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Abstract. We introduce a framework to an-
alyze the average complexity of learning problems.
Based on it we consider the problem of learning
$monom\dot{i}alS$ in the limit and for on-line predictions in
two variants: from positive data only, and from pos-
itive and negative examples. The Wholist algorithm
is completely anal.y$\mathrm{z}\mathrm{e}\mathrm{d}$, in particular its average-case
behavior with respect to the class of binomial $d_{\dot{i}}s-$

$tr\dot{i}bu\iota\dot{i}onS$ . We consider different complexity mea-
sures: the number of mind changes, the number of
prediction errors, and the total learning time. Tight
bounds are obtained implying that worst case bounds
are too pessimistic. On the average learning can be
achieved exponentially faster.

Finally, we study a new learning model, stochastic
finite learning, in which some information about the
underlying distribution is given. We develop tech-
niques to obtain good bounds for stochastic finite
learning from a precise average case analysis of al-
gorithms learning in the limit and illustrate our ap-
proach for the case of learning monomials.

1. Introduction

Learning concepts efficiently has attracted
considerable attention during the last decade.
However, research following the traditional lines
of inductive inference has mainly considered the
update time, i.e., the effort to compute a $S\dot{i}n-$
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$gle$ new hypothesis. Starting with Valiant’s pa-
per [18], the total amount of time needed to solve
a given learning problem has been investigated,
too. The complexity bounds proved within the
PAC model are usually worst-case bounds. In
experimental studies large gaps have often been
observed between the time bounds obtained by
a mathematical analysis and the actual runtime
of a learner on typical data. This phenomenon
can be explained easily. Data from running tests
provide information about the average-cas $\mathrm{e}$ per-
formance of a learner. Since algorithmic learn-
ing has a lot of practical applications it is of
great interest to analyze the average-case per-
formance, and to obtain tight bounds.

Pazzani and Sarrett [14] have proposed a
framework for analyzing the average-case behav-
ior of learners. Several authors have followed
their approach (cf., e.g., [12, 13]). Their goal
is to predict the expected accuracy of the hy-
$\mathrm{p}_{\mathrm{o}\mathrm{t}\mathrm{h}}\mathrm{e}\dot{\mathrm{s}}$ is produced with respect to the number
of training examples. However, the results ob-
tained so far are not satisfactory. Typically, the
probability that a random example is misclassi-
fied by the current hypothesis is estimated by a
complicated formula. The evaluation of this for-
mula, and the computation of the corresponding
expectation is done by Monte-Carlo simulations.
Clearly, such an approach does not provide gen-
eral results about the average-case behavior for
broader classes of distributions, and it is hard
to compare these bounds with those proved for
the PAC model.

We outline a new framework to study the
average-case behavior of learning algorithms
overcoming these drawbacks.
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2. Preliminaries Definition 1. A concept class $C$ is called on-
line predictable if there is a learner $P$ such

Let $\mathbb{N}=\{0,1,2, \ldots\}$ be the set of all natu- that for all $c\in C$ and all $d=\langle d_{j}\rangle_{j\in \mathrm{N}^{+}}\in data(c)$

ral numbers, and $\mathrm{N}^{+}:=\mathrm{N}\backslash \{0\}$ . If $M$ is a set, it holds: $P(d[2j-1])$ is defined for all $j$ , and
$|M|$ is used for its cardinality. For an infinite se- $P(d[2j-1])=d_{2j}$ for all but finitely many $j$ .
quence $d$ and $j\in \mathrm{N}^{+}$ let $d[j]$ denote the initial For on-line prediction, the complexity mea-
segment of $d$ of length $j$ . By $(0,1)$ we denote sure considered is the number of prediction
the open real interval from $0$ to 1. For $n\in \mathbb{N}^{+}$ , errors made. We aim to minimize the number
let $\mathcal{X}_{n}=\{0,1\}^{n}$ be the learning domain and of prediction errors when learning monomials.
$\wp(\mathcal{X}_{n})$ the power set of $\mathcal{X}_{n}$ . Every $c\subseteq \mathcal{X}_{n}$ is

