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Abstract

We discuss the problem of generating all $k$-permutations of $n$ ob-
jects. Several papers have introduced a technique to alternatingly
reverse sublists of a listing for some combinatorial Gray codes in an
efficient manner. Our approach is to apply the technique to a listing
of all $k$-permutations of $n$ objects constructed recursively by reversing
sublists. We show that the list contains $n!/(n-k)!$ permutations so
that each string differs from its predecessor by the transposition of
two elements. It is easy to convert the construction to a recursive al-
gorithm and then we develop the algorithm that produces successive
permutations in a constant amortized time per permutation.

1 Introduction
Many algorithms have been published for generating all permutations of $n$

objects and then there is a number of listings of successive permutations. One
of the listings is the transposition order that is introduced independently by
Johnson [3] and Trotter [11]. It is well-known that each permutation differs
by the transposition of adjacent elements.

Recently several interesting papers have been achieved for generating
some combinatorial Gray codes in a constant or constant amortized time
per object [1, 9, 5, 6, 8, 10, 2]. However, it is not trivial to generate a list-
ing of combinatorial Gray codes in a unique manner. Most of those papers
managed to give a simple recurrence relation for combinatorial Gray codes.
Ruskey generalized a close relationship between some combinatorial Gray
codes constructed recursively by reversing sublists [9]. To reverse certain
sublists seems to contribute a reduction of differences between successive
objects.
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A $k$-permutation of $n$ objects is an arrangement of the first $k$ objects
out of $n$ objects. First, we give a few modified definition for k-permutations
which are extended into $n$ length strings such that the set of all permutations
of $n$ objects contains the smaller set of the extended $k$-permutations. Our
approach is to apply the reversing technique to such $k$-permutations. Then a
listing of all $k$-permutations is obtained such that successive strings differ by
the transposition of two elements. This paper presents a $\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{u}\mathrm{r}\mathrm{s}\mathrm{i}_{\mathrm{V}\mathrm{e}}$ algorithm
for generating them in a constant amortized time per string. It is obtained
directly from the recursively defined construction for $k$-permutations. Note
that we do not count the time for printing permutations.

2 Definitions and properties
To begin with, we extend $k$-permutations of $n$ distinct objects to strings of
length $n$ : a $k$-permutation of length $n$ consists of $n$ elements which the first
$k$ elements are arranged in its original order and the rests are arranged in
a lexical order. For example, if a string 52 is a 2-permutation of the set
{1, 2, 3, 4, 5}, then its extension is 52134. When it will not lead to confusion,
we call them simply k-permutations.

The following useful notations are defined in [9]. If $L$ is a list of strings
and $x$ is a symbol, then $x\cdot L$ denotes the list of strings obtained by appending
an $x$ to each string of $L$ . For $\mathrm{e}\mathrm{x}\mathrm{a}\mathrm{m}_{\mathrm{P}^{1\mathrm{e}}}.$

’ if $L=12,21$ , then 3 $\cdot L=312,321$ . If
$L$ and $L’$ are lists then $L\circ L’$ denotes the concatenation of the two lists. For
example, if $L=12,21$ and $L’=34,43$ , then $L\circ L’=12,21,34,43$ .

For a list $L$ , let first $(L)$ denote the first element on the list and let last $(L)$

denote the last element on the list. If $L$ is a list $l_{1},$ $l_{2},$
$\cdots,$

$l_{n},$ then $\overline{L}$ denotes
the list obtained by listing the elements of $L$ in reverse order; i.e., $\overline{L}=$

$l_{n},$
$\cdots,$

$l_{2},$ $l_{1}$ . Note the obvious equations first $(\overline{L})=last$ $(L)$ and last $(\overline{L})=$

first $(L)$ .
.

length permutations in their original order and the other of which generates
$n-k$ length permutations in a lexical order. The following construction is
the case for the original part. The list involves $n$ recursively defined sublists
which are alternatingly reversed.

$T_{k}(n)=\{$

$\pi_{1}\cdot T_{k.1}$

.
$.- \circ\pi_{n}-1^{\cdot}\mathrm{o}(n-1)\overline{n-1.)}\frac{\circ\pi_{2}\cdot\tau_{k-1}(}{\tau_{k-1}(n-1)}\pi_{n}Tk-1(n\mathrm{o}\cdots-1)$

if odd $n$ ,

$\pi_{1}\cdot T_{k-}\ldots 1(\circ\pi_{n-1}\cdot T_{k1}^{\circ\pi_{2k}}n-1)\cdot\tau-1(n-(\overline{n-1)0\pi_{n}-1.)}\ldots\frac{\mathrm{o}}{T_{k-1}(n-1)}$

if even $n$ ,
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and the case for the lexical part,

$T_{k}(n)=\pi_{1}\cdot\tau k-1(n-1)$ .

