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Abstract

We propose a problem how we transmit an information-theoretically secure bit using a
random deal of cards among players in hierarchical structured groups and a computationally
unlimited eavesdropper. A player in the highest group wants to send players in lower groups
a secret bit which is secure from the eavesdropper and some other players. We formalize
this problem, and we design a protocol for constructing a secret key exchange spanning tree
on two-level hierarchical groups of players. Then for the protocol we analyze the conditions
that the secure bit transmission by the protocol is successful. We give a sufficient condition
that the protocol successfully works on the sizes of hands of players and an eavesdropper.
key words: card games, hierarchical structured groups, $\mathrm{i}\mathrm{n}\mathrm{f}o$ rmation theoretically-secure,
key exchange graphs, secret bit transmission,

1 Introduction

Suppose that there are $n$ players and a passive eavesdropper, Eve, whose computational power
is unlimited. The $n$ players are partitioned into hierarchical groups, $G_{1},$ $\ldots;G_{h}$ , where $G_{1}=$

$\{P_{1,1}, \ldots , P_{1,k_{1}}\},$
$\ldots$ , $G_{h}=\{P_{h,1}, \ldots , P_{h},, \ldots, {}_{1}P_{h,k}\}h$ and $|G_{i}|\geq 1$ for each $1\leq i\leq h$ . For each

pair of $i$ and $j(i\neq j),$ $G_{i}\cap G_{j}=\phi,$ and $\bigcup_{i=1}^{h}G_{i}$ is the set of the $n$ players (i.e., $n= \sum_{i=1}^{h}k_{i}$).

We assume that the hierarchy of the groups $G_{1},$
$\ldots,$

$G_{h}$ is.in the suffix order. That is, $G_{i}$ is
higher than $G_{j}$ in the hierarchy if $i<j$ . Using a random deal of cards we construct a spanning
tree with node set $\bigcup_{i=1}^{h}G_{i}$ satisfying the following conditions, where a node denotes a player:

(1) A pair of nodes directly connected by an edge of the spanning tree has a secret key
exchange.

(2) For each $1\leq j\leq h$ , the subgraph of the spanning tree consisting of the nodes in $\bigcup_{i=1}^{j}G_{i}$

and their incident edges is a spanning tree of the nodes of $\bigcup_{i=1}^{j}G_{i}$ .

(3) If a pair of nodes are connected by an edge of the spanning tree, then both the nodes in
the same group, or the one node is in $G_{i}$ and the other node is in $G_{i+1}$ for some $i$ between
1 and $h-1$ .

Once such a spanning tree is constructed, bit secret communication is possible $\mathrm{b}\mathrm{e}\mathrm{t}_{)}\mathrm{w}\mathrm{e}\mathrm{e}\mathrm{n}$ a
pair of nodes directly connected by an edge of the spanning tree. In this paper we assume that
communication from a node $\mathrm{i}\mathrm{n}\sim$ a group to a node in any group higher than the group is inhibited
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even if the two nodes are connected by an edge of the spanning tree. The subtree rooted at a
node in group $G_{i}$ is a subtree rooted at the node of the spanning tree consisting of nodes not
in any group higher than $G_{i}$ . A player chooses a secret bit, and using the suotree rooted at the
player can send the secret bit to a player in the subtree in the following fashion. If player $P_{\dot{\epsilon},j}$

wants to send a secret bit $r$ to player $P_{i’,j’}$ along an edge $(P_{i},, {}_{j}P_{i,j}\prime\prime)$ of the subtree, $P_{i,j}$ computes
the exclusive-or $r\oplus r^{l}$ and sends it to $P_{i’,j’}$ , where $r’$ is the secret exchange key between $P_{i,j}$

and $P_{ij’},$ . Then Pit,$j’$ obtains $r$ by computing $r\oplus r’\oplus r’=r$ . Repeating this method a player
can send a secret bit to any node of the subtree rooted at the node of the player. This bit
transmission is information theoretically secure from not only Eve but also any node not in the
the path of the bit transmission. When the number of the hierarchical groups of the players is
just 1, this problem is the same as the secret key exchange using a random deal of cards studied
in $[1][2][3][4]$ . Constructing a secret key excllange spanning tree on the hierarchical structured
players satisfying the three conditions listed above is therefore a more general problem.