Next, we define learning in the limitcalled a concept, and $C\subseteq\wp(\mathcal{X}_{n})$ a concept
(cf. [5]). We distinguish between learning from

class. $c$ is also used to denote its characteristic
informant, and learning ffom positive data. Forfunction, i.e., for $b\in \mathcal{X}_{n}$ : $c(b)=1$ iff $b\in c$ . To
a concept $c$ , let info $(c)$ be the set of those datadefine the classes of concepts we deal with, let
sequences $\langle b_{1}, c(b_{1}), b2, c(b2), \ldots\rangle$ in data $(C)$

$\mathcal{L}_{n}=\{x_{1},\overline{x}_{1}, X_{2},\overline{x}_{2\cdots,n’ n}X\overline{x}\}$ be a set of liter-
containing each $b\in \mathcal{X}_{n}$ at least once. Such a se-als. $x_{i}$ is a positive literal and $\overline{x}_{i}$ a negative one.
quence is called informant. Let us pair each el-A conjunction of literals defines a monomial.

For a monomial $m$ let $\#(m)$ denote its length, ement $b_{j}$ with its classification $c(b_{j})$ . Then the
7’-th entry of an informant $d$ is $d_{j}:=(b_{j}, c(bj))$ .

that is the number of literals in it.
A positive presentation of $c$ is a data se-

$m$ describes a concept $L(m)$ of $\lambda_{n}^{J}$ in the ob-
quence containing only elements of $c$ and eachvious way, that is $L(m):=\{b\in \mathcal{X}_{n}|m(b)=1\}$ .
one at least once. Thus all the values $c(.b_{j})$ are 1The concept class we are going to learn is the set
and can be omitted. Hence, we denote the se-

$C_{n}$ of all concepts that are describable by mono-
quence simply by $d=\langle d_{j}\rangle_{j\in}\mathrm{N}^{+=}\langle b_{1}, b_{2}, b_{3}, \ldots\rangle$ .

mials over $c\mathrm{Y}_{n}$ . There are two trivial concepts,
Let $d\mathrm{b}]^{+}:=\{b_{i}|1\leq\dot{i}\leq j\}$ , and let $pos(C)$ be

the empty subset and $\mathcal{X}_{n}$ itself. $\mathcal{X}_{n}$ , which
the set of all positive presentations of $c$ . Theis called “TRUE”, is represented by the empty
elements of $pos(C)$ are also called a text for $c$ .

monomial. The concept “FALSE” has several
descriptions. To avoid ambiguity, we represent A limit learner is an inductive inference
“FALSE” by the monomial $x_{11\cdot n}\overline{x}..x\overline{x}_{n}$ . We machine (abbr. IIM). An IIM $M$ gets incre-

identip the set of all monomials over $\mathcal{L}_{n}$ and mentally growing segments of a text (resp. of

the concept class $C_{n}$ . Note that $|C_{n}|=3^{n}+1$ . an informant) $d$ as input. After each input, it

We also consider the subclass $MC_{n}$ of $C_{n}$ con- outputs a hypothesis $M(d\mathrm{b}])$ from a predefined

sisting of all concepts describable by monotone hypothesis space $\mathcal{H}$ . Each $h\in \mathcal{H}$ refers to a
monomials. It holds $|\mathcal{M}C_{n}|=2^{n}$ . unique element of the concept class.

Definition, 2. Let $C$ be a concept class and
3. Learning Models and Complexity let $\mathcal{H}$ be a hypothesis space for it. $C$ is called

Measures learnable in the limit from positive presenta-
We start with the on-line prediction model tion (resp. from informant) if there is an $IIMM$

going back to $[1, 10]$ . Here, the learner is given such that for every $c\in C$ and every $d\in pos(C)$

a sequence of labeled examples $d=\langle d_{j}\rangle_{j\in \mathrm{N}^{+}}=$ (resp. $d\in info(C)$ )$:M(d[j])$ is defined for all
$\langle b_{1}, c(b_{1}), b_{2}, c(b_{2}), b\mathrm{s}, c(b_{3}), \ldots\rangle$ from $c$ , where $j$ , and $M(d[j])=h$ for all but finitely many $j$ ,
$b_{j}\in \mathcal{X}_{n}$ . The $b_{j}$ are picked arbitrarily and where $h\in \mathcal{H}$ is a hypothesis referring to $c$ .

’ the $c(b_{j})$ are assumed to be error-ffee. We call For $C_{n}$ we choose as hypothesis space the set
such sequences data sequences and denote by of all monomials over $\mathcal{L}_{n}$ , whereas for $\mathcal{M}C_{n}$ it
data $(c)$ th.e set of all data sequences for $c$ . is the set of all monotone monomials.

