
Generation of k-permutations in $O(1)$ time per
permutation by reversing sublists

三河賢治 (Kenji MIKAWA) 仙波 –郎 (Ichiro SEMBA)

Department of Computer Science, Ibaraki University
{mikawa, $\mathrm{i}_{\mathrm{S}}\mathrm{e}\mathrm{m}\mathrm{b}\mathrm{a}$} $@\mathrm{c}$ is. ibaraki. $\mathrm{a}\mathrm{c}$. jp

Abstract

We discuss the problem of generating all k-permutations of n ob-
jects. Several papers have introduced a technique to alternatingly
reverse sublists of a listing for some combinatorial Gray codes in an
efficient manner. Our approach is to apply the technique to a listing
of all k-permutations of n objects constructed recursively by reversing
sublists. We show that the list contains $n!/(n-k)!$ permutations so
that each string differs from its predecessor by the transposition of
two elements. It is easy to convert the construction to a recursive al-
gorithm and then we develop the algorithm that produces successive
permutations in a constant amortized time per permutation.

1 Introduction
Many algorithms have been published for generating all permutations of n

objects and then there is a number of listings of successive permutations. One
of the listings is the transposition order that is introduced independently by
Johnson [3] and Trotter [11]. It is well-known that each permutation differs
by the transposition of adjacent elements.

Recently several interesting papers have been achieved for generating
some combinatorial Gray codes in a constant or constant amortized time
per object [1, 9, 5, 6, 8, 10, 2]. However, it is not trivial to generate a list-
ing of combinatorial Gray codes in a unique manner. Most of those papers
managed to give a simple recurrence relation for combinatorial Gray codes.
Ruskey generalized a close relationship between some combinatorial Gray
codes constructed recursively by reversing sublists [9]. To reverse certain
sublists seems to contribute a reduction of differences between successive
objects.

数理解析研究所講究録
1093巻 1999年 5-10 5

A k-permutation of n objects is an arrangement of the first k objects
out of n objects. First, we give a few modified definition for k-permutations
which are extended into n length strings such that the set of all permutations
of n objects contains the smaller set of the extended k-permutations. Our
approach is to apply the reversing technique to such k-permutations. Then a
listing of all k-permutations is obtained such that successive strings differ by
the transposition of two elements. This paper presents a $\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{u}\mathrm{r}\mathrm{s}\mathrm{i}_{\mathrm{V}\mathrm{e}}$ algorithm
for generating them in a constant amortized time per string. It is obtained
directly from the recursively defined construction for k-permutations. Note
that we do not count the time for printing permutations.

2 Definitions and properties
To begin with, we extend k-permutations of n distinct objects to strings of
length n : a k-permutation of length n consists of n elements which the first
k elements are arranged in its original order and the rests are arranged in
a lexical order. For example, if a string 52 is a 2-permutation of the set
{1, 2, 3, 4, 5}, then its extension is 52134. When it will not lead to confusion,
we call them simply k-permutations.

The following useful notations are defined in [9]. If L is a list of strings
and x is a symbol, then $x\cdot L$ denotes the list of strings obtained by appending
an x to each string of L . For $\mathrm{e}\mathrm{x}\mathrm{a}\mathrm{m}_{\mathrm{P}^{1\mathrm{e}}}.$

’ if $L=12,21$, then 3 $\cdot L=312,321$. If
L and $L’$ are lists then $L\circ L’$ denotes the concatenation of the two lists. For
example, if $L=12,21$ and $L’=34,43$, then $L\circ L’=12,21,34,43$.

For a list L , let first (L) denote the first element on the list and let last (L)

denote the last element on the list. If L is a list $l_{1},$ $l_{2},$
$\cdots,$

$l_{n},$ then \overline{L} denotes
the list obtained by listing the elements of L in reverse order; i.e., $\overline{L}=$

$l_{n},$
$\cdots,$

$l_{2},$ l_{1} . Note the obvious equations first $(\overline{L})=last$ (L) and last $(\overline{L})=$

first (L) .
.

length permutations in their original order and the other of which generates
$n-k$ length permutations in a lexical order. The following construction is
the case for the original part. The list involves n recursively defined sublists
which are alternatingly reversed.

