oooooooogon
1093 0 19990 5-10

Generation of k-permutations in O(1) time per
permutation by reversing sublists

=i B (Kenji MIKAWA) {iligf —ER (Ichiro SEMBA)

Department of Computer Science, Ibaraki University
{mikawa,isemba}@cis.ibaraki.ac.jp

Abstract

We discuss the problem of generating all k-permutations of n ob-
jects. Several papers have introduced a technique to alternatingly
reverse sublists of a listing for some combinatorial Gray codes in an
efficient manner. Our approach is to apply the technique to a listing

~ of all k-permutations of n objects constructed recursively by reversing
sublists. We show that the list contains n!/(n — k)! permutations so
that each string differs from its predecessor by the transposition of
two elements. It is easy to convert the construction to a recursive al-
gorithm and then we develop the algorithm that produces successive
permutations in a constant amortized time per permutation.

1 Introduction

Many algorithms have been published for generating all permutations of n
objects and then there is a number of listings of successive permutations. One
of the listings is the transposition order that is introduced independently by
Johnson [3] and Trotter [11]. It is well-known that each permutation differs
by the transposition of adjacent elements.

Recently several interesting papers have been achieved for generating
some combinatorial Gray codes in a constant or constant amortized time
per object [1, 9, 5, 6, 8, 10, 2]. However, it is'not trivial to generate a list-
ing of combinatorial Gray codes in a unique manner. Most of those papers
managed to give a simple recurrence relation for combinatorial Gray codes.
Ruskey generalized a close relationship between some combinatorial Gray
codes constructed recursively by reversing sublists [9]. To reverse certain
sublists seems to contribute a reduction of differences between successive
objects.

A k-permutation of n objects is an arrangement of the first k£ objects
out of n objects. First, we give a few modified definition for k-permutations
which are extended into n length strings such that the set of all permutations
of n objects contains the smaller set of the extended k-permutations. Our
approach is to apply the reversing technique to such k-permutations. Then a
listing of all k-permutations is obtained such that successive strings differ by
the transposition of two elements. This paper presents a recursive algorithm
for generating them in a constant amortized time per string. It is obtained
directly from the recursively defined construction for k-permutations. Note
that we do not count the time for printing permutations.

2 Definitions and properties

To begin with, we extend k-permutations of n distinct objects to strings of
length n: a k-permutation of length n consists of n elements which the first
k elements are arranged in its original order and the rests are arranged in
a lexical order. For example, if a string 52 is a 2-permutation of the set
{1,2,3,4,5}, then its extension is 52134. When it will not lead to confusion,
we call them simply k-permutations.

The following useful notations are defined in [9]. If L is a list of strings.
and z is a symbol, then z- L denotes the list of strings obtained by appending
an z to each string of L. For example, if L = 12,21, then 3L = 312,321. If
L and L' are lists then L o L' denotes the concatenation of the two lists. For
example, if L = 12,21 and L' = 34,43, then Lo L' = 12,21, 34, 43.

For a list L, let first (L) denote the first element on the list and let last (L)
denote the last element on the list. If L is a list I3, 0o, - -, I, then L denotes.
the list obtained by listing the elements of L in reverse order; i.e., L =
ln, -, ls, 1. Note the obvious equations first (L) = last(L) and last(L) =
first(L). , '

Let Tx(n) be a listing of all k-permutations of the set {p1,p2,---,Pn}
The construction for the lists consists of two parts, one of which generates k

“length permutations in their original order and the other of which generates
n — k length permutations in a lexical order. The following construction is
the case for the original part. The list involves n recursively defined sublists
which are alternatingly reversed.