A learner $P$ must predict $c(b_{j})$ after having The first complexity measure we consider is
seen $d[2j-1]=\langle b_{1}, c(b_{1}), \ldots, b_{j-1}, c(bj-1), b_{j}\rangle$ . the mind change complexity. A mind change
We denote this hypothesis by $P(d[2j-1])$ . Then occurs iff $M(d[i])\neq M(d\mathrm{b}+1])$ . This measure
it receives $c(b_{j})$ and the next $b_{j+1}$ . $P$ has suc- is closely related to the number of prediction er-
cessfully learned if it eventually reaches a point rors. Both complexity measures say little about
beyond which it always predicts correctly. the total amount of data and time needed until a
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concept is guessed correctly. Thus, for learning
in the limit we also measure the time complexity.
As in [3] we define the total learning time as fol-
lows. Let $M$ be any IIM learning a concept class
$C$ in the limit. Then, for $c\in C$ and a text or in-
formant $d$ for $c$ , let $C_{\mathit{0}}n(M, d)=the$ least $\dot{i}\in$

$\mathbb{N}^{+}$ such that $M(d[j])=M(d[\dot{i}_{\rfloor}\rceil)$ for all $j\geq\dot{i}$

denote the stage of convergence of $M$ on $d$

(cf. [5]). By $T_{M}(d_{j})$ we denote the number
of steps to compute $M(d[j])$ . We measure
$T_{M}(d_{j})$ as $\mathrm{a}\Gamma$ function of the length of the in-
put and call it update time. Finally, the to-
tal learning time taken by the IIM $M$ on
a sequence $d$ is defined as $\tau\tau(M, d)$ $:=$

$\sum_{j=1}^{c_{on}(d})(T_{M}dM,[j])$ . Given a probability distri-
bution $D$ on the data sequences $d$ we evaluate
the expectation of $\tau\tau(M, d)$ with respect to $D$ ,
the average total learning time.

4. The Wholist Algorithm

Next, we present Haussler’s [6] Wholist algo-
rithm for on-line prediction of monomials. For
learning in the limit this algorithm can be mod-
ified straightforwardly. The limit learner com-
putes a new hypothesis using only the most re-
cent example received and his old hypothesis.
Such learners are called iterative (cf. [8]). Let
$c\in C_{n}$ , let $d\in data(c)$ , and let $b_{i}=b_{i}^{1}b_{i}^{2}\ldots b_{i}^{n}$

denote the $\dot{i}$ -th Boolean vector in $d$ .
Algorithm $P$: On input $d$ do the following:
Initialize $h_{0}:=x_{11.\cdot\cdot n}\overline{x}.\cdot x\overline{x}_{n}$ .
for $\dot{i}=1,2,$ $\ldots$ do
let $h_{i-1}$ denote $P’ \mathrm{s}$ internal hypothesis
produced before receiving $b_{i;}$

when getting $b_{i}$ predict $h_{i-1}(b_{i})$ ; read $c(b_{i})$ ;
. if $h_{i-1}(b_{i})=c(b_{i})$ then $h_{i}:=h_{i-1}$

else for $j:=1$ to $n$ do.
if $b_{i}^{i}=1$ then delete $\overline{x}_{j}$ in $h_{i-1}$

else delete $x_{j}$ in $h_{i-1;}$

let $h_{i}$ be the resulting $.\mathrm{m}$onomial
end.

Note that the algorithm is monotone with re-
spect to the sequence of its internal hypotheses.
Theorem 1. Algorithm $P$ learns the set of
all monom\’ials within the prediction model. $It$

makes at most $n+1$ prediction errors.
To learn the concept class $\mathcal{M}C_{n}$ , algorithm

$\mathcal{P}$ is modified by initializing $h_{0}=x_{1}x_{2\cdots n}X$

and by $\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}6^{r}$ing the loop appropriately. We
refer to the modified algorithm as to $\Lambda 4P$.

Theorem 1 can be restated for $MP$ with the
only difference that now the worst-case bound
for the number of prediction errors is $n$ .