These are subject to the terminal condition that $T_{k}(0)=\emptyset$. The construction
appends $\pi_{i}’ \mathrm{s}\in\{p_{1},p_{2}, \cdots,p_{n}\}$ to sublists in a lexical order from left to right
and each sublist is reconstructed with the set obtained by deleting a given
element and renumbering the rests from $\pi_{1}$ to $\pi_{n-1}$ . This constraint requires
that permutations contain all distinct elements.

LEMMA 2.1 The list $T_{k}(n)sati\mathit{8}fie\mathit{8}$ the following $propertie\mathit{8}$:

(1) $SucceS\mathit{8}ivek$ -permutations in $T_{k}(n)$ differ in exactly two $element\mathit{8}$ .

(2) first $(T_{k}(n))=p_{1}p_{2}\cdots p_{n}$ .

(3) last $(.\tau k(n))=\{$
$p_{n}p_{n-1}p_{1}p2\ldots p_{n-2}$ if odd $n$ and $k\geq 2$ ,
$p_{n}p_{1}p2\ldots p_{n-1}$ $otherwi\mathit{8}e$ .

Proof. The proof is by induction on $n$ . The list obviously has the stated
properties for $1\leq k\leq n\leq 2$ . Suppose that the lemma is true for $n\geq 3$ .
We must show it to be correct for $n+1$ . For convenience, we assume the ith
element in a permutation to be placed in the position $n-i$ , that is, the last
element is placed in the position $0$ .

Obviously the list $T_{1}(n+1)$ contains $n+1$ permutations in which the $i\mathrm{t}\mathrm{h}$

permutation is $p_{i}p_{1}\cdots pi-1pi+1\ldots p_{n+1}$ and the permutation differs from its
predecessor by two elements in positions $n$ and $n-i$ . Otherwise, for $k\geq 2$ ,
the list contains $n+1$ sublists and we need to inspect the transposition
of successive permutations at the interface between the ith sublist $\mathrm{a}_{}\mathrm{n}\mathrm{d}$ the
(i+l)st sublist. The transposition behaves in different ways according to
the parities $n$ and $i$ .

The first case is for even $i$ . The $i\mathrm{t}\mathrm{h}$ sublist is reverse and the $(i+1)\mathrm{s}\mathrm{t}$

sublist is natural. The contiguous permutations between the $i\mathrm{t}\mathrm{h}$ sublist and
the $(i+1)\mathrm{s}\mathrm{t}$ sublist differ by two elements, since the $1\mathrm{a}s\mathrm{t}$ permutation of the
$i\mathrm{t}\mathrm{h}$ sublist is the lexically first one, as shown below.

$p_{\nu}i.\overline{\tau_{k1}-(n)}$ $\{$
.$\cdot$
.

$\underline{p_{\dot{\mathfrak{g}}}}p_{1}\cdots p_{i-1}$ $\underline{p_{i+1}}p_{i+2}\cdots p_{n+1}$

$p_{i+1}\cdot T_{k}-1(n)$ $\{$

$p_{i+1}$ $p_{1}\cdots p_{i-1}$ $p_{i}p_{i+2}\cdots p_{n+1}$

.
$\cdot$.

The underlined elements that are swapped appear in positions $n$ and $n-i$ .
When odd $n+1$ , this case occurs on the last interface. The third property
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holds, since the last permutation of $T_{k}(n+1)$ is $p_{n+1}$ . last $(\tau_{k-1}(n))$ , that
Is, $p_{n+1}p_{n}p1\ldots p_{n-1}$ .

The second case is for odd $i$ . The $i\mathrm{t}\mathrm{h}$ sublist is natural and the $(i+1)\mathrm{s}\mathrm{t}$

sublist is reverse. (1) When odd $n+1$ , the contiguous permutations between
the $i\mathrm{t}\mathrm{h}$ sublist and the $(i+1)\mathrm{s}\mathrm{t}$ sublist are shown below.

$p_{i}\cdot T_{k-1}(n)=$ $\{$

$p_{i}p_{1}\cdots p_{i-1}pi+1\ldots p_{n+1}$

.$\cdot$.

$\underline{p_{i}}p_{n+1}p1\ldots p_{i-1}$ $\underline{p_{i+1}}p_{i+2}\cdots p_{n}$

$p_{i+1}\cdot\overline{\tau_{k1}-(n)}=$ $\{$

$p_{i+1}$ $pn+1p1^{\cdot}$ .. $p_{i-1}$ $p_{i}p_{i+2}\cdots p_{n}$...
$p_{i+1}$ $p_{1}\cdots p_{i}pi+2\ldots p_{n+1}$

The underlined elements that are swapped appear in positions $n$ and $n-$

$i-1$ . (2) When even $n+1$ , we can give some formulae for detecting the
transposition of successive permutations at each interface. The successive
permutations at the last interface differ by the elements in positions $n$ and
$n-1$ , as shown below.

$p_{n}\cdot T_{k-1(}n)$ $\{$

$p_{n}p_{1}$ . .. $pn-1pn+1$

.$\cdot$.