(7(1-Tk_l(n——l)owz-Tkul(n——1)o-~~

coiomp_y - Tra(n—1)om, - Tr1(n—1) ifodd n,
Tx(n) =< : .
T -Tk_l(n—— 1) O Ty -Tk_l(n - 1) O e

cer0mpy - Thr(n—1)om, . Ti_i(n—1) if even n,

and the case for the lexical part,
Tk(n) =m . Tk_l(n - 1)

These are subject to the terminal condition that T'(0) = @. The construction
appends 7;’s € {p1,ps," -+, Pn} to sublists in a lexical order from left to right
and each sublist is reconstructed with the set obtained by deleting a given
element and renumbering the rests from m; to m,_;. This constraint requires
that permutations contain all distinct elements.

- LEMMA 2.1 The list Tk(n) satisfies the following properties:

(1) Successive k-permutations in Tk(n) differ in ezactly two elements.
(2) first(Tk(n)) =p1p2 -+ pu.

- o Dpez dd n and k > 2,
(3) last(Tk(n)) = { Dn Prn—1D1 P2 P2 f o . >
. ' PuP1P2 **: Pn—1 otherwise.

Proof. The proof is by induction on n. The list obviously has the stated
properties for 1 < £ < n < 2. Suppose that the lemma is true for n > 3.
We must show it to be correct for n+ 1. For convenience, we assume the ith
element in a permutation to be placed in the position n — i, that is, the last
element is placed in the position 0.

Obviously the list T'y(n+ 1) contains n+ 1 permutations in which the ith
permutationis p; p1 + -« Pi—1 Pit1 ** * Pny1 and the permutation differs from its
predecessor by two elements in positions n and n — i. Otherwise, for k > 2,
the list contains n + 1 sublists and we need to inspect the transposition
of successive permutations at the interface between the ith sublist and the
(¢ 4+ 1)st sublist. The transposition behaves in different ways according to
the parities n and i. ‘

The first case is for even i. The ith sublist is reverse and the (i + 1)st
sublist is natural. The contiguous permutations between the sth sublist and
the (i + 1)st sublist differ by two elements, since the last permutation of the
ith sublist is the lexically first one, as shown below. ’

pi - Tp_1(n) { :

Pi P1Pi-1 Pit1 Pit2 " Pntl
Dit1 D1 DPi-1 Di Dit2 *** Do+l
Pit1 - Tk-1(n) { : ,

The underlined elements that are swapped appear in positions n and n — .
When odd n + 1, this case occurs on the last interface. The third property

holds, since the last permutation of T(n + 1) is pyi1 - last (Tk-1(n)), that
iS, Pp41PnP1 *** Pn—1.

The second case is for odd ¢. The ith sublist is natural and the (7 + 1)st
sublist is reverse. (1) When odd n+ 1, the contiguous permutations between
the ith sublist and the (i + 1)st sublist are shown below.

([Di D1 PiciDig1 cc Pnit
pi- Tpoi(n) = ¢
{ Pi Pn41P1 ' Pi1 Pit1 Pit2 "' Pn
(Pi+1 Pn+1P1 - Pi-1 Pi Pit2 *°* DPn
pit1- Th—1(n) = § '

L Piv1 D1 - PiPit2 " Pn+l

The underlined elements that are swapped appear in positions n and n —
i — 1. (2) When even n + 1, we can give some formulae for detecting the
transposition of successive permutations at each interface. The successive

permutations at the last interface differ by the elements in positions n and
n — 1, as shown below.

[Pn D1t Pno1Pan1
pn-Tr1(n) | :
{ Pn Pnt1 P1 """ Pn-1
[Pngr Pn D1t Puot
Pyt The-1(n) < ¢

L Pn+1 D1 " Pn-1 Pﬁ

The last property holds in this case. Otherwise, for 7 < n, the transposition
behaves in two different ways depending upon the value of k. When k = 2,
the elements of permutations that appear in positions greater than 2 are
arranged in a lexical order. The contiguous permutations between the ith
sublist and the (i + 1)st sublist are identical in arrangements as the ones for
the case (1), that is, the elements that are swapped appear in positions n
and n — i — 1. When k£ > 2, they are shown below.

