アーベリアン・ヒッグス場方程式のボルテックス解が示すカオス現象

九州芸術工科大学 河辺 哲次 (Tetsuji Kawabe) 九州大学 工学部 太田 正之輔 (Shonosuke Ohta)

[1] はじめに

ゲージ場の性質を解析的、摂動論的に研究する事は、ゲージ場の極めて高い非線形性の為に難しい問題である。

一方、カオスは、非線形システムに普遍的に存在する現象である。私たちは、カオス の普遍的概念がゲージ場のダイナミカルな性質を探るのに、役立つと考え、研究を続 けてきた。そして、これまでに、次の様な現象を見つけた。

 (1)純粋なヤンミルズ場方程式のモノポール解が、常にカオティックな振舞を示す事[1]。
(2)ヤンミルズ・ヒッグス場方程式のモノポール解とスファレロン解が、摂動の強さに 依存してカオス相からオーダー相に転移(オーダー・カオス相転移)する事[2-5]。

(3)アーベリアン・ヒッグス場方程式のニールセン・オールセン(Nielsen-Olesen)ボルテックス解にも、この相転移に似た現象が存在する事[6,7]。

(4)さらに、このボルテックス解には、ヤンミルズ・ヒッグス場理論でのカオスとは質的に異なる、多重オーダー・カオス相転移が観察された[8]。

本研究会では、先ず、アーベリアン・ヒッグス場方程式のボルテックス解が示す多重 オーダー・カオス相転移を説明した。次に、場のリアプノフ指数の結合定数依存性、ま た、リアプノフ指数のボルテックス巻数依存性を解析して、この系が示す興味ある現 象を指摘した。

[2]ゲージ場Aとヒッグス場Øの方程式 アーベリアン・ヒッグス場理論のラグランジアン密度は、次式で与えられる。

$$L = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + (D_{\mu}\phi)^* (D^{\mu}\phi) - V(\phi)$$

(1)

$$\begin{split} F_{\mu\nu} &= \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} \\ D_{\mu} \phi &= \partial_{\mu} \phi + i A_{\mu} \phi \\ V(\phi) &= \frac{\kappa}{4} (|\phi|^{2} - 1)^{2} \quad \begin{array}{c} \text{(Higgs potential)} \\ \kappa \colon \text{is acc} \chi \end{split}$$

ゲージ場A、ヒッグス場 φ の空間自由度に対して次のような軸対称性を仮定し、新たに場a、bを導入する。

上式でnはボルテックスの巻数 (winding number)である。この様な仮定の下で、(1)から場の方程式が得られる。この時、式の中に1次の微分項が現れ、系の長時間発展の計算精度を悪くする。計算精度を上げるためにこの1次の微分項を消去する必要がある。適当な変数変換の後、場の方程式は次式のように書ける。

$$(\partial_{\tau}^{2} - \partial_{\xi}^{2})a = -\frac{3a}{4\xi^{2}} + (1 - \sqrt{\xi}a)\frac{b^{2}}{\xi\sqrt{\xi}}$$
(2)

$$(\partial_{\tau}^2 - \partial_{\xi}^2)b = \frac{b}{4\xi^2} - \frac{n^2}{\xi^2}(1 - \sqrt{\xi}a)^2b + \kappa(1 - \frac{b^2}{\xi})b$$
(3)

ボルテックスの単位長さ当たりのエネルギーは次式で与えられる。

$$E(n,\kappa) = 2\pi \int_{0}^{\infty} d\xi \,\xi \left[\frac{n^{2}}{2\xi^{2}}(\partial_{\tau}a)^{2} + \frac{n^{2}}{2\xi^{2}}(\partial_{\xi}a)^{2} + \frac{n^{2}}{4\xi^{2}}(1-a)^{2}b^{2} + \frac{1}{2}(\partial_{\tau}b)^{2} + \frac{1}{2}(\partial_{\xi}b)^{2} + \frac{\kappa}{4}(1-b^{2})^{2}\right]$$
(4)

図1はa、bの定常解 a_s 、 b_s を示す。境界条件はa(0) = b(0) = 0、 $a(\infty) = b(\infty) = 1$ である。 また、図2はベクトル場Aを示したものであり、ボルテックス状態であることが分かる。図3はヒッグス場を示す。

[3] 数値計算の方法

場の方程式(2)と(3)をFermi-Pasta-Ulam法で空間を離散化し、系をN個の非線形振動子 系に変える。系のカオスを調べるために2通りの初期状態の取り方(A)と(B)を考える。 (A)系に初期エネルギー E_0 を与えてゲージ場の特定モード $(j = \frac{N}{2})$ のみを励起した状態を初期状態とする方法。この時、 E_0 は小さな値から徐々に増大させて行くが、各 E_0 毎に初期状態を用意する。

(B) カオス状態を初期状態とする方法。このためには、(A)の方法で、 $j = \frac{N}{2}$ モードに十分大きなエネルギーを与えて、系を一気にカオス状態にする。この状態を初期状態として、系の時間発展を調べる。徐々に系のエネルギーEを下げながら、同様な計算を繰り返す。

この様な初期状態を得るために、先ず、ゲージ場の定常解の周りで場をモード展開する。

$$a(i,\tau) = a_s(i) + \sqrt{\frac{2}{N}} \sum_{j=1}^{N-1} \psi_a(j,\tau) \sin(\frac{\pi i j}{N})$$