$T_{k}(n)=\{$

$\pi_{1}\cdot T_{k.1}$

.
$.- \circ\pi_{n}-1^{\cdot}\mathrm{o}(n-1)\overline{n-1.)}\frac{\circ\pi_{2}\cdot\tau_{k-1}(}{\tau_{k-1}(n-1)}\pi_{n}Tk-1(n\mathrm{o}\cdots-1)$

if odd n ,

$\pi_{1}\cdot T_{k-}\ldots 1(\circ\pi_{n-1}\cdot T_{k1}^{\circ\pi_{2k}}n-1)\cdot\tau-1(n-(\overline{n-1)0\pi_{n}-1.)}\ldots\frac{\mathrm{o}}{T_{k-1}(n-1)}$

if even n ,

6

and the case for the lexical part,

$T_{k}(n)=\pi_{1}\cdot\tau k-1(n-1)$.

These are subject to the terminal condition that $T_{k}(0)=\emptyset$. The construction
appends $\pi_{i}’ \mathrm{s}\in\{p_{1},p_{2}, \cdots,p_{n}\}$ to sublists in a lexical order from left to right
and each sublist is reconstructed with the set obtained by deleting a given
element and renumbering the rests from π_{1} to π_{n-1} . This constraint requires
that permutations contain all distinct elements.

LEMMA 2.1 The list $T_{k}(n)sati\mathit{8}fie\mathit{8}$ the following $propertie\mathit{8}$:

(1) $SucceS\mathit{8}ivek$ -permutations in $T_{k}(n)$ differ in exactly two $element\mathit{8}$.

(2) first $(T_{k}(n))=p_{1}p_{2}\cdots p_{n}$.

(3) last $(.\tau k(n))=\{$
$p_{n}p_{n-1}p_{1}p2\ldots p_{n-2}$ if odd n and $k\geq 2$,
$p_{n}p_{1}p2\ldots p_{n-1}$ $otherwi\mathit{8}e$.

Proof. The proof is by induction on n . The list obviously has the stated
properties for $1\leq k\leq n\leq 2$. Suppose that the lemma is true for $n\geq 3$.
We must show it to be correct for $n+1$. For convenience, we assume the ith
element in a permutation to be placed in the position $n-i$, that is, the last
element is placed in the position 0 .

Obviously the list $T_{1}(n+1)$ contains $n+1$ permutations in which the $i\mathrm{t}\mathrm{h}$

permutation is $p_{i}p_{1}\cdots pi-1pi+1\ldots p_{n+1}$ and the permutation differs from its
predecessor by two elements in positions n and $n-i$. Otherwise, for $k\geq 2$,
the list contains $n+1$ sublists and we need to inspect the transposition
of successive permutations at the interface between the ith sublist $\mathrm{a}_{}\mathrm{n}\mathrm{d}$ the
(i+l)st sublist. The transposition behaves in different ways according to
the parities n and i .

The first case is for even i . The $i\mathrm{t}\mathrm{h}$ sublist is reverse and the $(i+1)\mathrm{s}\mathrm{t}$

sublist is natural. The contiguous permutations between the $i\mathrm{t}\mathrm{h}$ sublist and
the $(i+1)\mathrm{s}\mathrm{t}$ sublist differ by two elements, since the $1\mathrm{a}s\mathrm{t}$ permutation of the
$i\mathrm{t}\mathrm{h}$ sublist is the lexically first one, as shown below.

$p_{\nu}i.\overline{\tau_{k1}-(n)}$ $\{$
.\cdot
.

$\underline{p_{\dot{\mathfrak{g}}}}p_{1}\cdots p_{i-1}$ $\underline{p_{i+1}}p_{i+2}\cdots p_{n+1}$

$p_{i+1}\cdot T_{k}-1(n)$ $\{$

p_{i+1} $p_{1}\cdots p_{i-1}$ $p_{i}p_{i+2}\cdots p_{n+1}$

.
\cdot.

