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Abstract

Single machine scheduling with precedence relations are well studied. In this paper, we
extend the standard concept of these precedence relations, and study scheduling problems
with several classes of this extended concept.

1 Introduction

We are concern with scheduling $n$ jobs $J_{1},$ $J_{2},$
$\ldots$ , $J_{n}$ on a single machine. The feasibility of

schedules is constrained by a given precedence relation, and the objective is to minimize the
maximum of given non-decreasing functions of completion times. Lawler [2] designed an $O(n^{2})$

time algorithm for this problem when precedence relation is derived from a directed acyclic
graph $G$ as follows. The vertices of $G$ represent the indices of jobs. If $G$ contains a directed
edge from $j$ to $k$ , then the processing of $J_{k}$ can start only after $J_{j}$ is completed. We called such
precedence relation traditional.

In this paper, we introduce a wider concept of precedence which we call generalized precedence
$\dot{r}elaiionS$ . We design polynomial time algorithms for the problem described above with several
classes of generalized precedence relations.

The reminder of this paper is divided into three sections. In Section 2, we introduce the
generalized precedence relations, and compare them to the traditional precedence relations.
Section 3 is intended to give a brief review on Lawler’s algorithm, which our algorithm is based
on. Section 4 provides our algorithm and its analysis.

2 Generalized precedence relations

We begin with a simple example. Suppose we have three jobs $J_{1},$ $J_{2},$ $J_{3}$ , and the following
traditional precedence relation among them: $G=(V, E)=(\{1,2,3\}, \{(1,3), (2,3)\})$ . It implies
that both $J_{1}$ and $J_{2}$ should be completed before $J_{3}$ starts. We can interpret this requirement as
an AND function.
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In some situation, it is quite natural that we have an OR function rather than an AND

function. If we replace this AND function with an OR function, then the precedence relations

above implies that at $1\dot{\mathrm{e}}$ast one of $J_{1}$ and $J_{2}$ should be completed before $J_{3}$ starts. We can

also replace the function with a threshold function, a weighted threshold function, or even an

arbitrary monotone function. If we have arbitrary monotone functions for precedence relations,

we call these precedence relations generalized.
Furthermore, we allow different (general) monotone functions for different precedence re-

lations, and consider precedence relations in this manner. This also extends the traditional

concept of precedence relations in a different direction.

In the sequel, we follow the standard three-field notation $\alpha|\beta|\gamma$ proposed by Lawler et al. [3].

The first field $\alpha$ indicates the number of machines available and their environment. The second

field $\beta$ indicates a number ofjob characteristics including precedence relations. The third field $\gamma$

indicates an objective function. If $\beta=\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{c}$-AND, it implies that the traditional precedence rela-

tion is specified. For problems with generalized precedence relations, we put $\beta=\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{c}$ -monotone

in the second field.
In addition to precedence relations, if $\beta=$ pmtn, it implies that preemtions of jobs are

allowed; if $\beta=r_{j}$ , it implies that release times of jobs are specified.

3 Lawler’s algorithm for $1|\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{c}-\mathrm{A}\mathrm{N}\mathrm{D}|f\mathrm{m}\mathrm{a}\mathrm{x}$

The problem $1|\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{c}- \mathrm{A}\mathrm{N}\mathrm{D}|f_{\mathrm{m}}\mathrm{a}\mathrm{x}$ has a particularly simple and elegant solution [2]. The objective

is to minimize $f_{\max}$ , which is defined as follows:

fmax $= \max 1\leq j\leq nf_{j}(C_{j})$ ,

where $f_{j}$ and $C_{j}$ are the cost function and the completion time of job $J_{j}$ , respectively. The cost

functions $f_{j}’ \mathrm{s}$ of the jobs $J_{j}’ \mathrm{s}$ can be quite arbitrary and different from one another, provided

only that they are nondecreasing.
Let $N=\{1,2, \ldots , n\}$ be the index set of jobs, and let $L\subseteq N$ be the index set ofjobs without

successors in $G$ . For any subset $S\subseteq N$ , let $p(S)= \sum_{j\in S}\dot{p}j$ be the sum of processing times
$p_{j}’ \mathrm{s}$ of jobs $J_{j}’ \mathrm{s}$ in $S$ , and let $f_{\max}^{*}(S)$ denote the cost $f_{\max}$ of an optimal schedule for the jobs

indexed by $S$ . Clearly, $f_{\max}^{*}(N)$ satisfies the following two inequalities:

$f_{\max}^{*}(N)$ $\geq$
$\min_{j\in L}fj(p(N))$ ,

$f_{\max}^{*}(N)$ $\geq$ $f_{\max}^{*}(N-\{j\})$ for all $j\in N$ .

Now let $J_{l}$ with $l\in L$ be such that

$f|(p(N))= \min_{Lj\in}fj(p(N))$ .

We have
$f_{\max}^{*}(N) \geq\max\{f_{l}(p(N)), f*\max(N-\{l\})\}$ .
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But the right-hand side of this inequality is precisely the cost of an optimal schedule subject to
the condition that $J_{l}$ is in the last position. By repeated applications of this rule, one obtains
an optimal schedule in $O(n^{2})$ time.

Here, we present a pseudo-code of Lawler’s algorithm. This returns a resulting schedule $A$

as a permutation, i.e., $A(j)$ is the index of the job in the j-th position for each $1\leq j\leq n$ .