5. Best and Worst Case Analysis

For the learning models defined we estimate
the best-case complexity, the worst-case com-
plexity, and the expectation of algorithm $P$ and
$\mathcal{M}P$ . We start with the first two issues. Both
algorithms do not make any prediction errors iff
the initial hypothesis $h_{0}$ equals the target. For
$P$ this means that the target is “FALSE”, while
for MP it is the all-l vector. These special con-
cepts are considered as minimal in their class.
For them the best-case and the worst-case num-
ber of predictions errors coincide.

The literals in a monomial $m$ are called
relevant. All other literals in $\mathcal{L}_{n}$ (resp. in
$\{x_{1}, \ldots , x_{n}\}$ in the monotone case) are said to
be irrelevant for $m$ . There are $2n-\#(m)$ ir-
relevant literals in general, and $n-\#(m)$ in the
monotone case. We call bit $\dot{i}$ relevant for $m$ if
$x_{i}$ or $\overline{x}_{i}$ is relevant for $m$ . Let $k=k(m)=$
$n-\#(m)$ denote the number of irrelevant bits.
Theorem 2. Let $c=L(m)$ be a non-minimal
concept in $\mathcal{M}C_{n}$ . Then algorithm $\Lambda 4P$ makes
1 prediction error in the best case, and $k(m)$

prediction errors in the worst-case.
If $c$ is a non-minimal concept of $C_{n}$ algorithm
$P$ makes 2 prediction errors in the best case and
$1+k(m)$ prediction errors in the worst-case.

As Theorem 2 shows, the gap between the
best-case and worst-case behavior can be quite
large. Thus, we ask what are the expected
bounds for the number of prediction errors on
randomly generated data sequences. Before an-
swering this question we estimate the worst-case
number of prediction errors averaged over the
whole concept class $\mathcal{M}C_{n}$ , resp. $C_{n}$ . Thus we
get a complexity bound with respect to the pa-
rameter $n$ , instead of $\#(m)$ as in Theorem 2.
This averaging depends on the underlying prob-

. ability distribution for selecting the targets (for
the corresponding data sequences we consider
the worst input). The average is.shown to be lin-
ear in $n$ if the literals are binomially distributed.

To generate the probability distributions we
assume for $\Lambda 4C_{n}$ the relevant positive literals to
be drawn independently at random with prob-
ability $p,$ $p\in(0,1)$ . Thus, with probability
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$1-p$ a literal is irrelevant. The length of the
monomials drawn by this distribution is bino-
mially distributed with parameter $p$ . Thus we
call such a distribution on the concept class a
binomial distribution.
Theorem 3. Let the concepts in $\mathcal{M}C_{n}$ be bino-
mially distributed with parameter $p$ . Then the
average number of prediction errors of $MP$ for
the worst data sequences is $n(1-p)$ .

In case $p= \frac{1}{2}$ , the bound says that the maxi-
mal number of prediction errors when uniformly
averaged over all concepts in $\mathcal{M}C_{n}$ is $\frac{n}{2}$ .

Next, we deal with the class $C_{n}$ . For com-
paring it to the monotone case we have to
clarip what does it mean for concepts in $C_{n}$

to be binomially distributed. Since there are
$3^{n}+1$ many concepts in $C_{n}$ for a uniform dis-
tribution each concept must have probability
$1/(3^{n}+1)$ . For each position $i=1,$ $\ldots,$

$n$ three
options are possible, i.e., we may choose $x_{i}$ ,
$\overline{x}_{i}$ or neither of them. This suggests the for-
mula $(_{k_{1},k_{2},k\mathrm{s}}n)p^{k_{1}}1p_{2}p^{k_{3}}k2\mathrm{a}$

’ where $p_{1}$ is the prob-
ability to take $x_{i},$ $p_{2}$ the probability to choose
$\overline{x}_{i}$ and $p_{3}$ the probability to choose none, and
$p_{1}+p_{2}+p_{3}=1$ and $k_{1}+$. $k_{2}+k_{3}=n$ .
$k_{1}+k_{2}$ counts the number of relevant liter-
als, resp. bits. However, this formula does
not include the concept “FALSE.” Thus, let
us introduce $p_{f}\in(0,1)$ for the probability to
choose “FALSE.” Then the formula becomes
( $1-p_{f^{)}}(_{k_{1},k_{2},k_{3}}n)p_{1}pk12k_{2}p^{k_{3}}3*\mathrm{W}\mathrm{e}$ call such a prob-
ability distribution a weighted multinomial
distribution with parameters $(p_{f},p_{1},p_{2},p3)$ .
Theorem 4. Let the concepts in $C_{n}$ occur ac-
cording to a weighted multinomial distribution
with parameters $(p_{f},p_{1},p_{2,p}\mathrm{a})$ . Then the av-
erage number of prediction errors of $P$ for the
worst data sequences is $(1-p_{f})(1+np_{3})$ .