The underlined elements that are swapped appear in positions n and $n-i$.
When odd $n+1$, this case occurs on the last interface. The third property

7

holds, since the last permutation of $T_{k}(n+1)$ is p_{n+1} . last $(\tau_{k-1}(n))$, that
Is, $p_{n+1}p_{n}p1\ldots p_{n-1}$.

The second case is for odd i . The $i\mathrm{t}\mathrm{h}$ sublist is natural and the $(i+1)\mathrm{s}\mathrm{t}$

sublist is reverse. (1) When odd $n+1$, the contiguous permutations between
the $i\mathrm{t}\mathrm{h}$ sublist and the $(i+1)\mathrm{s}\mathrm{t}$ sublist are shown below.

$p_{i}\cdot T_{k-1}(n)=$ $\{$

$p_{i}p_{1}\cdots p_{i-1}pi+1\ldots p_{n+1}$

.\cdot.

$\underline{p_{i}}p_{n+1}p1\ldots p_{i-1}$ $\underline{p_{i+1}}p_{i+2}\cdots p_{n}$

$p_{i+1}\cdot\overline{\tau_{k1}-(n)}=$ $\{$

p_{i+1} $pn+1p1^{\cdot}$.. p_{i-1} $p_{i}p_{i+2}\cdots p_{n}$...
p_{i+1} $p_{1}\cdots p_{i}pi+2\ldots p_{n+1}$

The underlined elements that are swapped appear in positions n and $n-$

$i-1$. (2) When even $n+1$, we can give some formulae for detecting the
transposition of successive permutations at each interface. The successive
permutations at the last interface differ by the elements in positions n and
$n-1$, as shown below.

$p_{n}\cdot T_{k-1(}n)$ $\{$

$p_{n}p_{1}$. .. $pn-1pn+1$

.\cdot.

$\underline{p_{n}}\underline{p_{n+1}}p_{1}\cdots p_{n-1}$

$p_{n+1k-}.\overline{\tau 1(n)}$ $\{$

p_{n+1} $p_{n}p_{1}\cdots p_{n-1}$

.\cdot.

$p_{n+1}p_{1}$. .. $pn-1pn$

The last property holds in this case. Otherwise, for $i<n$, the transposition
behaves in two different ways depending upon the value of k . When $k=2$,
the elements of permutations that appear in positions greater than 2 are
arranged in a lexical order. The contiguous permutations between the $i\mathrm{t}\mathrm{h}$

sublist and the $(i+1)\mathrm{s}\mathrm{t}$ sublist are identical in arrangements as the ones for
the case (1), that is, the elements that are swapped appear in positions n

and $n-i-1$. When $k>2$, they are shown below,

$p_{i}\cdot\tau_{k-1}(n)$ $\{$

$p_{i}p_{1}\cdots p_{i-1}p_{i+}1\ldots p_{n+1}$

:
$\underline{p_{i}}p_{n+1}p_{n}p1\ldots p_{i-1}$ $\underline{p_{i+1}}p_{i+2}\cdots p_{n-1}$

$p_{i+1}\cdot\overline{\tau_{k}-1(n)}$ $\{$

p_{i+1} $p_{n+1}p_{n}p1\ldots p_{i-1}p_{i}p_{i+2}\cdots p_{n-1}$

:
p_{i+1} $p_{1}\cdots p_{i}pi+2\ldots p_{n+1}$

The elements that are swapped appear in positions n and $n-i-2$. The list
$T_{k}(n+1)$ has the stated properties. The proof is complete. \blacksquare

8

procedure interchange ($\mathrm{n},\mathrm{k},$ i : integer);
begin

if $(\mathrm{k}=1)$ or not $(\mathrm{o}\mathrm{d}\mathrm{d}(\mathrm{i}))$ then swap(n-l,n-i-l)
else if odd(n) then swap(n-l,n-i-2)

else if $\mathrm{i}=\mathrm{n}-1$ then swap(n-l,n-2)
else if $\mathrm{k}=2$ then swap $(\mathrm{n}-1,\mathrm{n}-\mathrm{i}-2)$ else swap ($\mathrm{n}-1,\mathrm{n}-\mathrm{i}^{-3)}$;

end {of procedure};