2 Preliminary

Fischer and Wright proposed a protocol called the smallest feasible protocol (SFP for short) for
the one-bit secret key exchange [2]. Suppose that there are $n$ players and a passive eavesdropper
Eve. Let each player $P_{i}$ hold $c_{i}$ cards and Eve hold $e$ cards. Then $P_{i}$ is said to be feasible if
$ci>1$ , or if $h_{i}=1,$ $e=0$ , and $h_{j}>1$ . for all $j\neq i$ . We call $\xi=$ $(c_{1}, \ldots , c_{n}; e)$ the signature of
the deal. The SFP is as follows [2]:

(1) Let $P$ be the feasible player holding the smallest hand. (Ties are broken in favor of the
lower-numbered player.)

(2) $P$ chooses a random card $x$ contained in her hand and a random card not in her hand and
propose $K=\{x, y\}$ as a key set by asking ”

$\mathrm{D}\mathrm{o}\mathrm{e}‘ \mathrm{s}$ any player hold a card in $K$ ?

(3) If another player $Q$ holds $y$ , she accepts $K$ by announcing that she holds a card in $K$ . The
cards $x$ and $y$ are discarded. Whichever $P$ and $Q$ holds fewer cards $\mathrm{e}\mathrm{x}^{1}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{e}$ the remaining
cards in her hand, which are discarded, and drops out of the protocol. The remaining
players go back to step (1).

(4) If none of the players hold $y$ , then $K$ is rejected. In this case, $x$ and $y$ are discarded, and
the players go back to step (1).

The execution of the protocol continues until either there are not enough cards left to com-
plete steps (1) and (2), or until only one player is left. The first case is the case where the
protocol fails, and the second case is the protocol is successful, i.e., a spanning tree of the play-
ers is $\mathrm{c}\mathrm{o}\mathrm{n}8\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{C}\mathrm{t}\mathrm{e}\mathrm{d}$ , where each edge $(x, y)$ is the result by accepting set $K=\{x, y\}$ in step (3)
as an opaque set for Eve (i.e., it is equally likely for Eve that $P$ holds $x$ and $Q$ holds $y$ or that
$P$ holds $y$ and $Q$ holds $x$ . Fischer and Write showed the following theorem [2].

Theorem 1 [2] Let $\xi=(c_{1}, \ldots, C_{n}; e)$ be the signature of the deal. Let $ci\geq 1$ for $1\leq i\leq n$ ,
and $\max\{\dot{c}_{i}|1\leq i\leq n\}+\min\{c_{i}|1\leq i\leq n\}\geq n+e$. Then the $SFP$ perfomls successfully the
construction of a spanning tree with the $n$ nodes $..w$

here each e.dge joining two nodes represents
the two nodes sharing $a$ one-bit secret key.

The condition $\max\{C_{i}|1\leq i\leq n\}+\min\{Ci|1\leq i\leq n\}\geq n+e$ provides a sufficient condition
for the SFP to be successful on the signature. However, as shown in $[3][6]$ , it is not a necessary
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condition. For example, the signature $\xi=(3,3,2,1;1)$ has $\max\{c_{i}|1\leq i\leq n\}+\min\{c_{i}|1\leq$

$i\leq n\}=4<n+e=5$ , but the SFP succeeds on the signature. A necessary and sufficient
condition for the SFP to be successful on a signature was recently given by Mizuki et al. [6].
However, the description of the necessary and sufficient condition is not simple, and the proof
for the condition is a lengthy case analysis, where the necessary and sufficient condition is given
in each of various cases [6]

3 Protocols for Constructing Key Exchange Spanning bees

In the case where the number of the hierarchical groups of the players is 1, a secret one-bit key

exchange spanning tree with the nodes of the players can be constructed by the SFP. In this

section we give a protocol called 2-level protocol for constructing a key exchange spanning tree
satisfying the conditions given in Section 1 in the case where the number of the hierarchical
groups is 2 (i.e., the case where the $n$ players are divided into two hierarchical groups $G_{1}$ and
$G_{2})$ . The 2-level protocol partly uses a modified SFP. Let $\{P_{1,1j}\ldots, P_{1,k_{1}}\}$ be the set of the
players in $G_{1}$ and $\{P_{2,1}, \ldots , P_{2,k_{2}}\}$ be the set of the players in $G_{2}$ . The current size of $P_{i,j^{\mathrm{S}}}$

’

hand is denoted by $c_{i_{\dot{\theta}}}$ for each pair of $i$ and $j(1\leq i\leq 2,1\leq j\leq k_{i})$ , and the current size
of Eve’s hand is denoted by $e$ . Each player $P_{i,j}$ has a tag, $T(i,j)$ . For each pair of $i$ and $j$

$(1\leq i\leq 2,1\leq j\leq k_{i}),$ $T(i, j)$ is initially set to be $(i,j)$ . A player $P_{i,j}$ is said to be $fea\mathit{8}ible$ if
(1) ci,$j>1\text{ノ}$. or (2) $i=1,$ $c_{1,j}=1_{\backslash },$ $e=0$ , for every other player $P_{1,t}(j\neq t)$ in $G_{1},$ $c_{1,t}\neq 1$ , and
for every player $P_{2,t}$ in $G_{2},$ $T(2, t)=(1,1)$ , or (3) $i=2,$ $c_{2,\mathrm{j}}=1,$ $e=0$ , for every player $P_{1,t}$ in
$G_{1},$ $T(1, t)=(1,1)$ , and for every other player $P_{2,t}(j\neq t)$ in $G_{2},$ $c_{2,t}\neq 1$ .

