
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Fig. 5. Evolution of us/M at z = 1.4084 and y = 0.0012 (red solid curve),
y = 0.0043 (green solid curve), y = 0. 0130 (blue solid curve), y = 0.0348 (red dashed
curve), and y = 0.0821 (green dashed curve). (a): M = 0.000036 (Rs = 560), (b):
M = 0.0004 (Rs = 6200), (c): M = 0.0036 (Rs = 56000).
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Conclusions

We have numerically demonstrated the excitation of turbulent acoustic streaming by the resonant
gas. oscillation in the closed tube. If the acoustic Reynolds number at the sound source Re is
sufficiently large compared with unity, the resonant gas oscillation aftains the quasi-steady state
at a large ¢ of O(1/v/M), where the normalized wave amplitude is of O(vM). The magnitude
of resulting acoustic streaming, which is induced by the second-order nonlinear effect of gas
oscillation, is of O(M), namely the streaming velocity is the same order of magnitude as the
piston velocity at the sound source. Accordingly, Rs is as large as Re. Very large Rs flows can
thus be realized. This leads to the occurrence of turbulent acoustic streaming.

Finally, we shall remark that, in the present computations, the Reynolds number based
on the thickness of the Stokes layer is of O(1) and streaming in the Stokes layer is disturbed but
as a whole remains laminar. If Reynolds number based on the Stokes layer thickness exceeds
its transition Reynolds number, the oscillation in the Stokes layer itself will become turbulent
and the turbulence will occur in the form of periodic bursts followed by relaminarization in the
same cycle of oscillation.?
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