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On Gigantic Pairs of Minimal Clones

BYE T (Machida, Hajime)* and Ivo G. Rosenberg!
% Hitotsubashi University, { Université de Montréal

1 Introduction and Preliminary Observations

In this paper we deal with some problem from the ”clone theory”, which stands as a research area in
multiple-valued logic and universal algebra. Roughly speaking, a clone is a set of operations (func-
tions) which is closed under composition.t1As an introduction to our problem, one may describe the
motivation of the problem in very simple and elementary way as follows:

”» Is it possible to generalize the set of operations {NOT, OR} on the base set {0,1} to a set of
operations on the base set {0,1,...,k—1} (k>2) ? 7

This is certainly simple, but is too simple and almost nothing is conveyed from this statement. In
order to state the problem more clearly and definitely, we extract the following properties from the set
{NOT, OR}.

(i) {NOT} generates a minimal clone .
(ii) {OR} generates a minimal clone.
(ili) {NOT,OR} is complete ! (i.e., generates all the operations).

Our problem asks if these properties can be generalized into k-valued case.

Problem : Does there exist a pair of operations f, g having the above three properties (i), (i) and
(iii), in place of NOT and OR, for arbitrary £ > 2 ?

We shall call this problem Szabé’s problem named after the first person who tock up the problem.

Now, we shall fix kK > 2 and set k = {0, 1,...,k—1}. Let two operations f(z1,...,Zm), 9(Z1,...,Zn)
on k satisfy the three properties (i), (ii) and (iii), that is,

(i) [f] is a minimal clone.
(ii) [g] is a minimal clone.
(iii) [f,g] = O (= the set of all operations on k)*.

Here, for a set S of operations, [S]t denotes the set of all operations which are generated by S.

Moreover, we assume that both f and g depend on every variable, i.e. f is an essetially m-variable
operation and g is an essentially n-variable operation.

A pair of operations (f,g) which satisfies the above conditions (i), (ii) and (iii) shall be called a
gigantic pair ! of minimal operations.

In the following, some introductory observations are given on the conditions for a pair (f,g) to be
a gigantic pair.

Claim 1 : If f(a,...,a) = a and ¢(a,...,a) = @ hold for some a € k, [f,g] is not complete.

This is immediate from the fact that f(a,...,a) = a and g(a,...,a) = a imply h(a,...;a) = a for
any operation h which is obtained by compositions of f and g. '

1 The symbol T means that a precise definition for the term is given in Section 2.
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Claim 2 : If m > 2 and [f] is a minimal clone, f(z,...,z) = z for every = € k. (Such operation f
is called idempotent t.) The same is true for g, of course.

This is because if f(a,...,a) = b (a # b) for some a,b, [h] C [f] holds for unary operation h defined
by h(z) = f(z,...,z) and [f] cannot be a minimal clone.

According to Claims 1 and 2, at least one operation f or g must be unary operation. On the
other hand, the condition (iii) clearly requires that at least one operation must not be unary. These
considerations lead to the following.

Claim 3 : Let m < n. Then f is a unary operation (m = 1) and g is an idempotent operation with
2 or more variables (n > 2).

The following fact characterizing a unary operation which generates a minimal clone is well-known
and easy to verify. :

Claim 4 : Suppose a unary operation f is not the identity operation. [f] is a minimal clone if and
only if the following (i) or (ii) holds.
(1) f is not surjective and the restriction of f to Image(f) is the identity operation on Image(f).
(2) f is a permutation of prime order.

As we have seen that g is an idempotent operation, f must be an operation of type (2) in Claim 4
in order to make the condition (iii) hold. Moreover, one can assert, w.l.0.g., that

f=01...p—-1)pp+1...2p-1)...(6—=Vp ... &p—1)

where k = £p.
Due to the similar argument with Claim 1 we have:

Claim 5 : I f(S) C S and ¢(S,...,S) C S for some proper subset S C k, [f,g] is not complete.

Thus, when f is the operation given above and £ > 1, g must be an operation which satisfy, e.g.,

g({O,l,...,p—1},...,{0,1,...,p—1})@{0,1,...,p-—1}-

So far, what we have discussed is merely the very basic properties that operations f and g must
satisfy. These observations are the first step of our study. By extending the considerations more deeply,
we have obtained the following results which will be stated in detail in Section 3.

(1) We obtained a necessary and sufficient condition for a pair of operations (f,g) to be a gigantic
pair. (Theorem 3.1) ,

(2) We verified that a gigantic pair really exists for every k 5 2¢(t > 1) by constructing such pairs.
(Theorem 3.3) In our construction g is the join operator corresponding to some semilattice f. (Fig. 1)
The reader is invited to verify that the premiss in Claim 5 does not hold for this operation g and the
above operation f.

In the following, due to the lack of space, we shall give only definitions and theorems, but (almost)
no proofs.