We use the lexicographical order of the indices of the players. That is, if $i<i’$ , or $i=i’$ and
$i’<j’$ , then $(i,j)<(i’,j’)$ . The signature of the deal of the two hierarchical groups is denoted
by $\xi=(_{C_{1,1}}, \ldots, c_{1},k_{1} ; c2,1, \ldots, C_{2},k_{2}arrow ; e)$ .

2-level protocol:

(1) If there is no player with a non-empty hand in $G_{1_{i}}$ and there is a player in $G_{1}$ or $G_{2}$ with
its tag value not equal to $(1, 1)$ , then the protocol stops and fails. If $T(1, i)=(1,1)$ for all
$1\leq i\leq k_{1}$ then go to step (5). Let $P_{1,i}$ be the feasible player holding the smallest hand in
$G_{1}$ . (Ties are broken in favor of the lower ordered player.) If no player in $G_{1}$ is feasible,
then the lowest ordered player holding an non-empty hand, say $P_{1,i}$ , is chosen.

(2) For $P_{1,i}$ chosen in (1), $P_{1,i}$ chooses a random card $x$ contained in her hand and a random
card $y$ not in her hand and proposes $K=\{x, y\}$ as a key set by asking, ”Does any player
with its tag value different from $T(1, i)$ hold a card in $K$ ? (If there are no cards not in
$P_{1,i,y}$ can be a dummy card.)

(3) If another player in $G_{1}$ , say $P_{1,j}$ , with its tag value different from $T(1, i)$ holds $y,\cdot$ then $P_{1,j}$

accepts $K$ by announcing that she holds a card in $K$ . The cards, $x$ and $y$ are discarded,
and for every $P_{1,t}$ such that $T(1, t)=T(1\text{ノ}.i)$ or $T(1, t)=T(1,j),$ $T(1,t)$ is set to be
$T(1, \min\{i,j\})$ . A player holding fewer cards exposes the remaining cards in her hand (i.e.,

hereafter the player holds the empty hand). (Ties are broken by exposing the remaining
cards in the hand of the player with the larger index.) If a player in $G_{2j}$ say $P_{2,j}.$, holds $y$ ,
then $P_{2,j}$ accepts $K$ by announcing that she holds a card in $K_{i}$ then the cards $x$ and $y$ are
$\mathrm{d}\mathrm{i}_{\mathrm{S}\mathrm{C}\mathrm{a}\mathrm{r}}\mathrm{d}\mathrm{e}\mathrm{d}_{i}$ and then $T(2,j)$ is set to be $(1, 1)$ , and then $P_{2,j}$ exposes the remaining cards
in her hand (i.e., hereafter $P_{2,j}$ holds the empty hand). All the players go back to step (1)

with the updated deal.
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(4) If none of the players accept $K=\{x,y\}$ , then $x$ and $y$ are discarded, and then all the
players go back to step (1) with the updated deal.

(5) If for all $1\leq i\leq k_{2j}T(2, i)=(1,1)$ , then the protocol successfully stops. If there is
a player with its tag value not equal to $(1, 1)$ in $G_{2}$ holding the empty hand, then the
protocol stops and fails. If there are no feasible players in $G_{2}$ but there is a player in $G_{1}$

holding a $\mathrm{n}\mathrm{o}\mathrm{n}- \mathrm{e}\mathrm{m}\mathrm{P}^{\mathrm{t}}\mathrm{y}$ hand, then let $P_{1,i}$ be such a player and go to step step (9). Let $P_{2,i}$

be the feasible player holding the smallest hand in $G_{2}$ . (Ties are broken in favor of the
lower ordered player.)

(6) For $P_{2,i}$ chosen in (5), $P_{2,i}$ choose8 a random card $x$ contained in her hand and a random
card $y$ not in her hand and proposes $K=\{x,y\}$ as a key set by asking, ”Does any player
hold a card in $K$ ?