For the particular case that all concepts from
$\dot{C}_{n}$ are equally likely, we get that on the av-
erage less than $n/3+1$ errors are to be ex-
pected given the worst data sequences. Hence,
in this case the class $C_{n}$ seems to be easier to
learn than $\mathcal{M}C_{n}$ with respect to the complex-
ity measure prediction errors. However, this
impression is misleading, since the probabili-
ties to generate an irrelevant literal are $d_{\dot{i}}ffer-$

$ent$, i.e., 1/3 for $C_{n}$ and 1/2 for $\mathcal{M}C_{n}$ . If we
assume the probabilities to generate an irrele-
vant literal to be equal, say $q$ , and make the

assumption that “FALSE” has the same prob-
ability as “TRUE,” the average complexity is
$\frac{1}{1+q^{n}}(1+nq)$ for $C_{n}$ and $nq$ for $\mathcal{M}C_{n}$ . Since
for $C_{n},$ $q=1-(p_{1}+p_{2})$ , and for $\mathcal{M}C_{n},$ $q=1-p$ ,
now $\mathcal{M}C_{n}$ is easier to learn than $C_{n}$ . This is
interesting, since it shows the influence of the
underlying distribution. . In contrast, previous
work has expressed these bounds in terms of the
$\mathrm{V}\mathrm{C}$-dimension which $n$ for both classes.

The results above directly translate to limit-
learning $\mathrm{h}\mathrm{o}\mathrm{m}$ informant or from text for the
complexity measure number of mind changes.

What can be said about the total learning
time? The best-case can be handled as above.
Sine the update time is linear in $n$ for both al-
gorithms $\mathrm{A}tP$ and $P$, in the best case the total
learning time is linear. In contrast, the worst-
case total learning time is unbounded for both
algorithms. Hence, as far as learning in the limit
and the complexity measure total learning time
are concerned, there is a huge gap between the
best-case and the worst-case behavior. Since the
worst-case is unbomded, it does not make sense
to ask for an analogue to Theorem 3 and 4. In-
stead, we continue by studying the average-case
behavior of the limit learner $P$ and $\lambda 4P$.

6. Average-Case Analysis for Learning
in the Limit from Text

For the following average case analysis we as-
sume that the data sequences are generated at
random with respect to some probability distri-
bution $D$ taken from a class of admissible dis-
tributions $D$ specified below. We ask for the
average number of examples till an algorithm
has converged to a correct hypothesis. CON
denotes a random variable counting the number
of examples till convergence. Let $d$ be a text of
the target concept $c$ that is generated at random
according to $D$ . If the concept $c$ is “FALSE”
no examples are needed, and if $c$ contains pre-
cisely $n$ literals then one positive example suf-
fices. Thus, for these two cases everything is
clear and the probability distributions $D$ on the
set of positive examples for $c$ are trivial.

For analyzing the nontrivial cases, let $c=$
$L(m)\in C_{n}$ be a concept with monomial $m=$
$\bigwedge_{j=1}\#(m)\ell_{i_{j}}$ such that $k=k(m)=n-\#(m)>0$ .
There are $2^{k}$ positive examples for $c$ . For the
sake of pre.sentation, we assume these examples
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to be binomially distributed. That is, in a
random positive example all entries correspond-
ing to irrelevant bits are selected independently
of each other. With some probability $p$ this
will be a 1, and with probability 1 $-p$ a $0$ .
We shall consider only nontrivial distributions
where $0<p<1$ . Note that otherwise the data
sequence does not contain all positive examples.