2 | Definitions

Let (’),(c") be the set of all n-ary operations from k™ into k and let Ok(= 04) = U3>, ('),(B"). Let Ji be
the set of all projections pr® (1 < ¢ < n) over k where pr{ is defined as pri*(zy,...,%i,...,2p) = 7;



for arbitrary (z1,...,2,) in k™. :
An operation f € O™ is idempotent if f(z,...,z) = z. (Here and in the sequel, ~ denotes an
identity over k, i.e., f(z,...,z) ~ z means f(z,...,z) =z forall z € k.)

Definition 2.1 A subset C of O is a clone on k if (i) C contains Jr and (i) C is closed under
(functional) composition.

Definition 2.2 For a subset S of Ok, the clone generated by S is defined to be the smallest clone
containing S. It is denoted by [S]. A set S is complete if [S] = Oy, i.e., every operation in Oy can
be obtained by composing operations in S U Jy.

Deﬁnltlon 2.3 A clone C on k is a minimal clone if (i) C # Ji and (ii) J C C' C C implies
= C for any clone C' on k.

Definition 2.4 An operation f on k is minimal if (i) it generates a minimal clone and (ii) every
operation from [f] whose arity is smaller than the arity of f is a projection.

Theorem 2.1 [Ro 86] Every minimal operation belongs to one of the following five types:

' 1) Unary operations f (i.e., selfmaps of k) such that either (i) f2(= fo f) = f or (i) f is a
permutation of prime order p (i.e., f? =id).

2) Idempotent binary operations; i.e., f € O such that f(z,z) ~ z.

3) Majority operations; i.e., f € O3 such that f(z,z,y) ~ f(z,y,z) = f(y,z,2) ~ T .

4) Semiprojections (or quasiprojections); i.e., f € O™ (3 < n < k) such that there exists i 1<
i < n) satisfying f(a1,...,a,) = a; whenever ay,...,a, € k are not pairwise distinct.

5) If k = 2™, the ternary operations f(z,y,2) ~ a:+y+z where < k ;+ > is an elementary 2-group
(i.e., the additive group of an m-dimensional vector space over GF(2)).

Definition 2.5 A pair (f,g) of minimal operations is called gigantic if {f,g} is complete. (i.e.,
[f ) g] = 0)

The following terminology is from universal algebra.

Definition 2.6 A = < A; F > is an algebra if A is a set and F is a set of finitary operations
defined over and taking values in A. When F = {fi,..., ft}, A i3 also ezpressed as < A; f1,...,f¢ >
For an algebra A = < A; F >, a subset B of A is a subuniverse of A if B is closed under every
operation f in F. A subuniverse B of < A; F > is a proper subuniverse if ¢ C B C A.

For an algebra A = < A; F >, 0 is a congruence of A if 8 is an equivalence relation on A
and satisfies the property that for every operation f in F, if f is n-ary, 10y1,...,2,0y, implies
f@1,..,20)0f (Y1y ... yn) for all z4,...,20,91,...,Yn € A. A congruence @ of A is proper if 0 is
not a trivial equivalence relation. An algebra A is simple if it has no proper congruences.

Moreover, for an algebra A = < A; F >, ¢ is an automorphism of A if ¢ is a permutation
on A and satisfies the property that for every operation f in F, if f is n-ary, f(p(z1),...,0(xs)) =

e(f(z1,...,20)) for all z1,...,z, € A. The set of all automorphisms of A is denoted by Aut A. An
 automorphism p is proper if ¢ is not an identity permutation id, of A.

Finally in this subsection, we supply some definitions concerning relations.

Definition 2.7 For a set A, an h-ary relation on A is a subset of the Cartesian product A*. For an
n-ary operation f in O and an h-ary relation p on A, f is said to preserve p if (215, Z2j,...,Zhj) € p
for every j =1,2,...,n implies (f(z11,%12,.--,%1n); - - -, f(Th1,Tha, ..., Thn)) € p.

Definition 2.8 Letk=h™ whereh>2 andm > 1. A setT = {0y,...,0n} of equivalence relations
on k is an h-regular system if (i) each block (equivalence class) of every 0; has h elements and (ii)
if B; is a block of 0; for alli=1,...,m then |BiN---N By, | > 1. Nexzt, the relation determined by
T is the relation Ay defined as the set of all (ay,...,as) € k* such that for eachi=1,...,m it holds
that a.0;a, for some1 <r<s<h.
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3 Main Results

Definition 3.1 For a divisor p of k denote by F;, the set of all permutations of k with £ := k/p cycles
of length p. Let f € Fp have cycles Co,...,Cp_1.

An equivalence relation 0 on k is transversal to f if there exist 1) an equivalence relation A on £
distinct from the least equivalence relation on € and 2) an element ¢; € C; for each i € £ such that

0={(f"(c),f™(c;)) | irj, 0<m<p-—1}.

A permutation 1 of k is orthogonal to f if 1) ¢ € F, for some prime divisor q of k, 2) fotp = o f
and 3) if ¢ # p then each cycle of 1) meets every C; in at most a singleton.

Now, we characterize gigantic pairs.