Lawler’s Algorithm

$u arrow\sum_{1\leq j\leq n}pj|$

.

for $k=n$ down to 1 do
Find $L|$

Choose $l\in L$ such that $f_{l}(u)= \min_{j\in L}f_{j}(u)$ ;

Update $G$ ;

$uarrow u-p_{l}|$.
$A(k)arrow l|$.

od
Output$(A)$

end

Here, $G$ is updated as follows. Ifjob $J_{j}$ is assigned to be the last job, then set $G$ to a subgraph
of itself that generated by $N-\{j\}$ . Notice that, for problem $1|\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{c}-\mathrm{A}\mathrm{N}\mathrm{D}|f\mathrm{m}\mathrm{a}\mathrm{x}$

’ it is easy to find
$L$ and $\mathrm{t}\dot{\mathrm{o}}$ update $G$ in Lawler’s Algorithm. Lawler’s algorithm has been generalized by Baker,
Lawler, Lenstra, and Rinnooy Kan [1! to an $O(n^{2})$ algorithm for $1|\mathrm{p}\mathrm{m}\mathrm{t}\mathrm{n}$ , prec-AND, $r_{j}|f_{\max}$ .

4 Algorithm for $1|\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{c}- \mathrm{m}\mathrm{o}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{o}\mathrm{n}\mathrm{e}|f\mathrm{m}\mathrm{a}\mathrm{x}$

First, let us define feasibility of schedules for the problem $1|\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{C}^{-}\mathrm{m}o\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{o}\mathrm{n}\mathrm{e}|f_{\mathrm{m}\mathrm{a}}\mathrm{x}$. Let $h_{j}$ for
$1\leq j\leq n$ be the monotone function assigned on vertex $k$ in the directed acyclic graph $G$ . Each
$h_{k}$ is defined on a set $X_{k}$ of variables such that

$X_{k}=\{X_{jk}|(j, k)\in E(G)\}$ .

Let $A$ be a schedule. Then, the value of each variable $x_{jk}$ is assigned according to $A$ as follows.

$x_{jk}|_{A}=\{$
1 if $J_{j}$ is completed before $J_{k}$ starts on $A$ .
$0$ otherwise.

Schedule $A$ is feasible if for all $j\in N$ ,
$h_{j}|_{A}=1$ ,

where $h_{j}|A$ is the value of $h_{j}$ when the value of each variable in $X_{j}$ is assigned according to $A$.
Note that the feasibility of schedules for this problem is consistent with one for the problem
with the traditional precedence relation prec-AND, i.e., $h_{j}$ is an AND function for all $j\in N$ .

For the problem $1|\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{C}- \mathrm{m}\mathrm{o}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{o}\mathrm{n}\mathrm{e}|f_{\mathrm{m}\mathrm{a}}\mathrm{x}$

’ we use the Lawler’s algorith.m basically. Note that,
in this case, the definition of set $L$ in Lawler’s algorithm must be modified. Here we define $L$ to
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be the index set of jobs which can be put in the last position. That is, $j\in L$ if for every $k$ with
$(j, k)\in E(G)$ ,

$h_{k}|_{x_{jk}}=0\not\equiv 0$.

By the same argument for the problem with traditional precedence relations $1|\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{C}^{-}\mathrm{A}\mathrm{N}\mathrm{D}|f\mathrm{m}\mathrm{a}x$

’

it is clear that Lawler’s algorithm with the modified $L$ also finds an optimal schedule for our
problem $1|\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{c}-\mathrm{m}\mathrm{o}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{o}\mathrm{n}\mathrm{e}|f_{\max}$.

In the following, we present the procedure for finding $L$ and updating $G$ for the case that $h_{k}$

is a weighted threshold function for every $k\in N$ . Let $T_{k}$ and $W_{k}$ be the threshold and the sum
of weights of all variables of $h_{k}$ , respectively, and let $w_{jk}$ be the weight of variable $x_{jk}$ . Then,

$h_{k}|_{x_{jk}=0\not\equiv 0}$ $\Leftrightarrow$ $W_{k}-w_{jk}\geq\tau k$ .

Hence, for every $1\leq j,$ $k\leq n$ , we can decide in $O(1)$ time whether $h_{k}|_{x_{jk}=0}\not\equiv 0$ or not. Therefore,
$L$ can be found in $O(n^{2})$ time.

Suppose job $J_{j}$ is assigned to be the last job. Then, $G$ is first updated as in Lawler’s
algorithm, and the monotone function $h_{k}$ assigned on each vertex $k$ in $G$ is defined by $h_{k}$ $:=$

$\dot{h}_{k}|_{x_{jk}}=0$ . It is obvious that the updated $h_{k}$ is also a weighted threshold function for every
$k\in N-\{j\}$ . Therefore, for the case that all $h_{k^{\mathrm{S}}}$

’ are weighted threshold functions, the time
complexity for updating $G$ is $O(n^{2})$ .

Hence, Lawler’s algorithm with our procedure for finding $L$ and updating $G$ runs in time
$O(n^{3})$ . For the case that $h_{j}$ is a arbitrary monotone function, the time complexity for initially

finding and updating $L\mathrm{d}\mathrm{e}\mathrm{p}\mathrm{e}\mathrm{n}\mathrm{d}_{\mathrm{S}.\mathrm{o}\mathrm{n}}$ one for $h_{j}$ .
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