(7) If a player in $G_{1}$ holds $y$ , then the player accepts $K$ by announcing that she holds a
card in K., then the cards $x$ and $y$ are $\mathrm{d}\mathrm{i}_{\mathrm{S}\mathrm{C}\mathrm{a}\mathrm{r}}\mathrm{d}\mathrm{e}\mathrm{d}_{j}$ then for every player $P_{2,t}$ such that
$T(2,t)=T(2, i),$ $T(2,t)$ is set to be $(1, 1)$ , and then $P_{2,i}$ expose the remaining cards in her
hand (i.e., hereafter $P_{2,i}$ holds the empty hand). If another player, say $P_{2,j}$ , in $G_{2}$ holds
$y$ , then $P_{2,j}$ accepts that she holds a card in $K$ , then the cards $x$ and $y$ are $\mathrm{d}\mathrm{i}_{\mathrm{S}\mathrm{C}\mathrm{a}\mathrm{r}}\mathrm{d}\mathrm{e}\mathrm{d}_{j}$

then for every $P_{2,t}$ such that $T(2,t)=T(2, i)$ or $T(2,t)=T(2,j),$ $T(2, t)$ is set to be
$\min\{T(2, i), T(2,j)\}$ , and then a player holding a smaller hand among the two players
exposes the remaining cards (i.e., hereafter the player holds the empty hand.) (Ties are
broken by exposing the remaining cards in the hand of the player with the larger index.)
All the players go back to (5) with the updated deal.

(8) If none of the players accept $K=\{x, y\}$ , then $x$ and $y$ are discarded, and then all the
players go back to step (5) with the updated deal.

(9) Let $P_{1,i}$ be the player defined in step (5) (i.e., the player in $G_{1}$ holding a non-empty hand).
(Note that in this case every player other than $P_{1,i}$ holds the empty hand.) $P_{1,i}$ chooses a
random card $x\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{e}^{\backslash }\mathrm{d}$ in her hand and a random card $y$ not in her hand and propose
$K=\{x, y\}$ as a key set by asking, ”Does any player hold a card in $K$ ?

(10) If another player, $8\mathrm{a}\mathrm{y}P_{2,j},$

$\mathrm{i}\mathrm{n}G^{\mathrm{v}_{2}}\overline{\sim}\sim$

holds $y$ , then $P_{2_{\dot{d}}}$ accepts that she holds a card in $K$ ,
then the cards $x$ and $y$ are discarded, then for every $P_{2,t}$ such that $T(2, t)=T(2,j),$ $\tau(2, t)$

is set to be $(1, 1)$ , and then go back to step (5) with updated deal.

(11) If none of the players accept $K=\{x, y\}$ , then $x$ and $y$ are discarded, and then all the
players go back to step (5) with the updated deal.

Example 1 Let $\xi=(4,5,6;7,8;5)$ be the $\mathit{8}ignature$ of a deal. We apply the 2-level protocol to
the deal. The initial signature $i\mathit{8}$ shown in Figure 1 $(a)$ . The size of each hand is indicated by
a number beside the $corre\mathit{8}ponding$ node in Figure 1. Goup $G_{1}$ consists of three player8. Their
initial tag value8 are $(1, 1)$ , $(1, 2)$ and $(1, 3)$ . Group $G_{2}consi\mathit{8}tS$ of two players. Their initial tag
values are $(2, 1)$ and $(2, 2)$ . The process of constructing a secret key exchange spanning tree by
the 2-level protocol is shown in Figure 1. The construction of a $\mathit{8}ecret$ key exchange spanning
tree proceeds as shown in $(a),$ $(b),$ $\ldots$ , $(h)$ of Figure 1. Players with their tag value $(1, 1)$ are
indicated by black circles. At each $\mathit{8}tage$ a player with the double circle propose8 a key $\mathit{8}et$ of
cards. A player who announces a $ca7d$ in the key set is indicated by an incoming arrow. $At$

the end of proces8 shown in $(c)$ , the tag values of all the players in $G_{1}$ are (1.1). The proces8

from step $(\dot{\mathit{5}})$ of the 2-level protocol is shown from $(d)$ in Figure 1. At each proposal by the
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player indicated by the double circle during the $proce\mathit{8}S$ in $(e)$ , Eve has a card in the key $\mathit{8}et$ ,

and eventually the stage shown in $(f)$ reache8. At the stage shown in $(f)$ , the $\mathit{8}econd$ player in
$G_{1}ha\mathit{8}$ a card in the key set $propo\mathit{8}ed$ by the player indicated by the double circle in $G_{2}$ . This

situation is $\mathit{8}hown$ in $(g)$ , and eventually we obtain a $\mathit{8}ecret$ key exchange $\mathit{8}panning$ tree. This
$\mathit{8}panning$ tree satisfies the three condition8 listed in Section 1.