Figure 1: The procedure interchange $(\mathrm{n},\mathrm{k}, \mathrm{i})$.

procedure gen (n,k : integer);
var $\mathrm{i}:\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{r}$;
begin

if $\mathrm{k}>0$ then
for $\mathrm{i}:=1$ to n do begin

if odd(i) then gen($\mathrm{n}-1,\mathrm{k}-_{1)}$ else $\mathrm{n}\mathrm{e}\mathrm{g}(\mathrm{n}-_{1},\mathrm{k}-1)$;
if $\mathrm{i}<\mathrm{n}$ then interchange $(\mathrm{n},\mathrm{k}, \mathrm{i})$;

end
end {of procedure};

Figure 2: The recursive procedure gen (n,k) .

3 Implementation and analysis
To begin with, we summarize the transposition of successive permutations
between the $i\mathrm{t}\mathrm{h}$ sublist and the $(i+1)\mathrm{s}\mathrm{t}$ sublist and show it in a Pascal
procedure, in Figure 1. The procedure swap (i,j) swaps the elements in
positions i and j . The definition of the list $T_{k}(n)$ leads directly to a recur-
sive algorithm for generating $\dot{\mathrm{a}}11k$-permutations of n objects. The Pascal
procedure gen (n,k) generates the list $T_{k}(n)$, shown in Figure 2 and the pro-
cedure neg (n,k) is a symmetric procedure of gen (n,k) which generates the
reversed $1\mathrm{i}_{\mathrm{S}\mathrm{t}}\overline{\tau_{k}(n)}$.

Let us analyze the running time of gen (n,k) . The procedure gen does
n recursive calls to either gen or neg in the while statement. We also know
that it calls interchange once per loop and the interchange operation takes
a constant time to find the two elements that are swapped. Thus the total
amount of computations is proportional to the number of recursive calls,
which is $O(n!/(n-k)!)$. To summarize above, the procedure gen generates
all k-permutations in an amortized constant time to go from one string to
the next.

9

References
[1] J. R. Bitner, G. Ehrlich, and E. M. Reingold, Efficient generation of the

binary reflected Gray code and its applications, Comm. $A_{S\mathit{8}O}C$. Comput.
Mach. 19 (1976), 517-521.

[2] B. Bultena and F. Ruskey, An Eades-McKay algorithm for well-formed
parentheses strings, to appear in Inform. Proc. Lett.

[3] S. M. Johnson, Generation of permutations by adjacent transpositions,
Math. Comp. 17 (1963), 282-285.

[4] Y. Koda and F. Ruskey, A gray code for the ideals of a forest poset, J.
Algorithms 15 (1993), 324-340.

[5] J. Lucas, The rotation graph of binary tree is Hamiltonian, J. Algorithms
8 (1987), 503-535.

[6] J. Lucas, D. Roelants van Baronaigien, and F. Ruskey, On rotations
and the generation of binary trees, J. Algorithm815 (1993), 343-366.

[7] K. Mikawa and T. Takaoka, Generation of balanced parenthesis strings
in $O(1)$ time per string, submitted to J. Algorithms.

[8] A. Proskurowski and F. Ruskey, Binary tree Gray codes, J. Algorithms
6 (1985), 225-238.

[9] F. Ruskey, Simple combinatorial Gray codes constructed by revering
sublists, 4th ISAAC, Lecture Notes in Comput. Sci., Springer- Verlag,
761 (1993), 201-208.

[10] F. Ruskey and A. Proskurowski, Generating binary trees by transposi-
tions, J. Algorithms 11 (1990), 68-84.

[11] H. F. Trotter, Algorithm 115: Perm, Comm. Assoc. Comput. Mach. 5
(1962), 434-435.

10