The first example received forces $P$ to delete
precisely $n$ of the $2n$ literals in $h_{0}$ . Thus, this
example always plays a special role. The hy-
pothesis $h_{1}$ depends on $b_{1}$ , but the number $k$

of literals that remain to be deleted from $h_{1}$ un-
til convergence is independent of $b_{1}$ . Using tail
bound techniques, we $c$an show the following.
Theorem 5. Let $c=L(m)$ be a non-minimal
concept in $C_{n}$ , and let the positive examples
for $c$ be binomially distributed with parameter
$p$ . Define $\psi:=\min\{\frac{1}{1-p}, \frac{1}{p}\}$ . Then the ex-
pected number of positive examples needed by al-
gorithm $\mathcal{P}$ until convergence can be bounded by
$E[\mathrm{C}\mathrm{o}\mathrm{N}]\leq\lceil\log_{\psi}k(m)1+3.\cdot$

A similar analysis can be given in the mono-
tone setting for algorithm $\mathcal{M}P$.
Corollary 6. For every binomially distributed
text with parameter $0<p<1$ the average total
learning time of algorithm $P$ for concepts in $C_{n}$

with $\mu$ literals is at most $O(n(\log(n-\mu+2))$ .
The expectation alone does not provide com-

plete information about the average case be-
havior of an algorithm. We also like to de-
duce bounds on how often the algorithm ex-
ceeds the average $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{i}\acute{\mathrm{d}}$erably. The Wholist
algorithm possesses two properties that sim-
plify this derivation considerably, i.e., it is set-
driven and conservative. Set-driven means
that for all $c\in C_{n}$ all $d,$ $h\in pos(C)$ and all
$\dot{i},j\in \mathbb{N}^{+}$ the equality $d[i]^{+}=h[j]^{+}$ implies
$P(d[\dot{i}])=P(h[j])$ . A learner is conservative
if every mind change is caused by an inconsis-
tency with the data seen so far. Now, the follow-
ing theorem establishes exponentially shrinking
tail bounds for the expected number of examples
needed in order to achieve convergence.
Theorem 7 ([16]). Let CON be the sam-
ple complexity of a conservative and set-driven
learning algorithm. Then $\mathrm{P}\mathrm{r}[\mathrm{C}\mathrm{o}\mathrm{N}$ $>$ 2 $t$ .
$E[\mathrm{C}\mathrm{O}\mathrm{N}]]\leq 2^{-t}$ for all $t\in \mathrm{N}$ .

A simple calculation shows that in case of
exponentially shrinking tail boumds the variance

is bounded by $O(E[\mathrm{c}\mathrm{o}\mathrm{N}]2)$ .

7. Stochastic Finite Learning

Next we show how to convert the Wholist
algorithm into a text learner that identifies all
concepts in $C_{n}$ stochastically in a bounded num-
$ber$ of rounds with high confidence. A bit $\cdot$ addi-
tional knowledge concerning the underlying class
of probability distributions is required. Thus, in
$\mathrm{c}o$ntrast to the PAC model, the resulting learn-
ing model is not distribution-free. But with
respect to the quality of its hypotheses, it is
stronger than the PAC model by requiring the
output to be probably exactly correct rather than
probably approximately correct. The main ad-
vantage is the usage of the additional knowledge
to reduce the sample size, and hence the total
learning time drastically. This contrasts to pre-
vious work in the area of PAC learning (cf., e.g.,
[2, 4, 7, 9, 11, 17] $)$ . These papers have shown
concepts classes to be PAC learnable from poly-
nomially many examples given a known distri-
bution or class of distributions, while the general
PAC learnability of these concepts classes is not
achievable or remains open. Note that our gen-
eral approach, i.e., performing an average-case
analysis and proving exponentially shrinking tail
bounds for the expected total learning time, can
also be applied to obtain results along this line
(cf. [15, 16]).
Definition 3. Let $D$ be a set of probabdity
distributions on the learning domain, $C$ a con-
cept class, $\mathcal{H}$ a hypothesis space for $C$ , and
$\delta\in(0,1)$ . $(C, D)$ is said to be stochastically
finite learnable with $\delta$ -confidencewith re-
spect to $\mathcal{H}$ iff there is an $IIMM$ that for every
$c\in C$ and every $D\in D$ performs as follows.
Given a random presentation $d$ for $c$ generated
according to $D,$ $M$ stops after having seen a
finite number of examples and outputs a single
hypothesis $h\in \mathcal{H}$ . With probability at least $1-\delta$

(with respect to distribution $D$ ) $h$ has to be cor-
rect, that is $L(.h)=c$ in case of monomials.
If stochastic finite learning can be achieved with
$\delta$ -confidence for every $\delta>0$ then we say that
$(C, D)$ can be learned stochastically finite with
high confidence.