Theorem 3.1 Let f € O™ and g € O™ where m < n and let A ;=< k; g >. Then the pair (f,g)
is gigantic if and only if

(i) m =1 aend f € F, for some prime divisor p of k (with cycles Cy,...,Ce—1 ),

(ii) » > 1 and g is minimal,

(iif) C;, U---UC;, is not a proper subuniverse of A for any 0 <4; <--- <4, <€-1,
(iv) No congruence of A is transversal to f,

(v) No automorphism of A is orthogonal to f,

(vi) Let k= h™ where h > 2 and m > 1. If there exist: a) a permutation @ of m of order 1 or p and

permutations fo,..., fm—1 of h such that

a) fay fa, *+* fa,_, = idp, for each cycle (do...d,—1) of o,

B) for every fized point i of ¢ the permutation f; is of order 1 or p and

«) for some fized point j of ¢ the permutation f; is fired-point-free and of

order p ‘
and b) a bijection
Yz T = (29, .., zmD)

of k onto h™ such that forallz ek
F@) = (o@D, ..., fros(@)@m=),
then g does not preserve the h-ary relation

{(a,...,an) € k" | #{agi),...,as)}<p—1 forevery i =0,...,m—1}.

(vii) a) Let k=p™, b) let x —— T be a bijection from k onto p™ (the latter considered as the set of
all m x 1 matrices over p), c) let forallz € k

f@)=Az+B

where A = P~1JP, B = P-1B’ with P a nonsingular (over GF(p)) m x m matriz over p,
J the m x m Jordan matriz with diagonal (1,...,1) and blocks of sizes 4y,...,¢, and B’ =
(B1,...,bpm) € p™ is such that '

I+J+JT%24---+IJPHYB’ = Opx1,
and by, 4...1¢, # 0 for some 1 < u < h. Then g does not preserve the quaternary relation

{(@,y,1) ek*|T=F0F@z).



The proof of Theorem 3.1 heavily relies on the following theorem.

Theorem 3.2 [Ro 70B] For a set B of surjective operations containing an essentially more than
unary operation, the set B is complete if and only if

(A) < k ;B > is simple and has no proper subuniverse and no proper automorphism,

(B) If k = p™ for a prime p and m > 1 and if < k; + > is an elementary abelian p-group then some
b € B does not preserve the quaternary relation

{(:v,y,z,:z—y+z) | T,Y,2 € k}3

and :
(C) If k = h™ with h > 2 and m > 1 and T is an h-regular system on k then some b € B does not
preserve Ar. ‘

Example. Let k = 2 (Boolean case). There are 4 nonunary minimal operations, namely, V, A, d and
7, where V and A are OR and AND, d(z,y,2) ® (x Ay)V(yA2)V (z2Az) and 7(z,7,2) R 2Dy D 2.
With the unary non-identity operation - (NOT), two pairs (-, V) and (-, A) are shown to be gigantic.
These are the only gigantic pairs for k = 2.

Next, we state that a gigantic pair really exists for eyei'y k which is not a power of 2.
Theorem 3.3 For every k where k # 2 (t > 1), there exists a gigantic pair.

Proof If k is a prime, the claim can be verified for the following two operations: Define f(z) :~ z®1
and g(z,y) such that g(z,y) =z if =y and g(z,y) =k —1if z # y for all z,y € k. It is easy to see
that g is minimal; in fact, g is a semilattice join whose orderis0 < k—1,...,k—2<k—1.

Suppose that k is a composite number. Let p denote the greatest prime divisor of k and let £ := k/p
where £ > 1.

The following unary operation f and binary operation g on k suffice for our purpose.

We define f by setting

. N fJip+j+1 ie€f 0<j<p-1,
f(”’“)"{ ip icl j=p—1.
Thus, f is expressed in the cyclic notation as '
f=01---p-Dpp+1---2p-1)---(£-1)p (—1)p+1--- k-1).

An algebra A = < k; V > is a semilattice if the binary operator V is associative, commutative and
idempotent (i.e., it satisfies '

zV(yVz)=(xVy)Vz, sVy=yVz and zVz=2

for all z,y € k). The binary relation < on k corresponding to A is defined by setting a < b whenever
aVvb="5. It is well-known that < is a partial order in which a V b is the join of a and b. Conversely,
an order < on k in which each pair has a join determines a semilattice.

Let g be the following semilattice operator V on k. For every z, y in k set

T =1y,
(E+1)p z=1ip+j, y=ip+j’

(OSzSE—Z, ]-SJ’JISP'—]-, .775.7’),
0 otherwise. -

TVy=

The Hasse diagram of the order corresponding to the semilattice < k; V > is in Fig. 1. Notice that it
is a tree.
The pair (f,V) is proved to satisfy the conditions (i)—(vii) in Theorem 3.1 and so it is gigantic. O
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1 2 p—1 p+1 p+2 2p—1 (£-2)p+1 (¢-1)p—1

Figure 1; The semilattice for the operation V
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