$\mathrm{G}1\bullet 4$ $05$ $06$ $\mathrm{G}1\bullet r_{0}^{5\backslash 5}3\mathrm{O}$

G2 $\mathrm{O}$ $\mathrm{O}$ G2 $\mathrm{O}$ $\mathrm{O}$ G2 $\mathrm{O}$ $\mathrm{O}$

7 8 7 8 7 8

Eve: 5 Eve: 5 Eve: 5 Eve: 5

$(a)$ $(b)$ $(c)$ $(d)$

Eve:5 Eve: $0$ Eve: $0$ Eve: $0$

$(e)$ $(f)$ $(g)$ $(h)$

Figure 1: A process by the 2-level protocol on $\xi=(4,5,6;7,8;5)$

Theorem 2 Let $\xi=(c_{1,1}, \ldots, c_{1,k_{1}} ; c_{2,1}, \ldots, c_{2,k_{2}} ; e)$ be the signature of a deal on hierarchical
groups, $G_{1}$ arpd $c2$ . If the following two inequalitie8 hold, then the 2-level protocol perform8 suc-
cessfully to construct a secret one-bit key exchange spanning tree $\mathit{8}ati_{S}fying$ the three condition8
$li\mathit{8}ted$ in Section 1.

(1) $\max\{c_{1,i}|1\leq i\leq k_{1}\}+\min\{c_{1,i}|1\leq i\leq k_{1}\}\geq k_{1}+k_{2}+e$

(2) $\min\{c_{2,i},|1\leq i\leq k_{2}\}\geq e+k_{2}$

Proof. For the process before step (5) of the 2-level protoc.ol, players in $G_{1}$ propose sets of
cards. For each proposed set $K=\{x, y\}$ before step (5), one of the following three cases occurs.
The first case is that both $x$ and $y$ are hold by players in $G_{1}$ , the second case is that one of
the card8 is hold by a player in $G_{2}$ , and the third case is that one of the cards is hold by Eve.
Besides discarding the two cards in $K$ at each proposal, in the first case, exactly one player in
$G_{1}$ exposes the remaining cards and becomes a player with the empty hand, in the second case
the player in $G_{2}\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{o}8\mathrm{e}\mathrm{s}$ the remaining cards and becomes a player with the empty hand, and
in the third case, the remaining cards are not exposed. We might assume that the behavior of
each player in $G_{2}$ during the process before step (4) likes Eve if the set of the discarded cards
and the exposed cards by a player in $G_{2}$ at each proposal before step (5) is considered just one
card. Therefore, as proved about SFP in [2], if the condition (1) in the theorem is satisfied then
all the players in $G_{1}$ are connected by key exchange edges of a spanning tree in $G_{1}$ before steP
(5).

When the protocol enters step (5), a player in $G_{2}$ has already connected with a player in
$G$ or no players have not yet connected with any player in $G_{1}$ . In the latter case, at least one
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player in $G_{2}$ should be connected with a player in $G_{1}$ in a step after leaving step (4). For each
loop starting step (5), the number of different tag values of players in $G_{2}$ is reduced by at least
one, or a player in $G_{2}$ is directly connected with a player in $G_{1}$ , or the size of Eve’s hand is
reduced by one. Even if there are no chances such a player in $G_{2}$ is connected with a player in
$G_{1}$ in step (7), there is such a chance in step (10). Note that step (9) and step (10) are prepared
for this purpose. From this observation we can say that if the second condition holds then the
all the players’ tag values eventually become $T(1,1)$ and a desired key exchange spanning tree
with the set of players on the hierarchical structure is constructed. $\square$

4 Concluding Remarks

The condition given in Theorem 2 is a sufficient condition but the converse does not hold in
general. For $\mathrm{e}\mathrm{x}\mathrm{a}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}_{i}$ the signature $\xi=(3,3,2,1;1;\mathrm{o})$ does not satisfies (1) in Theorem $2_{i}$

but the 2-level protocol works successfully on $\xi=(3,3,2,1:1;\mathrm{o})$ in any case. If we could use
the necessary and sufficient condition given in [6] on the sizes of the hands of the players and
Eve that the SFP works successfully, we might obtain a necessary and sufficient condition or a
sufficient condition stronger than the condition given in Theorem 2. However, the necessary and
sufficient condition given in [6] is complicated. We are asked to prepare an elegant necessary and
sufficient condition on a signature in the case where the 2-level protocol works successfully. We
are also interested in designing an efficient protocol for constructing good shaped spanning tress
satisfying the conditions given in Section 1 on a general hierarchical structures of the players.
These problems would be worthy of further investigation.
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