We study the case that the positive exam-
ples are binomially distributed with parameter
$p$ . But we do not require precise knowledge
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about the underlying distribution. Instead, we the PAC model. We ask if one can achieve an
reasonably assume that prior knowledge is pro- expected sample complexity for computing an
vided by parameters Plow and $p_{up}$ such that $\epsilon$ -approximation that is polynomially bounded
$Plow\leq p\leq p_{up}$ for the true parameter $p$ . Bino- in $\log n$ and $1/\epsilon$ .
mial distributions fulfilling this requirement are Let $err_{m}(h_{j})=D(L(h_{j})\triangle L(m))$ be the
called $(p_{lovj}, p_{\mathit{1}\iota}P)$ -admissible distributions. error made by hypothesis $h_{j}$ with respect to
Let $D_{n}[P\iota \mathrm{o}w’ p\tau\iota p]$ denote the set of such distri- monomial $m$ , where $L(h_{j})\triangle L(m)$ denotes the
butions on $r\mathrm{Y}_{n}$ . symmetric difference of $L(/l_{j})$ and $L(m)$ , and

If bounds Plow and $p_{up}$ are available, the $D$ the probability distribution with respect to
Wholist algorithm can be transformed into awhich the examples are drawn. Hypothesis $h_{j}$

stochastic finite learner inferring all concepts is an $\epsilon$ -approximation for $m$ if $err_{m}(h_{j})\leq\epsilon$ .
with high confidence. Finally, we redefine the stage of convergence.
Theorem 8. Let $0<Plow$ $\leq p_{up}<1$ and Let $d=$ $(d_{j})_{j\in \mathrm{N}^{+}}$

$\in$ info $(L(m))$ , then we

$\psi.\cdot=\min_{Ci_{SS}tohaSti_{C}}\{\frac{1}{1-p\iota_{\mathit{0}},all^{w}y},fielylearnablewithhighcon\frac{1}{n\dot{i}tp_{vp}}\}.Then(Cn’ D_{n}[plowpup])-$

set $\mathrm{C}\mathrm{O}\mathrm{N}_{\epsilon}(d)=_{df}$ the least number $j$ such that
$err_{m}(P(d[i]))\leq\epsilon$ for all $\dot{i}\geq j$ .

fidence from positive presentations. To achieve Note that once the Wholist algorithm has
$\delta$ -confidence no more than $O(\log_{2}1/\delta\cdot\log_{\psi^{n}})$ reached an $\epsilon$ -approximate hypothesis all further
many examples are necessary. hypotheses will also be at least that close to the

The latter example bound can even be improved target monomial. The next theorem gives an

$\mathrm{t}\circ\log n+\log_{\psi a}1/\delta \mathrm{C}\mathrm{a}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{f}\mathrm{u}\mathrm{l}erroranlyS\dot{i}s,+O(\mathrm{l})\mathrm{b}\mathrm{y}\mathrm{p}\mathrm{e}_{\mathrm{h}_{\mathrm{o}1}}\mathrm{r}\mathrm{f}\mathrm{o}\mathrm{r}\min_{\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{a}1-}\mathrm{g}\mathrm{a}\mathrm{i}.\mathrm{e}.,$

$\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{W}\mathrm{g}\mathrm{o}$ Theorem 10. Let $c=L(m)\in C_{n}$ be a non-
affirmative answer to the question posed above.

rithm, the confidence requirement increases the trivial concept. Assuming that examples are
sample size by an additive term $\log_{\psi}1/\delta$ only. drawn independently at random from the uni-

form distribution, the expected number of ex-
8. Average-case Analysis for Learning amples needed by algorithm $P$ until converging

in the Limit from Informant to an $\epsilon$ -approximation for $c$ can be bounded by
Finally, we consider how the results obtained $E[ \mathrm{C}\mathrm{o}\mathrm{N}\mathit{6}]\leq\frac{1}{\epsilon}\cdot(\lceil\log_{2}k(m)\rceil+3)$ .