(i DLt Di-1Pitl t Payl
pi - Tr-1(n) :
' { Di Pn+1PnP1 " Pic1 Pitl Pit2 *°° Pl

(Di+1 Pn+1PnP1*** Pi-1 Pi Dit2 °°° Pn-1
Pit1 - Th-1(n) 4 ¢

\ Pit1 D1 o DiPit2 °°° Pntl

The elements that are swapped appear in positions n and n — i — 2. The list
Ti(n + 1) has the stated properties. The proof is complete. LI

procedure interchange(n,k,i:integer);
begin
if (k=1) or not(odd(i)) then swap(n-1,n-i-1)
else if odd(n) then swap(n-1,n-i-2)
else if i=n-1 then swap(n-1,n-2)
else if k=2 then swap(n-1,n-i-2) else swap(n-1,n-i-3);
end {of procedure};

Figure 1: The procedure interchange(n,k,i).

procedure gen(n,k:integer);
var i:integer;
begin
if k>0 then
for i:=1 to n do begin
if odd(i) then gen(n-1,k-1) else neg(n-1,k-1);
if i<n then interchange(n,k,i);
end
end {of procedure};

Figure 2: The recursive procedure gen(n,k).

3 Implementation and analysis

To begin with, we summarize the transposition of successive permutations
between the ith sublist and the (i + 1)st sublist and show it in a Pascal
procedure, in Figure 1. The procedure swap(i,j) swaps the elements in
positions 7 and j. The definition of the list T'x(n) leads directly to a recur-
sive algorithm for generating all k-permutations of n objects. The Pascal
procedure gen(n,k) generates the list T';(n), shown in Figure 2 and the pro-
cedure neg(n,k) is a symmetric procedure of gen(n,k) which generates the
reversed list Tx(n).

’ Let us analyze the running time of gen(n,k). The procedure gen does
n recursive calls to either gen or neg in the while statement. We also know
that it calls interchange once per loop and the interchange operation takes
a constant time to find the two elements that are swapped. Thus the total
amount of computations is proportional to the number of recursive calls,
which is O(n! / (n — k)!). To summarize above, the procedure gen generates
all k-permutations in an amortized constant time to go from one string to
the next.

References

[1] J. R. Bitner, G. Ehrlich, and E. M. Reingold, Efficient generation of the
binary reflected Gray code and its applications, Comm. Assoc. Comput.
Mach. 19 (1976), 517-521.

[2] B. Bultena and F. Ruskey, An Eades-McKay algorithm for well-formed
parentheses strings, to appear in Inform. Proc. Lett.

[3] S. M. Johnson, Generation of permutations by adjacent transpositions,
- Math. Comp. 17 (1963), 282-285.

[4] Y. Koda and F. Ruskey, A gray code for the ideals of a forest poset, J.
Algorithms 15 (1993), 324-340.

[5] J. Lucas, The rotation graph of binary tree is Hamiltonian, J. Algorithms
8 (1987), 503-535.

[6] J. Lucas, D. Roelants van Baronaigien, and F. Ruskey, On rotations
and the generation of binary trees, J. Algorithms 15 (1993), 343-366.

[7] K. Mikawa and T. Takaoka, Generation of balanced parenthesis strings
in O(1) time per string, submitted to J. Algorithms.

[8] A. Proskurowski and F. Ruskey, Binary tree Gray codes, J. Algorithms
6 (1985), 225-238.

[9] F. Ruskey, Simple combinatorial Gray codes constructed by revering
sublists, 4th ISAAC, Lecture Notes in Comput. Sci., Springer-Verlag,
761 (1993), 201-208.

[10] F. Ruskey and A. Proskurowski, Generating binary trees by transpOSL-
tions, J. Algorithms 11 (1990), 68-84.

[11] H. F. Trotter, Algorithm 115: Perm, Comm. Assoc. Comput. Mach. 5
(1962), 434-435.

10