この式で $j = \frac{N}{2}$ モードのみの励起を考えて $\psi_a(\frac{N}{2}, 0)$ を初期揺らぎの大きさとして与え

る。この $\psi_a(\frac{\aleph}{2},0)$ の大きさで、初期エネルギー E_0 が決まる。数値計算は8次のRunge-Kutta 法を使い、時間刻みは0.03 とした。

系のカオス状態を調べるために、次式で定義される最大リアプノフ指数を調べる。

$$\sigma_L = \lim_{\tau \to \infty} \frac{1}{\tau} \ell n \frac{d(\tau)}{d(0)}$$

この指数の値が0ならば、系はオーダー相である。正の値をとれば系はカオス状態である。全系のエネルギーEに対するこの指数の振舞を、結合定数の大きさが $\kappa = 0.5$ の臨界結合定数 κ_c の場合に計算する。

[4] リヤプノフ指数 σ_L の振舞

図4は、巻数 *n*=1 の場合のボルテックスに対するリアプノフ指数の結果である。ここで、格子数 *N*=64,空間刻み=0.1 ととった。

初期状態(B)から得られたリヤプノフ指数は、エネルギーに対してスムーズに単調増加 している。これは、カオス相におけるこの指数がエネルギー変化に対して異常のない 滑らかな関数である事を示している。

他方、初期状態(A)から得られたリヤプノフ指数の振舞は(B)に比べて複雑である。大まかな構造としてオーダー・カオス相転移的な振舞が読みとれるが、エネルギー Eが212、995、1990辺りで複雑な構造を持っている。これは、初期揺らぎを与えてから、カオス相に転移するまでの時間、即ち、誘導時間に、異常な振舞があったことを示唆している。

[5] 誘導時間 *τ*,の振舞

誘導時間は、特定のモードを励起して系を時間発展させる場合、しばらくして全ての モードが励起し、系が熱平衡状態に至る時のその間の時間で定義される。カオスは熱 平衡状態を経て実現される。

図5は誘導時間の計算結果である。E≥200の初期値Eに対してτ=1×10⁷まで計算を実行した結果である。全体として、揺らぎのエネルギーの増加とともに誘導時間が急激に減少する。

ほとんど全ての初期値 Eに対して有限な値のτ,が得られた。図5からτ,には小さな山 や谷が沢山存在して複雑な構造をしていることがわかるが、特に注目すべき点は、3 ケ所の Eでピークが観測されたことである。

そこで、このピークの構造を調べるために臨界現象の観点から解析した。図6はその 結果である。特に興味ある点は、3つのEのピークで次式が成立することである。

$$\tau_I \approx \left| E - E_i \right|^{-\eta} \qquad \eta = 1$$

これは、この系でのオーダー・カオス相転移が臨界現象と本質的な関わりを持っていることを示唆している。

[6] リアプノフ指数 σ_L の結合定数 κ 依存性

これまでは、系が臨界結合定数 κ_eという特別な値を持つ場合でのリアプノフ指数の解 析であった。次に、リアプノフ指数の κ 依存性を調べる。

図7 a-c は、巻数 n=1の場合、結合定数の大きさ κ が $\kappa = 0.1$ 、 $\kappa = 0.5$ 、 $\kappa = 0.9$ のボル テックスに対する結果である。

図7からは、リアプノフ指数がEと共に増加していることがわかる。

図7a リアプノフ指数 のエネルギー依存性 κ=0.1の場合 また、E>100辺りから増加の傾きが変わることが読みとれる。 いま、E>100のデータに対してリアプノフ指数と系のエネルギーの間に次の様な関係 を仮定する。

 $\sigma_L \propto E^{\nu}$

データから指数 ν は、 κ = 0.1 の時 ν = 0.70536、 κ =0.5 の時 ν = 0.63968、 κ = 0.9 の時 ν = 0.51343 と求まる。

図7b リアプノフ指数 のエネルギー依存性 κ=0.5の場合

図7 c リアプノフ指数 のエネルギー依存性 κ=0.9の場合

[7] 指数vの結合定数 κ依存性

図8は、この指数 ν の κ 依存性を示したものである。 興味ある結果は、 κ_c =0.5を境にして ν の κ 依存性に顕著な違いが出ることである。

このボルテックス解のstaticな性質として、 $\kappa i \kappa_c$ より小さな領域は、第一種超伝導状態に、また、 $\kappa i \kappa_c$ より大きな領域は、第二種超伝導状態に対応する事が知られている。図8の構造は、本質的にボルテックス解の dynamical な性質を反映している筈だが、この図は、staticな性質も同時に影響していることを示唆している。これは、非常に興味ある結果であり、今後解明すべき課題の1つである。また、これらの結果が巻数nの依存性まで考慮した場合、どの様に影響を受けるかを調べることも大切な課題である。

参考文献

- [1] T. Kawabe, S. Ohta, Phys. Rev. D41 (1990)†1983
- [2] T. Kawabe, S. Ohta, Phys. Rev. D44 (1991) 1274
- [3] T. Kawabe, Phys. Lett. **B274** (1992) 399
- [4] T. Kawabe, J. Phys. A:Math. Gen. 26 (1993) L1131
- [5] T. Kawabe, S. Ohta, Phys. Lett. B334 (1994) 127
- [6] T. Kawabe, Phys. Lett. **B343** (1995) 254
- [7] T. Kawabe, S. Ohta, Phys. Lett. B392 (1997) 433
- [8] S. Ohta, T. Kawabe, Phys. Rev. D56 (1997) 3660