so far translate to the case of learning $\mathrm{h}\mathrm{o}\mathrm{m}$ infor- Therefore, additional knowledge concerning
mant. First, we investigate the uniform distribu- the underlying probability distribution pays off
tion over $\lambda_{n}’$ . Again, we have the trivial cases again. Using Theorem 7 and modifying Sec-
that the target is “FALSE” or $m$ is a mono- tion 7 mutatis mutandis, we achieve stochastic
mial without irrelevant bits. In the first case, finite learning with high confidence for all con-
no example is needed at all, while in the lat- cepts in $C_{n}$ using $O( \frac{1}{\epsilon}\cdot\log\frac{1}{\delta}\cdot\log n)$ many exam-
ter one, there is only one positive example hav- ples. However, the resulting learner now infers
ing probability $2^{-n}$ . Thus the expected number $\epsilon$ -approximations. Comparing this bound with
of examples needed until successful learning is the sample complexity given in the PAC model
$2^{n}=2\#(m)$ . one notes an exponential reduction.
Theorem 9. Let $c=L(m)\in C_{n}$ be a nontriv- Finally, we generalize the last results to the
$ial$ concept. If an informant for $c$ is generated case that the data sequences are binomially dis-
from the uniform distribution by independent tributed for some parameter $p\in(0,1)$ . This
draws the expected number of examples needed means that any particular $\dot{\mathrm{v}}$ector containing
by algorithm $P$ until convergence is bounded by $\nu$ times a 1 and $n-\nu$ a $0$ has probability
$E$ [ $\mathrm{c}_{}$ON] $\leq 2\#(m)(\lceil\log_{2}k(m)\rceil+3)$ . $p^{\nu}(1-p)^{n-\nu}$ since a 1 is drawn with proba-

Hence, . as long as $k(m)\sim=n-\mathrm{O}(1)$ , we bility $p$ and a $0$ with probability l-p. First,

still achieve an expected total learning time Theorem 9 generalizes as follows.
$O(n\log n)$ . But if $\#(m)=\Omega(n)$ the expected Theorem 11. Let $c=L(m)\in C_{n}$ be a
total learning is exponential. However, if there nontrivial concept. Let $m$ contain precisely
are many relevant literals then even $h_{0}$ may be $\pi$ positive literals and $\tau$ negative literals. If
considered as a not too bad approximation for $c$ . the labeled examples for $c$ are independently
Thus, let $\epsilon\in(0,1)$ be an error parameter as in binomially distributed with parameter $p$ and
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$\psi:=\min_{eXam}\{berofs\frac{1}{ple1-p}, needed\frac{1}{p}\}ihebynthee_{\dot{i}thl}xpecalg_{\mathit{0}}rmPuntintedum-$

convergence can be bounded by $E[\mathrm{C}\mathrm{O}\mathrm{N}]$ $\leq$

$\neg^{1}p^{\pi}(1-p^{\tau}(\lceil\log_{\psi}k(m)1+3)$ .
Theorem 10 directly translates into the setting
of binomially distributed inputs.
Theorem 12. Let $c=L(m)\in C_{n}$ be a nontriv-
ial concept. Assume that the examples are drawn
with respect to a binomial distribution with pa-
rameter $p$ , and let $\psi=\min\{\frac{1}{1-p}, \frac{1}{p}\}$ . Then
the expected number of examples needed by algo-
rithm $P$ until converging to an e-approximation
for $c$ can be bounded by $E[\mathrm{C}\mathrm{O}\mathrm{N}]$ $\leq$ $\frac{1}{\epsilon}$

$(\mathrm{r}\log\psi k(m)1+3)$ .
Finally, one can also learn e-approximations

stochastically finite with high confidence from
informant with an exponentially smaller sample
complexity.
Theorem 13. Let $0<Plow$ $\leq p_{up}<1$ and
$\psi:=\min\{\frac{1}{1-p_{low}},\frac{1}{p_{v\mathrm{p}}}\}$ . For $(C_{n}, D_{n}\lceil p_{l}ow’ p_{u}p])$

$e- approX\dot{i}mations$ can be learned stochastically
finitely with $\delta$ -confidence from informant for all
$e,$ $\delta\in(0,1)$ . Further, $O( \frac{1}{\overline{\mathrm{c}}}\cdot\log_{2}1/\delta\cdot\log_{\psi)}n$ ,

resp. $O( \frac{\dot{1}}{\epsilon}\cdot(\log_{\psi}1/\delta+\log_{\psi}n))$ many exam-
ples suffice for this purpose.
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