$\underline{p_{n}}\underline{p_{n+1}}p_{1}\cdots p_{n-1}$

$p_{n+1k-}.\overline{\tau 1(n)}$ $\{$

$p_{n+1}$ $p_{n}p_{1}\cdots p_{n-1}$

.$\cdot$.

$p_{n+1}p_{1}$ . .. $pn-1pn$

The last property holds in this case. Otherwise, for $i<n$ , the transposition
behaves in two different ways depending upon the value of $k$ . When $k=2$ ,
the elements of permutations that appear in positions greater than 2 are
arranged in a lexical order. The contiguous permutations between the $i\mathrm{t}\mathrm{h}$

sublist and the $(i+1)\mathrm{s}\mathrm{t}$ sublist are identical in arrangements as the ones for
the case (1), that is, the elements that are swapped appear in positions $n$

and $n-i-1$ . When $k>2$ , they are shown below,

$p_{i}\cdot\tau_{k-1}(n)$ $\{$

$p_{i}p_{1}\cdots p_{i-1}p_{i+}1\ldots p_{n+1}$

:
$\underline{p_{i}}p_{n+1}p_{n}p1\ldots p_{i-1}$ $\underline{p_{i+1}}p_{i+2}\cdots p_{n-1}$

$p_{i+1}\cdot\overline{\tau_{k}-1(n)}$ $\{$

$p_{i+1}$ $p_{n+1}p_{n}p1\ldots p_{i-1}p_{i}p_{i+2}\cdots p_{n-1}$

:
$p_{i+1}$ $p_{1}\cdots p_{i}pi+2\ldots p_{n+1}$

The elements that are swapped appear in positions $n$ and $n-i-2$. The list
$T_{k}(n+1)$ has the stated properties. The proof is complete. $\blacksquare$
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procedure interchange ( $\mathrm{n},\mathrm{k},$ $\mathrm{i}$ : integer);
begin

if $(\mathrm{k}=1)$ or not $(\mathrm{o}\mathrm{d}\mathrm{d}(\mathrm{i}))$ then swap(n-l,n-i-l)
else if odd(n) then swap(n-l,n-i-2)

else if $\mathrm{i}=\mathrm{n}-1$ then swap(n-l,n-2)
else if $\mathrm{k}=2$ then swap $(\mathrm{n}-1,\mathrm{n}-\mathrm{i}-2)$ else swap ($\mathrm{n}-1,\mathrm{n}-\mathrm{i}^{-3)}$ ;

end {of procedure};

Figure 1: The procedure interchange $(\mathrm{n},\mathrm{k}, \mathrm{i})$ .

procedure gen ( $\mathrm{n},\mathrm{k}$ : integer);
var $\mathrm{i}:\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{r}$ ;
begin

if $\mathrm{k}>0$ then
for $\mathrm{i}:=1$ to $\mathrm{n}$ do begin

if odd(i) then gen($\mathrm{n}-1,\mathrm{k}-_{1)}$ else $\mathrm{n}\mathrm{e}\mathrm{g}(\mathrm{n}-_{1},\mathrm{k}-1)$ ;
if $\mathrm{i}<\mathrm{n}$ then interchange $(\mathrm{n},\mathrm{k}, \mathrm{i})$ ;

end
end {of procedure};

Figure 2: The recursive procedure gen $(\mathrm{n},\mathrm{k})$ .

3 Implementation and analysis
To begin with, we summarize the transposition of successive permutations
between the $i\mathrm{t}\mathrm{h}$ sublist and the $(i+1)\mathrm{s}\mathrm{t}$ sublist and show it in a Pascal
procedure, in Figure 1. The procedure swap $(\mathrm{i},\mathrm{j})$ swaps the elements in
positions $i$ and $j$ . The definition of the list $T_{k}(n)$ leads directly to a recur-
sive algorithm for generating $\dot{\mathrm{a}}11k$-permutations of $n$ objects. The Pascal
procedure gen $(\mathrm{n},\mathrm{k})$ generates the list $T_{k}(n)$ , shown in Figure 2 and the pro-
cedure neg $(\mathrm{n},\mathrm{k})$ is a symmetric procedure of gen $(\mathrm{n},\mathrm{k})$ which generates the
reversed $1\mathrm{i}_{\mathrm{S}\mathrm{t}}\overline{\tau_{k}(n)}$.

Let us analyze the running time of gen $(\mathrm{n},\mathrm{k})$ . The procedure gen does
$n$ recursive calls to either gen or neg in the while statement. We also know
that it calls interchange once per loop and the interchange operation takes
a constant time to find the two elements that are swapped. Thus the total
amount of computations is proportional to the number of recursive calls,
which is $O(n!/(n-k)!)$ . To summarize above, the procedure gen generates
all $k$-permutations in an amortized constant time to go from one string to
the next.
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